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Abstract

Colloidal particles were sedimented onto patterned glass slides to grow three–dimensional bi–

crystals with a controlled structure. Three types of symmetric tilt grain boundaries between

close–packed face–centered cubic crystals were produced: Σ5 (100), Σ17 (100) and Σ3 (110). The

structure of the crystals and their defects were visualized by confocal microscopy, and characterized

by simple geometric measurements, including image difference, thresholding and re–projection.

This provided a quick and straightforward way to detect the regions in which the atoms are mobile.

This atomic mobility was higher at the grain boundaries and close to the solid/liquid interface.

This method was compared to the more conventional analysis based on the calculation of the local

order parameter of the individual particles to identify the interface. This was in turn used to

identify the presence of grooves at the grain boundary / liquid triple junction for every type of

grain boundary, except for the twin (Σ3 (110)), for which no groove could be detected. Images of

these grooves were processed and the angle linking the grain boundary energy to the solid/liquid

interfacial energy was measured. The resulting values of the grain boundary energy were compared

to estimates based on the density deficit in the boundary.
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I. INTRODUCTION

Colloidal systems provide unique opportunities to study the dynamics of crystals and

glasses. Colloidal particles with a diameter on the order of a micrometer can be observed in

the optical microscope. In particular, confocal microscopy offers the opportunity to track

the particles in time and space and thereby provides a direct particle-level view of a variety

of complex phenomena such as the nucleation and growth of crystal nuclei in a metastable

liquid [1], the nucleation of liquids in overheated crystals [2], the capillary fluctuations of a

crystal-liquid interface [3], the nucleation and growth of misfit dislocations in a crystal grown

eptixially on a patterned template [4], the nucleation of dislocations under an indentor tip

[5] and the local transformations during the shear deformation of a glass [6, 7].

Grain boundaries, which we will take here to be the boundaries between two identical

crystals with a different orientation, have a complex structure [8, 9]: five angles are required

for a full macroscopic identification (three for the relative orientation of the crystals, two for

the orientation of the boundary plane). Microscopically, they consist of interlocking steps on

the surfaces of the grains they bound [10]. Often they are faceted and contain defects, such as

grain boundary dislocations. Their dynamics, such as atomic diffusion along them, or atoms

detaching themselves from one grain and joining to the other causing boundary motion, are

key to the understanding of phase tranformations, high-temperature deformation and grain

growth.

The static structure of grain boundaries can, with some effort, be elucidated by electron

microscopy, but a direct view of their atomic-level dynamics remains beyond reach. This

is where colloidal modeling offers a unique opportunity. Most of the work so far has been

on boundary lines between two-dimensional crystals, such as the capillary fluctuation study

by Skinner et al. [11]. Randomly oriented boundaries between three-dimensional colloidal

crystals have been used to claim glassy dynamics [12], to study their kinetic roughening and

grain growth [13], and investigate their role in the nucleation of melting [14]

We have proposed a method to produce grain boundaries between hard-sphere colloidal

crystals with prescribed orientation, by sedimentation onto specially oriented bicrystal tem-

plates [15]. In this paper we introduce a method to investigate the energy of these grain

boundaries by a new efficient way to image the triple lines they form with the crystal-liquid
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interface.

The equilibrium configuration at a triple line where three interfaces meet should satisfy

the equation [16, 17]:

3

∑

i=1

(t̂iγi +
∂γi
∂βi

(t̂i × ŝ)) = 0 (1)

where i (= 1,2 or 3) are the indices of the three interfaces, t̂i are the unit vectors perpendic-

ular to the triple line in each of the three interfaces, ŝ is the unit vector along the triple

line, βi are the angles each interface makes with a fixed direction, and γi are the interfacial

energies. The second term in the parentheses is a ”torque term” that arises from crystallo-

graphic anisotropy. The configuration in our experiments is illustrated in Fig. 1: a vertical,

symmetric tilt boundary in equilibrium with two identical solid-liquid interfaces. Due to

the symmetry of this configuration, the torque terms are zero or cancel out, and hence the

equilibrium condition reduces to a simple vector equilibrium at a ”grain boundary groove”:

γGB = 2γSL cos(
α

2
) (2)

where γGB and γSL are the grain boundary and solid-liquid interfacial energies, respectively,

and α is the groove angle. The curvature of the solid-liquid interface is the result of gravity,

which maintains a horizontal solid-liquid interface at infinity.

The only observations of grain boundary grooves in colloidal systems are those of Rogers

and Ackerson [18], who used hard–sphere–like polymer particles with a diameter of 0.5µm

to form polycrystals in equilibrium with a liquid in a gravitational field. They observed

several grain boundary grooves, and the objective of their study was to measure the solid-

liquid interfacial energy from the curvature of the solid-liquid interface due to the density

gradient, in analogy to similar experiments on molecular systems in a temperature gradient

[19]. Our interest, however, is in the grain boundaries themselves, specifically the energies

of custom-made examples.
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FIG. 1. Definition of the geometry of the groove at the grain boundary – liquid triple junction.

II. EXPERIMENTAL METHODS

A. Colloidal suspension

Silica particles (diameter σ = 1.55 µm, polydispersity < 3.5%, density 2.0 g/cm3, mass

3.9 x 10−15 kg) were suspended in a water - 62.8 vol.% dimethylsulfoxide (DMSO) solution

that matched the index of refraction of the silica and had a density of 1.1 g/cm3. Contrast

between particles and liquid was achieved by adding 1.2 vol.% fluorescein–NaOH dye (3

wt.% in water) to the solution. The index match makes the system optically transparent,

which allows investigation by optical confocal microscopy up to 100 µm into the sample.

The index match also minimizes the van der Waals forces between the particles, which

interact therefore like hard spheres. The high concentration of electrolyte introduced with

the fluorescein solution reduces the Debye screening length to 10 nm, consistent with hard-

sphere interaction. The large difference in density, ∆ρ, between the solution and the silica

spheres results in a short gravitational length kBT /∆ρVp g = σ/7, where Vp is the particle

volume. As a result, the crystal-liquid interface that is formed after sedimentation is flat

and well defined, but the liquid layer is only a few diameters thick [3].

B. Template

The crystal growth is controlled by the use of a template. Hard spheres crystallize into

close-packed structures: face-centered cubic, hexagonal close-packed, or random hexagonal
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close-packed. Spontaneous crystallization, for example by homogeneous nucleation [1], re-

sults in the formation of the latter structure, which consists of close-packed hexagonal planes

stacked randomly in the A,B or C positions. To obtain large face-centered cubic crystals, as

in this study, it is necessary to use templates [4, 20]. A template is a patterned substrate

that directs the settling of the particles in such a way that the structure, orientation, and

size of the crystal is pre-determined. This process, called colloidal epitaxy, is key to this

study, in which we grow bi–crystals of specific orientation and symmetry.

1. Fabrication of the templates

A positive mask of the targeted pattern (set of holes) was printed on a chromium-coated

substrate (chromium was removed using a HeidelbergTM mask maker). A thin layer of

photoresist was spin-coated and polymerized (3 minutes at 110○C) on a primer-coated glass

slide used as substrate. This assembly was then exposed using a mask aligner (SussTM) for

2 to 2.5 sec. The exposure time depended on the size of the holes in the chromium mask,

the age of the photoresist, calibration of the mask aligner and the premixed developer. The

photoresist was then developed for 60 to 90 seconds. The silica was etched in a reactive ion

etcher (RIE) for about 10 minutes. Finally, to remove the remaining photoresist, the sample

was exposed in the same RIE to an oxygen cleaning plasma, which cleaned the photoresist

without etching the silica.

2. Types of templates

The individual crystal patterns chosen to guide the growth of the colloidal face–centered

cubic bi–crystals were similar to those presented in Refs [5, 20]. It was shown there that good

crystal could grow on square lattices of holes spaced at 1.63 µm pitch. This distance was

selected because it corresponds to the observed inter-particle distance in crystals obtained by

slow sedimentation on a flat, unpatterned glass slide. Crystals also form on a flat slide, but

because of random simultaneous nucleation of differently oriented grains, the final structure

is a polycrystal with quasi–columnar grains. We have used some of these polycrystals for

comparison in the present work.

The orientation of the crystal in the direction perpendicular to the substrate can be
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modified (engineered) by changing the geometry of the pattern, in order to impose a specific

type of plane on the first layer, which in turn drives the orientation of the other layers

parallel to the substrate. An hexagonal initial pattern, for instance, induces the successive

growth of (111) closed–packed planes. This is also what spontaneously happens in the case

of the polycrystals that form on a flat surface. A square pattern with a spacing of 1.63 µm

induces the growth of (100) planes. A rectangular pattern with a pitch of 1.63 µm in one

direction and of
√

2×1.63 µm in the perpendicular direction produces growth of (110) planes

parallel to the substrate.

Three types of bi–crystalline patterns were generated to grow the following symmetric

tilt boundaries: a Σ5 (100), a Σ17 (100), and a Σ3 (110). The patterns were taken from

a catalogue of geometrically constructed hard-sphere boundaries [21–23]. The last one is

a perfect twin boundary. These boundaries were selected because of their high degree of

coincidence (low Σ), and hence short repeat lengths. This was convenient for compatibility

with the CAD software used to draw the template patterns. They are also some of the more

widely used ones in computer simulation studies, and their energies are minima (cusps) in

the orientation space [24–26].

Figure 2 shows a confocal image of each bicrystal, in a region close to the interface

between the template and the colloidal suspension. The white dots in these figures are holes

filled with the liquid. In some places, the bottom of some silica spheres can be seen inside

the holes.

  

10 µm 10 µm 10 µm

y

x

FIG. 2. Confocal images of the templates: Σ3(110) (left), Σ17(100) (middle) and Σ5(100) (right).
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C. Confocal microscopy and processing of the images

1. Confocal microscopy

The structure of the bicrystals was observed with a LeicaTM confocal microscope in res-

onant mode. The time required to image a sample was about 2 minutes. The magnification

was set to obtain images with a 0.1 µm voxel size in the three dimensions of the analyzed

volumes. Typical fields of view in the planes parallel to the substrates were 51.2 or 102.4

µm on a side. The size in the direction perpendicular to the template was governed by the

height of the crystal, and was in the range of 20 to 50 µm. In order to reduce the noise in

the image, each slice was averaged over four acquired frames. Since the refractive index of

the fluid is matched to that of the spheres, light could penetrate deeply into the sample with

little scattering, so that tens of crystal planes could be imaged. The lateral resolution (per-

pendicular to the optical axis) was about 200 nm, typical for optical microscopy. Because

of the limitations of the optics, the vertical resolution was only 500 nm.

2. Image processing

In this paper, the gray levels of the confocal images vary from 0 (black) to 255 (white).

The average gray levels of each slice were evened out and normalized to insure homogeneity

from the top to the bottom of the sample. The normalized images were then median–

filtered to reduce the noise and to facilitate the subsequent analysis. The median filtering

was made with a small kernel of dimension one pixel, isotropic in the three directions. This

was sufficient to reduce the noise, while preserving the quality of the image and avoiding

the biases discussed by Lu et al [27].

There are a number of procedures to determine the numerical locations of the particle

centers from the three-dimensional confocal images (”stacks”) [27–29]. In this work, we

have used a new, simple but practical method for this purpose, based on standard image

processing techniques (specifically segmentation and labelling) used for 3D object detection

in X-ray tomography images. First, a threshold was introduced to separate the silica phase

(particles, dark) from the solution (light). After this step, it was observed that the particles

were touching each other in the binary image. We then used a watershed algorithm [30] to

obtain well separated objects. We then labeled this binary image and calculated the center

7



of mass of each label. This procedure is very similar to the others used to locate colloidal

particles and gives results and its accuracy is sufficient for our purpose.

We also developed an additional original cquisition procedure, in which two consecutive

images of the same volume at a given location were acquired, about two minutes apart, and

the difference between the two images was computed. If the colloidal particles were perfectly

immobile, these differences should be equal to zero. It will be shown that these differences

are not zero, and that the locations where the difference is lower or higher than zero are

places where the particles are mobile.

III. PROCESSING THE IMAGES TO LOCATE THE SOLID/LIQUID INTER-

FACE

A. Standard procedure with a local order parameter

To distinguish the crystal and fluid phases, we assign an order parameter [31] to each

particle based on the arrangement of its nearest neighbors. As in Ref.[3], we begin by

finding the distance rij between a particle i and any other particle j. All particles with

rij2
< 1.45 × r0

2 are considered nearest neighbors of particle i. The value r0
2 is found by

identifying the six closest particles to i and calculating their mean squared separation

r2
0 =

1

6

6

∑

j=1

r2
ij

Next we find the bond angles θjik between any two neighbor pairs. The order parameter

φi is defined as the number of angles θjik ≈ 60○. Since the experimental determination of

the position of the centers of the particles is not perfect and their motion non-negligible, it

is necessary to establish an angular tolerance for the determination of the order parameter

(cos θ = 0.5 ± 0.1).

In an ideal face–centered cubic crystal the order parameter is 24. Point defects in the

crystal lower the order parameter in their vicinity, and hence it is useful to determine an

average value to aid in the identification of the interface. This is done by calculating the

mean value for every particle i and its neighbors, defined as before. The local average ⟨φi⟩

is then assigned to the central particle i. Fig. 3 shows a typical snapshot of the boundary,

colored according to the average order parameter. The crystal and liquid phases, along with
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the grain boundary, are clearly visible.
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FIG. 3. Projection of the order parameter of all particles in the Σ5 (100) bicrystal. The grain

boundary is perpendicular to the plane of the figure and the template is at the bottom. The color

bar indicates the order parameter (0–24).

To image the groove at the triple line, we set a threshold value for the order parameter

to define the interface between the solid and the liquid. Our system also has lower order

parameters along the entire grain boundary, but we can get around this problem identifying

the “liquid” particles as in Figure 4. This figure was created by coloring particles with an

order parameter less than a threshold value white, and those above black. Each point was

then broadened in the x- and z-directions by a Gaussian with a standard deviation of 1.6

µm, and finally projected (averaged) in the y-direction. The resulting figure clearly shows

the groove and the triple line.

  

x

z

FIG. 4. Projection of particles with order parameters less than the threshold order parameter (11)

in the Σ5 (100) bicrystal.
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B. Particle mobility at the grain boundary

Fig. 5 shows the values of the gray scale differences between two consecutive confocal

images of the same sample taken two minutes apart. Positive values are white and negative

values are black; gray values are close to zero. Fig. 5(a) corresponds to a slice at the bottom

of the sample while Fig. 5(b) is in the solid phase, but at a level close to the liquid. It can be

seen from these figures that the difference is not uniformly equal to zero. This is the result

of Brownian motion. In most of the sample, this Brownian motion leads to small differences.

In several places, however, the difference is greater and shows a characteristic black–and–

white pattern. One such pattern is shown as a zoomed inset in Fig. 5(a). The difference

has a high absolute value and goes from positive to negative. The difference plot highlights

places where an atom has moved substantially between the two image acquisitions.

This effect can be seen in the bulk of a crystal (as in Fig. 5(a)), where it probably

corresponds to vacancy motion. It is particularly prevalent at the grain boundary, where

one would expect greater mobility of the particles due to the excess volume. We also expect

it near the solid–liquid interface, where the liquid particles have greater mobility. This

simple difference method, therefore, can be used to identify phases and locate the phase

boundaries, as will be shown below.

C. Visualizing the grooves with mobility

Images like the ones in Fig. 5 were first thresholded to select the regions in the sample

where the difference is both very high (white gray levels) and very low (black gray levels).

These binarized 3D images were then projected onto the plane perpendicular to both the

grain boundary and the template. The result is shown in Fig. 6 which looks similar to the

projected order parameter shown in Fig. 4. The figure shows two examples: Σ5 (100) (Fig.

6(a)) and a Σ17 (100) (Fig. 6(b)). This projected image of the mobility reveals the presence

of a groove at the grain boundary – liquid triple line. This can only be observed if the grain

boundary is carefully aligned with the three main axes of the confocal images. We have

been able to reveal the presence of such grooves in all the grain boundaries that we have

analyzed, with one exception: for the twin boundary (Σ3 (110)) Fig. 7), no groove can be

observed. Since the twin boundary has zero excess volume, the mobility of its particles is
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FIG. 5. Difference between two consecutive confocal microscopy images of the same location taken

two minutes apart. (a) Slice close to the template at the bottom of the sample and (b) Slice close

to the liquid/solid interface. The grain boundary is horizontal in the middle of the images. Some

particles have moved, leading to characteristic black and white patterns like the one shown as a

zoomed inset in Fig. (a).

no higher than that in the bulk crystal. Since in a hard-sphere system, the energy of a twin

boundary is negligibly small [32], Eq. (2) predicts that the groove angle is α = 180○, which

means that there is no groove.

Images like Fig. 6 can be processed further to retrieve a profile of the groove. This first

requires a threshold of the projections, which has to be selected so that the liquid part of

the sample is white and the solid is black. The value chosen for the threshold influences

the results. The 2D images of the projections can then be analyzed to determine the local

height of the solid/liquid interface. This value of the height, averaged along the total length

of the boundary, defines the profile of the groove.
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FIG. 6. Projected view of the mobility in a Σ5 (100) (a) and in a Σ17 (100) grain boundary (b).

Grooves can be observed at the solid/liquid interface grain boundary tripple line.
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FIG. 7. Projected view of the mobility in a Σ3 (110) grain boundary. No groove can be observed.

IV. COMPARISON BETWEEN THE TWO PROCESSING METHODS

The position of the interface determined using both the order parameter (OP) processing

and the new image processing (IP) procedure presented in this paper both depend on the

threshold to distinguish the solid and the liquid. Figure 8 shows the changes in the profile of

the same groove when this threshold is changed for the two processing routes. Overlayed are

the positions of the particles coloured according to their order parameter. Obviously, when

the threshold increases, the position of the solid/liquid interface shifts up and the shape of

the groove is also slightly modified. This is more pronounced with the IP than with the OP

method. In the rest of the paper, we have used the same threshold value, IP 70, which gives

a stable profile with a limited amount of noise. Figure 9 compares the two best choices: IP

70 and OP 11.
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That the two interface profiles differ is no surprise, since the two methods are based

on different physical principles: one is static, the other dynamic. At the level of the IP–

interface, the structure is not yet that of a liquid, but that of a crystal with a sufficient

number of defects to reveal mobility on the timescale of our observations. For this reason,

the IP–interface lies below the OP–interface. What is important, however, is that the groove

shapes are similar and that the simple IP–technique can be used to determine groove angles.

  
x (µm)

  
 z

 (
µ

m
)

FIG. 8. Effect of the threshold used in the analysis of the position of the solid/liquid interface.

The particles are coloured according to their order parameter and are also shown. Interface posi-

tions corresponding to different threshold values for the order parameter (OP) and for the image

processing (IP) procedures are indicated.
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FIG. 9. Comparison of the two best thresholds using the order parameter (OP) and the image

processing (IP) procedures.
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V. QUANTITATIVE RESULTS

A. Profiles of the grooves

The groove profile can be fitted with a mathematical function. We chose two sine func-

tions (one for each branch of the profile on each side of the grain boundary), but any function

that fits the curve close to the triple line can be used. The effect of the choice of this function

on the results is much smaller than that of other sources of uncertainty. Fig. 10 shows a

typical fit. The slope of this function at the groove point then gives the two contributions

of the angle α (one on each side of the groove). Ideally, these two contributions should be

equal and the grain boundary perfectly vertical. Experimentally, as seen in Figure 10 and

as we will discuss in the next section, this is not always the case.

Using this fitting procedure, we have measured the groove angle for several grain bound-

aries and the results are gathered in Table I. For one grain boundary (Σ5 (100)), the Table

also shows the variation of the measurement over time. This measurement was performed

on designed grain boundaries, but also on random columnar grain boundaries. In the latter

case, we had to search to find a portion of the grain boundary sufficiently straight to allow

meaningful averaging of the groove position. It is clear from Table I that the method distin-

guishes the Σ3 grain boundary, with an angle of 180○, from all the others, which have angles

between 80○ and 110○. The method is, however, not sufficiently precise to distinguish be-

tween the Σ5 and Σ17 grain boundaries. The energies of these two types of grain boundaries

have been experimentally measured only for aluminum alloys in [33]. The resulting values

were quite similar. A number of numerical simulations have corroborated this measurement

[25, 26, 33]. As a consequence, the difference in angle for these boundaries is expected to be

small, and our method is not sufficiently precise to distinguish between them.

The grooves observed in this study are typically about 3 µm deep (30 pixels), which

corresponds to about three crystal inter–layer distances. This explains why the grooves

are difficult to measure precisely and why we had to develop special processing procedures

involving averaging over the length of the grain boundary. In the work of Rogers and

Ackerson [18], the only other study dealing with this type of grooves in hard–sphere colloidal

systems, the depth is about 10 µm. Since their particles are smaller, this corresponds to 30

inter–layer distances. The difference between the two systems (larger particle size, and higher
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FIG. 10. Fitting of the experimental groove profile.

density mismatch in the present paper) explains the differences between the geometrical

characteristics of the grooves. The typical values of the groove angle, however, seem to be

similar in both studies.

B. Variation of the groove angle with time

We acquired couples of confocal stacks of the Σ5 boundary as described above, but we

repeated this measurement over a longer period of time, with approximately 10 minutes

between each measurement. We then measured the two contributions to the groove angle

(α = α1 + α2) with the processing method described above. The time–dependence of these

two contributions and their geometric average, are plotted in Fig. 11. We observe that over

time, the average fluctuates less than the parts. It varies between 51○ and 54○, for an α

angle of 102○ to 110○. The two contributions separately vary much more (from 42○ to 60○).

It appears that the inclination of the grain boundary fluctuates about its average vertical

TABLE I. Measurement of the groove angle, α, in several grain boundaries.

Grain Boundary type α (○)

Σ5 (100) 85; 104

Σ5 (100) over time 106.6; 102.3; 101.7; 105; 109

Σ17 (100) 107

Σ3 (110) 180

Random columnar 85; 107
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FIG. 11. Time dependence of the two contributions, α1 and α2, to the groove angle α of the

Σ5(100) boundary. The contributions fluctuate more than the total angle.

C. Relation between density and mobility

Calculating the volume fraction of a phase (here the silica phase) from a binary 3D image

is straightforward by simple thresholding and counting the number of voxels belonging to

the desired phase in boxes of given sizes. This method also provides a straightforward way

to assess the spatial distribution of the volume fraction of the phase. We have used it here

to produce a density map of one of our bi–crystals. Figure 12 shows a projection of the

gray scale density calculated in this way for the same Σ5 (100) grain boundary as the one

used for the order parameter shown in Figure 3 and for the mobility map in Figure 6a. This

density map was produced by shrinking the thresholded confocal images by a factor of ten,

and then resizing the averaged voxels back to the image size of the mobility map. This

procedure results in a blurring of the discrete particles, each of which has a diameter of

about 15 voxels. The resulting continuum map clearly reveals the liquid and grain boundary

regions. In the crystal, away from the boundary, we estimated the packing fraction from

the average gray scale to be 61%.

The density is lower at the grain boundary and in the liquid (packing fraction of about

30%). The density is fairly constant with the height along the grain boundary. At the triple

line, the region with a lower density becomes wider, in good agreement with the shape of
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FIG. 12. Average value of the density in the plane perpendicular to the grain boundary (lower

densities for darker gray levels). Note that the density is smaller at the grain boundary, at all

heights Z.

the groove. It is interesting to note that this density map is similar to the projection of

the voronoi volume shown in figure 13 and of the order parameter in figure 4. The mobility

shown in Figure 6a, on the contrary, is similar to all these figures at the top of the grain

boundary, but is different at the bottom. Mobility is then not directly related to the density,

to the Voronoi volume, or to the order parameter. For a high mobility, it appears from this

measurement that the density has to be low, but that this is not a sufficient condition.

Figure 13 is a plot of the local density, computed by projecting the average value of the

Voronoi volumes of all the particles in the Σ5 (100) boundary of Figures 3, 6a and 12 onto a

plane parallel to the x-z plane. The similarity with Fig. 12 is clear. In the region away from

the boundary, the average Voronoi volume of a particle is Ω = 3.37 µm3, which corresponds

to a packing fraction of φ = Vp/Ω = 0.57, close to the value measured by the gray-scale

method. The Voronoi volume in the perfect crystal with a lattice parameter based on the

spacing of the template is Ωid = 3.06 µm3, which corresponds to a packing fraction of 0.63.

The difference is due to imperfections (vacancies) in the crystal.

To calculate the density deficit associated with the boundary, a cluster of N particles

that contained a large part of the boundary was considered. A number Ngb of those particles

lay at the grain boundary, i.e., they form the end surfaces of the two crystals where they

meet at the boundary. If the sum of all the Voronoi volumes of the cluster is V , the excess

volume is calculated as (V − NΩ)/Ngb, which here comes to Vex = 0.603 µm3. This gives

a packing fraction of φ = Vp/(Ω + Vex) = 0.49. We can normalize the excess volume by the
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FIG. 13. Average Voronoi volumes of the particles the Σ5(100) boundary projected onto the x-z

plane.

average crystalline Voronoi volume: Vex/Ω = 0.17. Since there is a bilayer of boundary par-

ticles, it is useful to compare twice this value, 0.34, to a similarly normalized value found in

the same hard-sphere boundary constructed geometrically, (page 154 of[23]) which gives 0.38.

D. Grain Boundary Energy

The energy of a grain boundary can, in principle, be determined from the groove angle

from Eq. 2. For example, for the Σ5 (100) boundary, the groove angle is 105○ (Fig. 11). This

gives for the grain boundary energy γexpΣ5 = 1.22γSL. Computer simulations [34] and colloid

experiments [3] show that the solid-liquid interfacial energy in the hard-sphere system is only

slightly anisotropic, and has an average value γSL ≈ 0.6kBTσ−2. This gives an experimental

estimate of the grain boundary energy γexpΣ5 ≈ 0.73kBTσ−2.

It is interesting to compare this value to a simple theoretical estimate of the free energy

of formation of the grain boundary. The equation of state of the hard-sphere system [35–

37] gives a pressure at solid-liquid equilibrium p = 11.5kBT /Ω. To increase the volume at

the boundary by 2Vex = 0.34 Ω per particle in the boundary plane requires work equal to

∆H = p2Vex = 0.34× 11.5kBT = 3.9kBT . The increase in volume also leads to an increase in

entropy, which, for each of the grain boundary particles, can be estimated from the change

in free volume as ∆S = kB ln [(Ω + Vex −Ω0) / (Ω −Ω0)], where Ω0 =
√

2/2σ3 is the volume

per particle at maximum close packing. This gives ∆S = 0.49kB.
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The resulting increase in free energy, per particle in the boundary plane is ∆G = ∆H −

2T∆S = 3kBT , where the factor of two in the entropy arises from there being a bilayer

of boundary particles. Since the boundary is along a (210) plane, the area per particle in

that plane is Ω/d210 = 1.519σ2, where d210 =
π
6

√
5
2
σ2

φ is the plane spacing in the crystal, and

the packing fraction φ = 0.545 near the solid-liquid interface is used [20, 36]. The grain

boundary energy then becomes γthΣ5 = 1.9kBT σ−2
= 2.6γexpΣ5 . The large difference between

the two values probably means that there are substantial entropy contributions which have

not been taken into account.

VI. CONCLUSION

In this paper we have studied the structure of model grain boundaries in colloidal crystals.

We have used a new observation method based on the consecutive acquisition of two images

of the same grain boundary. The differences between these images can be used to reveal the

regions where the particle mobility is high. The mobility was high at the grain boundary

and increased with the height. Projecting this mobility onto a plane perpendicular to the

grain boundary revealed the presence of grooves at the grain boundary / liquid triple line.

Grooves were observed for all boundaries, except for the Σ3 (110) twin boundary, the energy

of which is negligibly small. Measuring the angle at these grooves over time for a same grain

boundary showed that the grooves can be non symmetric but that the angle fluctuation is

relatively small. The measurement of the angle was shown to be sensitive to the threshold

on the mobility selected for separating the liquid and the solid. The values leading to the

least noisy profiles corresponded to a liquid/solid interface located at an altitude where the

mobility is very high but where the structure of the atoms still looks like this of a crystal.

The value of the groove angles indicate that there is a substantial local entropy increase

near the boundary.
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