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Abstract5

Binary Polymer-Colloid (PC) composites form the majority of biological load-6

bearing materials. Due to the abundance of the polymer and particles, and their simple7

aggregation process, PC clusters are used broadly by nature to create biomaterials with8

a variety of functions. However, our understanding of the mechanical features of the9

clusters and their load transfer mechanism is limited. Our main focus in this paper10

is the elastic behavior of close-packed PC clusters formed in the presence of polymer11

linkers. Therefore, a micromechanical model is proposed to predict the constitutive12

behavior of isolated polymer-colloid clusters under tension. The mechanical response13

of a cluster is considered to be governed by a backbone chain, which is the stress path14

that transfers the most of the applied load. The developed model can reproduce the15

mean behavior of the clusters and is not dependent on their local geometry . The16

model utilizes four geometrical parameters for defining six shape descriptor functions17

which can affect the geometrical change of the clusters in the course of deformation.18

The predictions of the model are benchmarked against an extensive set of simulations19

by Coarse Grained-Brownian Dynamics, where clusters with different shapes and sizes20

were considered. The model exhibits good agreement with these simulations, which,21

besides its relative simplicity, makes the model an excellent add-on module for imple-22

mentation into multi-scale models of nano-composites.23

Keywords: polymer colloid, micromechanical model, backbone chain, Brownian Dynamics,24

Coarse Grained-Brownian Dynamics25

1 Introduction26

Colloidal systems represent an attractive class of soft materials whose properties can be tai-27

lored by exploiting the individual and collective properties of colloids and their surrounding28
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media. These systems host assemblies of large numbers of colloidal clusters formed by col-29

loids attaching to each other through specific forces or media. While colloidal systems may30

exhibit different properties at macro-scale, their micro-structure properties are similar. An31

important class of colloidal systems is binary PC composites, which consist of two major32

elements: attractive polymer and nano particles. The interactions between colloids in PC33

clusters are mediated by bridging polymers in a supra-molecular fashion. PC clusters exist34

in a variety of biomaterials. Their assembly yields materials with adjustable properties and35

a great variation in functionality. However, mechanical properties of these materials have36

barely been investigated as compared to those of other constituents , such as polymer matrix37

or particle interface. Part of this difficulty lies in the complex geometry of these structures38

and part in their inhomogeneous stress distribution pattern [1, 2].39

At low particle concentrations, scaling and micro-structural models have advanced to40

describe the rheological [3, 4, 5] and mechanical properties [6, 7, 8] of PC structures. At41

high particle concentrations, complicated scaling approaches are developed to account for42

inelastic features that appear [9, 10].43

There are two types of load distribution patterns to describe the mechanical response of44

colloidal systems: (i) wave-like stress distribution in materials such as granular materials,45

sand piles and jammed systems [11], and (ii) inhomogeneous path-like stress distribution in46

close-packed clusters such as PC clusters [1, 2, 12]. Generally, due to the fractal nature of47

PC clusters, when they are subjected to a force, several stress paths are formed inside. One48

stress path, often the shortest one, transfers the most of the applied load [13]. This stress49

path is called the backbone chain [5].50

In 1990, Shih et al. [5] introduced the concept of the effective backbone (BB) chain51

to explain the stress propagation inside the isolated clusters. Several models have been52

developed to calculate the energy of the backbone chain [14, 15], by representing the chain53

by a set of thin elastic rods [16] or using the concept of nodes-links-blobs chains [17, 18].54

Most recent works on the behavior of PC clusters under deformation are numerical studies55

based on finite element analysis of accurate substructures [19, 20, 21, 22, 23]. Following56

the concept of the backbone chain, few physically-motivated models have been developed57

to describe the behavior of clusters [6, 7, 8], but the underlying changes in the structure of58

clusters are rarely taken into account. For the moment, to the best of our knowledge there59

does not exist any physics-based theory describing the structure-property relation of isolated60

clusters.61

Numerous simulations, experiments and empirical studies on mechanics of PC composites62

have provided us with a good understanding of their behavior at macroscales [10, 24, 25].63

In particular, the mechanical behavior of PC clusters is extensively studied by the rubber64

community in order to describe the role of silica and carbon black networks on rubber65

softening during deformation. There are different theories on contribution of clusters to the66

deformation-induced damage of the matrix, and rubber in particular. Some associate damage67

to the yielding and reformation of the clusters [26, 27, 28, 29]; some to gradual softening of68

the particle-particle bonds [30, 31, 32]; and some to the changes in cluster sizes and structural69

rearrangement [33, 34, 35]. So far, no consensus on the micromechanics of PC clusters has70

emerged and, despite its ubiquity and significance, it remains far from understood; even the71

classification of interparticle forces is not agreed upon.72

While the formation of the backbone chain and stress paths have been shown in several73

experimental studies [36],[37, 2, 38], few analytical and simulation studies have investigated74
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the load transfer mechanisms in the aggregates with respect to the stress path formation75

[39, 40] [41], [23]. This study mainly focuses on polymer-colloid clusters in which the stress76

path formation occurs. The process of formation of the backbone chain and its contribution77

to the mechanics of clusters in different types of aggregation fall has been addressed in a78

separate study [42].79

The mechanical behavior of a cluster is governed by two factors: cluster morphology80

and the particle interactions. The latter is based on the attraction forces between particles81

which are mainly induced by polymer chains wrapped around the particles. The attraction82

forces are categorized into centro-symmetric and tangential forces. Centro-symmetric forces83

acting along the line that connects centers of the particles to each other are known to play84

a major role in cluster tensile/compression elasticity [43, 44]. Tangential forces acting along85

the contact surface are known to resist the shear and bending loads; however, our general86

understanding of them is quite limited [45, 46, 47]. While the presence of tangential forces87

can be inferred from different experiments [48, 49], their contribution to the elasticity of88

clusters is not clear. The backbone chain is considered to be made of several links, where89

the elongation, bending and torsion resistance of each bond is mainly derived from the90

centro-symmetric and tangential forces between the particles. To understand the behavior91

of clusters, the magnitude of these forces at different places within the cluster should be92

predicted.93

Due to the limited understanding of structural changes in isolated clusters under defor-94

mation, micro-mechanical modeling of the constitute behavior of clusters has remained as a95

challenging task. So far, the behavior of the clusters is best described by the phenomeno-96

logical models, which are useful but only relevant in specific cases. Due to large variety of97

cluster types, inhomogeneous profiles and complex structures, the load transfer mechanism98

in polymer-colloid clusters has not been thoroughly understood and is often excluded or99

oversimplified in current models. Part of this difficulty lies in correlating the mechanical100

response of clusters to its structure without getting engaged with its elaborate local topol-101

ogy, part in the complexity of characterization of the clusters geometry, and part in the102

limitations for coupling of the developed models across different length-scales.103

To address the concerns, a generalized micro-mechanical model is developed to describe104

the averaged behavior of isolated PC clusters in the course of deformation. Accordingly,105

a two-scale computational-analytical model is presented to describe and validate the mean106

behavior of clusters regardless of their individual geometry and topology. By excluding107

the role of local geometry by using shape descriptors, the model can be generalized to108

all other polymer-colloid clusters aggregated by the attractive forces between polymer and109

particle surface. In the meso-scale, a micro-mechanical model is proposed that can calculate110

the energy of the clusters with respect to four geometrical parameters {N, ζ, df , db} which111

are used to represent geometry of clusters. Since the experimental tests on the mechanical112

behavior of isolated clusters are not available, the results of the model have been compared to113

Brownian Dynamics simulations in micro-scale. By representing the analytical model in form114

of a closed-form strain energy equation, the model can be used as a simple add-on module115

in other multi-scale models of PC composites . Such a model can significantly reduce the116

computational time in concurrent models by replacing the coarse-grain simulations currently117

use to simulate the behavior of clusters.118

This paper is organized as follows. In Section 2, the assumptions and simplifications119

underlying the derivations of the model are discussed. The constitutive formulation of the120
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Figure 1: (a) A schematic view of a cluster subjected to a tensile force, (b) The main
stress path; the gray and green particles illustrate the single-particle and multi-particle
links, respectively, (c) The radius of gyration of the cluster Rg and the radii of gyration R⊥g

and R‖g of the projections of the cluster onto planes parallel and normal to the force vector
F, respectively, (d) Vectorial representation of a backbone chain with N bonds.

model is presented in Section 3. The derivation of the related shape descriptors and probabil-121

ity functions are discussed in appendixes A-C. In Section 4, Brownian Dynamic Simulations122

are introduced. Several simulations are performed to provide the sample pool required for123

the verification of the model predictions.124

2 Geometry of the Backbone Chain125

Considering the backbone chain as an intrinsic part of the cluster, and in view of different126

deformation states of the backbone chains, we have defined the following three states of127

deformation:128

• Initial Unperturbed State (IUS): The backbone chain is in a stress free state, where129

no external forces are applied. This state is purely hypothetical and does not exists in130

reality. It is introduced for convenience of mathematical formulation. In view of the131

polymer models, this state describes the situation where the backbone chain behaves132

similar to the freely jointed chain.133

• Stress Free State (SFS): The cluster is in the stress-free state, although the backbone134

chain is under stress due to the internal forces. The residual force is caused by the135

adjacent volume filling particles which prevent chain from taking the optimal confor-136

mation with respect to the applied load. An illustrative example here is the human137

body. When no extensional force is applied on the body, the backbone is still under138

stress due to internal forces forming from the body shape and the gravity.139

• Current State: The cluster and its backbone chain are both subjected to deformation.140

Hereafter, IUS will serve as a reference state and will be used to formulate a boundary141

condition for differential equations governing the evolution of the cluster geometry. The IUS142

is characterized by the homogeneous spatial distribution of bonds each of which has the143

initial length of l, where there is no correlation between their orientations.144

Clusters are considered to be fractal at length scales up to ζ and homogeneous at larger145

length scales. Cluster correlation length ζ (see Fig.1a) is defined as the average distance146

between two mirrored points on the surface of the cluster in any arbitrary direction [50].147

The parameter is calculated when the system is at the stress-free state (SFS).148
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The correlation length of a backbone chain is related to its number of bonds N as

N =

(
ζ

l

)db

=

(
ζ

l

)1/v

, (1)

where l is the interpatricle distance, db is the fractal dimension of the BB chain [51] and149

v = 1/db. In view of the fractal nature of aggregated clusters, db is mostly smaller or equal150

to the fractal dimension of the cluster, df . In general, df defines the compactness of the151

cluster and is highly influenced by the aggregation procedure [52]. The lower bound of db is152

1 corresponding to the straight path of the chain. The upper bound of db is min [df , 5/3],153

where 5/3 corresponds to the fractal dimension of chains simulated by self-avoiding walk. In154

Fig. 1b, a force F is applied on a cluster and the resulting backbone chain is depicted.155

Deformed StateSFSIUS

Figure 2: Conceptual representation of the deformation states and corresponding stretches.

With respect to the IUS, the SFS is characterized by a residual stretch, λres (see Fig. 2).156

Denoting the applied stretch with respect to SFS by λζ , a (pseudo) stretch λ with respect157

to the IUS can be defined as158

λ = λresλζ =
L

L0

, L2
0 = Nl2, (2)

where L0 and L denote the end-to-end distance of the backbone chain in the IUS and current159

configuration, respectively.160

A vectorial representation of a backbone chain with N bonds is shown in Fig. 1d where161

it is subjected to the volumetric force F (force per unit volume). The interparticle bonds162

are represented by solid-like beams with identical tensile, bending, and torsion constants.163

The beam vectors at the IUS configuration are denoted by l j (j = 1, 2, . . . , N), the cross-164

sectional area by Ab , and their volume by Vb = Ab l̂. The angle between two bonds i and j165

is represented by φi,j and φ̂i,j in the IUS and current configuration, respectively. In Fig. 1d,166

the vector r i connecting 0th particle to ith particle is expressed by167

r i =
i∑

j=1

l j . (3)

The spatial position , CG, of the center of gravity of the chain can be defined by the position
vector rG from particle 0 as

rG =
1

N + 1

N∑

n=1

rn. (4)
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With respect to CG, the position vector of ith particle will be denoted by Ri. Accordingly,168

‖rN‖ = L and rG = R0. The length of a vector x is denoted by x = ‖x‖. Hereafter, the169

projection of vector Xi on a plane P normal to the force direction will be represented by X ′
170

(see Fig. 1d).171

The radius of gyration, Rg = ||RG||, is calculated as the mean-square distance of chain
particles from the center of gravity, namely

R2
g =

1

N + 1

N∑

i=0

Ri ·Ri. (5)

The projection of RG on the reflection plane P is given by R⊥g

R2
⊥g =

1

N + 1

N∑

i=0

R′

i ·R′

i, (6)

and has significance in describing the topology of clusters. A detailed description on the
geometrical parameters introduced here can be found at [53, 15, 51, 54, 55]. The length of
a backbone chain, at any stage of deformation can be then derived from

L2 =

(
N∑

i=1

l i

)

·
(

N∑

j=1

l j

)

=
N∑

i=1

l i · l i + 2
N−1∑

i=1

N∑

j=i+1

l i · l j = Nl̄2 + 2l̄2
N−1∑

i=1

N∑

j=i+1

cosφij

= Nl̄2 +N (N − 1) l̄2b(λ). (7)

Moreover, in view of Eqs. (2) and (7), one can describe the applied stretch as

λ2 =

(
l̄

l

)2

(1 + (N − 1) b(λ)) , (8)

where b(λ) represents the expected value of cosφij with respect to a random parameter φ
over all segments distributed in the space, namely

b(λ) = E [cos (φ)]φ . (9)

3 Micromechanical Model172

3.1 Principles and assumptions173

The proposed constitutive model is based on the following assumptions:174

1. The backbone chain is considered as the principal source of integrity in the cluster.175

The contribution of other stress paths is neglected. Thus, the mechanical response of176

the cluster is assumed to be identical to the response of its backbone chain.177

2. In the backbone chain, more than 60% of all links are single particle links [1, 2]. The178

multi-particle links have considerable influence on the stability of the backbone chain179

in compression and prevent further folding and compactification of the cluster. Under180

tension the multi-particle links act similar to single-particle links. Accordingly, in this181

study all the links in the backbone chain are represented by single-particle links.182
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3. The model does not consider damage, and thus is valid as far as the massive breakage183

of bonds has not taken place [56]. The bonds are assumed not to be broken or created184

in the course of deformation.185

4. All particles are assumed to have the same mass and diameter l at IUS. Adjacent186

particles are assumed to be close enough to each other so that the interparticle distance187

can be approximated by l at the IUS and l̄ > l at the current state, respectively.188

5. In the backbone chain, the center of gravity, CG, is located on the reflection plane P189

placed in the middle of the end-to-end distance (see Fig. 1c).190

6. The stretch applied on the backbone chain is considered to be far smaller than the191

maximum deformation, λmax, in the fully stretched state with Lmax = Nl. No four192

consequent particles centers are co-planar.193

3.2 Strain Energy194

Three types of load are considered to be transferred by the inter-particle bonds: tensile-195

compression force F , bending moment M and torsion load T . Assuming the bond to behave196

elastically in response to these loads, the bond behavior can be represented by three nonlinear197

elastic springs. Accordingly, following the framework of the Born model [57], the strain198

energy of a backbone chain in the three-dimensional space is given as the sum of the tensile,199

bending and torsional energies by [58, 59, 60]200

Ψ =
G

2

N∑

i=1

∆φ2
i,j

︸ ︷︷ ︸

Bending

+
J

2

N∑

i=2

∆ϕ2
i

︸ ︷︷ ︸

Torsion

+
Q

2

N∑

i=1

ǫ2i

︸ ︷︷ ︸

Tension

, j = i− 1, (10)

where ∆φi,j = φ̂i,j −φi,j ∆ϕi = ϕ̂i−ϕi ǫi = 1− li
l̂i
. Note that X̂ represents a reference201

vector X in current configuration.202

Figure 3: A four particles
strand of the backbone chain
under torsion, where the tor-
sion angles in the (a) ref-
erence ϕi, and (b) current
ϕ̂i configurations, are shown
separately.

Accordingly, ϕ̂i,j and ϕi represents the twist angle of bond i in the current and reference203

configuration, respectively (see Fig. 3). Q, G and J denote the averaged linear tensile,204

bending and torsion moduli of the bond, and are considered to be constant for all the205

bonds. Such a simplified representation of the elastic moduli of bonds is resulted from the206

assumption of identical linear springs (ILS) which is adopted here for predicting the energy of207

the polymer-colloids aggregated clusters. The ILS assumption suggests that all inter-particle208
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bonds in an aggregated polymer-colloid cluster can be represented by identical linear springs.209

If we consider that the behavior of the bonds can be described by 3 individual nonlinear210

elastic springs with moduli of, Qi(x), Gi(ϕ) and Ji(θ), then the ILS assumption is defined as211

the combination of the following two parts212

• Part 1: The elastic moduli of bonds is assumed to be linear,

Qi(x) → Qi; Gi(ϕ) → Gi; Ji(θ) → Ji. (11)

• Part 2: The spring constants of all bonds are assumed identical,

Qi → Q; Gi → G; Ji → J. (12)

The ILS assumption, despite being popular, is an oversimplification of the aggregated struc-213

tures. It has been rejected by experimental studies in many materials such as disordered214

fiber networks [61], granular solids, and particulate packings [62]. However, in some mate-215

rials the error associated to ILS is found to be sufficiently low so that it can be adopted216

[63, 64, 28, 65, 66, 4, 5, 67, 68]. Our recent studies show that the ILS assumption is relevant217

only in certain binary composites and the error associated to it varies based on the aggre-218

gation process [69, 42]. While an analysis of the ILS assumption is out of the scope of this219

paper, our results suggest that the ILS assumption is relevant for close-packed clusters and220

thus can be used here.221

By neglecting the volume of the particles in the lattice, the angle, φi,j ∈ [0, 2π], is222

a random variable at the IUS. Accordingly, one can show that
N∑

i=1

∆φ2
i ≈

N∑

i=1

∆ϕ2
i (See223

Supplemental Material at [] for calculating the relation between torsion and bending angles).224

.225

The centro-symmetric and tangential forces in 3-dimensional settings can be represented226

by linear elastic elements with an average tensile modulus Q and an average bending-torsion227

modulus Ḡ. Thus, Eq.(10) is simplified to228

Ψ =
Ḡ

2

N−1∑

i=1

∆φi
2 +Q

N∑

i=1

1

2l̂2i
∆li

2, (13)

where Ḡ = G+J while G = M∆φ−1
i,j and J = T∆φ−1

i,j . The strain energy derived in Eq. (13)229

is the expansion of the 2D formulation of [57] into 3D featuring a new function definition for230

Ḡ.231

3.3 Elastic modulus232

By considering the the behavior of a cluster to be described as nonlinear elastic [2, 7], its
strain energy with respect to the applied force F is given by

Ψ =
F 2

2
H, (14)

where H is the compliance of the backbone chain. To calculate H, we have to review Eq.
(13). Bearing in mind that F represents the volumetric force, the force, and moment balance
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Figure 4: The (a) reference
configuration and (b) current
configuration of a backbone
chain under bending. (Inset)
the resultant load balance on
bond i.

in bond i (see Fig. 4) is given by

σ = Qǫ
FVbli
lAb

≃ F lili cos (ωi)

l
= Q

∆li
l
, ‖FVb × r i‖ = VbḠ∆φi, (15)

where ωi represents the angle between the direction of bond i and the force direction F .233

Accordingly, the balance equation for one bond gives Fr′i = Ḡ∆φi and ∆li =
l̂i
Q
F · l i

in which

∆φi =
1

Ḡ
·

i∑

j=1

F × l j =
F × zi

Ḡ
· (Ri −R0 ) , Ri −R0 = r i. (16)

Here, z i =
∑i

j=1 F lj represents the unit vector in the direction of the moment. Inserting
Eq. (16) into (13) yields

Ψ =

N∑

i=1

((F × z i) · r i)
2

2Ḡ
+

1

2Q

N∑

i=1

(F · l i)2. (17)

Eq. (14) gives the compliance of the chain as

H =

[

L2
⊥
Ḡ

+
L2
‖

Q

]

, (18)

where the parameters L⊥ and L‖ represent the normal and parallel relative length of the234

backbone chain, respectively. Considering R′

i −R′

0
= r ′

i, these parameters will be235

L2
⊥ =

N∑

i=1

r ′

i · r ′

i =
N∑

i=0

R′

i ·R′

i + (N + 1)R′

0 ·R′

0 = (N + 1)
(

R2
⊥g +R′

0
2
)

, (19)

L2
‖ =

N∑

i=1

(f · l i)2 =
N∑

i=1

(Ri cos θi − Ri−1 cos θi−1)
2, (20)

9



where f denotes the unit vector of F . Here, the 2D model of Kantor and Webman [57]236

in which H is a constant, has been adopted and modified. The proposed model can consider237

the deformation induced structural changes of the cluster with respect to H and certain238

shape descriptors as functions of deformation in 3-dimensions. Accordingly, to the best of239

our knowledge, the proposed model can express the elasticity moduli of clusters in the case240

of deformation for the first time. In view of Eq. (14), we have d
du

(
F 2

2
H
)

= F . The force241

and the overall stiffness of the backbone chain Kζ in the course of deformation are given by242

F =
1√
H

∫ u

0

1√
H
du, Kζ (λ) =

F

u
=

1

(λ− 1)
√
H

∫ λ

1

1√
H
dλ, (21)

where u = (λ− 1)L0 is the chain elongation. Such a formulation agrees well with a broad243

range of experimental observations on the behavior of isolated polymer-colloid clusters. It244

successfully describes the reduction of the elastic moduli for larger sizes of clusters previously245

reported by Dinsmore & Weitz [1]. It also takes into account the contribution of bending246

moments in the behavior of clusters as characterized by Pantina & Furst [7, 67, 70].247

3.4 Shape Descriptors248

Using the following averaged trigonometric functions

a(λ) = E
[
R2 sin2 θ

]

θ
, b(λ) = E [cosφ]φ , c(λ) = E

[
cos2 θ

]

θ
, d(λ) = E [sin 2θ]θ , (22)

the formulations of the shape descriptor functions L2
⊥ and L2

‖ given in Eqs. (19) and (20)
can be further expanded and simplified to

L2
⊥ ≈ N2 l̄

2

12
(1− b(λ)) +Na(λ) (23)

L2
‖ ≈

c(λ)l2

6

(

b(λ)N3 (1− c(λ)) + 2N2

(

(1− c(λ))− πb(λ)d(λ)

4

)

−N (πd(λ) + 2− 4c(λ))

)

.

(24)

A detailed discussion on the derivation procedure of these formula has been provided in249

Appendix A.250

3.5 Constitutive Model251

The constitutive behavior of the backbone chain is derived by implementing Eq.18 into Eq.21.
Accordingly, Kζ can be derived as a function of shape descriptors L2

⊥, L
2
‖ and λ namely as

Kζ (λ) = g
(
L2
⊥, L

2
‖, λ
)
. (25)

Substituting L2
⊥ and L2

‖ with their expanded formula (derived in Eqs.39 and 23 of Appendix

B), the stiffness Kζ (λ) will be derived as a function of deformation which uses four geo-
metrical parameters. The expected value of the aforementioned trigonometric functions (see
Eq.22) is calculated using

E [Φ(α)]α =

π∫

0

Φ(τ)Pα(τ, λ)dτ, (26)
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where Φ(α) can be any trigonometric function and α can be either θ or φ angles. Accordingly,
we have

E [cosφ]φ =

π∫

0

cos(τ)Pφ(τ, λ)dτ, E [sin θ]θ =

π∫

0

sin(τ)Pθ(τ, λ)dτ. (27)

The expected value evolves with deformation due to changes in the angular θ and φ distri-252

butions. Accordingly, the probability distribution function (PDFs) of the angles θ and φ are253

required for calculation of Eq.(25). The derivation of the PDFs Pφ(φ, λ) and Pθ(θ, λ) are254

discussed in details in Appendix B, and C, respectively.255

To represent the changes of the geometry of a cluster in the course of formulation, the256

trigonometric functions b, c and d for a relatively long chain of 100 segments have been257

calculated and plotted against applied deformation in Fig. 5a.258
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Figure 5: (a) Angular functions b, c, d and, (b) the shape descriptor parameters, Rg and rg
of a backbone chain with 100 segments plotted versus stretch.

4 Validation259

The predictions of the developed model will be bench-marked against tests performed on clus-260

ters assembled by the coarse grained Brownian Dynamics (BD) simulations.261

Poly

Figure 6: Representative snapshot of
the assembly of an aggregation under
strong shear flow.

Since the model provides the mean behavior of clus-262

ters, its results will be compared to the average of a263

large number of simulated clusters.264

Three-dimensional PC clusters are assembled by265

Brownian Dynamics Simulation [71, 72], where the266

particles are connected to each other through sticking267

polymer chains (see Fig.7), [73, 74]. The interparti-268

cle forces depend mainly on the polymer film between269

two particles. Such classification can be also consid-270

ered for other types of colloidal structures, even those271

without polymer media.272

Three major challenges in simulating binary273

polymer-colloids clusters exist: (i) accurate represen-274

tation of their structure, (ii) modeling of the aggrega-275

tion process, and (iii) representation of interparticle276
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forces and moments by spring constants. While the277

structural properties of clusters can be very complex,278

studies show that it depends on the aggregation pro-279

cedure and can be controlled by it [25, 72, 75]. In this280

work, PC clusters are assembled with mechanical and structural details close to real clusters,281

which are formed in shear flow. After formation, the properties of the clusters are measured282

outside of the flow.283

4.1 Simulation of clusters by Brownian Dynamics284

Polymers and colloids are simulated with standard simulating techniques under the frame-285

work of the fluctuating Lattice Boltzmann (LB) equation [71] in three-dimensional grids with286

resolutions Nx×Ny ×Nz = 64×32×32. A solid bounce-back boundary condition is applied287

in the z direction while x and y directions are with periodic boundary conditions. The lattice288

spacing ∆x and LB time step ∆t are set to unity. The colloids were then simulated using the289

“Raspberry Model” [76, 77], where each colloid is made by Ns = 64 beads together forming290

a spherical shell of diameter l = 20a. The shell beads interacted with each other on the291

same shell through the potential Us = (ks/2)Σij(dij −Dij)
2, where dij and Dij represent the292

actual and equilibrium distance between beads i and j, respectively.[77] The parameter ks293

is an arbitrary spring constant. We used ks = 100kBT/a
2 to ensure that the colloids will294

keep their spherical shapes during simulations. The radius of colloids rc = 2.5 and their295

volume fraction φc ≈ 3%. Each polymer consists of N = 40 monomers with radius a = 0.025296

connected with strong springs with a spring constant k = 1200kBT/a
2 and spring length 2a,297

which renders the polymer freely jointed chain model [74]. Polymers have a volume fraction298

φp ≈ 0.5%. A Lennard-Jones potential is considered for each monomer with strength u to299

control the solvent properties of the polymers. It has been demonstrated that u = 0.41 and300

u = 2.08kBT are suitable choices for simulating polymers in the Θ and bad solvent [73, 78].301

The monomers interact with the colloids at discrete binding sites on the colloid surfaces
through the Bell model [79, 80], which is a new method to include microscopic associating
reactions in highly coarse-grained polymer simulations (see Fig.7a). In the Bell model, the
probability of binding PB and unbinding PUB reactions are given by

PB = exp (−EB/kBT ) , PUB = exp (−(EUB − fr0)/kBT ) , (28)

where EB and EUB are the binding and unbinding energy barriers, respectively. Here, f302

is the average force loaded on the bond, and r0 is the characteristic bond length which303

is set r0 = 0.01a for the simulations. Moreover, kB is the Boltzmann constant and T the304

thermodynamic temperature. The binding energy is set to EB = 1kBT to ensure fast binding305

dynamics for bond formation. In order to have a good averaging of the bond force and enough306

time for the unbinding monomers to diffuse away from its bound partner, the binding and307

unbinding attempts are performed every 100 LB time steps (τ0 = 100) [81]. The rest of308

the parameters for the fluid is as such: the density ρ = 1, the kinematic viscosity ν = 1/6,309

and the relative temperature kBT = 5× 10−5. The characteristic monomer diffusion time is310

τ = 6πµa3/kBT ≈ 103, where µ = νρ is the fluid dynamics viscosity.311

Figure 7 shows the process of the assembly of a dense aggregate under strong shear312

flow. In shear flow, the formation of polymer-colloid aggregates is mainly controlled by the313

competition between the timescales of the polymer unbinding from the colloid versus the314
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rotation or collision time of the colloid. If the polymer unbinding time is significantly longer315

than the rotation and collision time of the colloid, the polymers wrap around the colloids316

and initiate the aggregation process [75, 25]. Depending on partial or full wrapping of317

the polymers on the colloids, the shear-induced aggregates are classified into “no”, “loose”,318

“dense” and “log-rolling” aggregates under shear rates γ̇τ ≈ 0.01 to 0.1, 0.2 to 0.5, 0.6319

to 1, and 2, respectively. Here, we focused only on the dense aggregates assembled under320

shear rate γ̇τ = 0.8 with characteristic unbinding energy EUB = 6kBT [75, 25], in which321

the colloids are wrapped by the polymers and the film of polymer layer between adjacent322

particles is the main source of attractive forces between particles.323

To measure inter-particle forces in a cluster under tension, hydrodynamic interactions are
neglected due to their insignificant effects on the mechanical properties of the aggregated
clusters under quasi-static tension [77]. Therefore, we implemented only the free draining
Brownian Dynamics method without LB method for calculation of the elasticity of the inter-
particle bonds. After mixing interactive colloids and polymers in shear flow, colloids were
linked with “sticky” polymers [25]. Permanent links were simulated with stiff springs which
are put between monomers and colloid shell beads. Since yielding is not considered here,
we set polymer-colloid links non-detachable during the mechanical tests. Therefore, the
simulation results cannot be used in large deformation regime where local yielding of the
bonds takes place. The dynamics of the ith bead (monomer or colloid shell bead) at position
r i is given by the Langevin equation

∂

∂t
r i = −µ0 ▽r i

Ui + ξi(t), (29)

where µ0 = 1/(6πη0a) is the Stoke mobility and η0 the solvent viscosity. The potential324

energy Ui, which depends on the specific type of the beads (monomer or colloid shell bead),325

is the summation of all the potentials of bead i. The random force ξi satisfies the equation326

〈ξi(t)ξj(t′)〉 = 2µ0kBT∆ij∆(t − t′). We discretized Eq. 29 with a time step 10−4τ , where327

τ is the characteristic monomer diffusion time τ = a2/η0kBT . Lastly, to prevent nonphys-328

ical penetrations of materials, a harmonic potential was also used between colloids and/or329

polymers if the distances between their center of masses were smaller than the sum of their330

radii.331

R������� �� d�

g
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Polym�� �h���

(Bead & Spring Model)
Colloid Particles

(Raspberry Model)

z z

x x(a) (b) (c)

Figure 7: (a) The bonding mechanism in PC mixtures, and representative snapshots of the
assembly of a dense aggregate under strong shear flow (b) before and (c) after aggregation.

Experimental Verification of the Simulation: The aggregation model was initially332

built to analyze the blood clotting process. Special attention has been given to the model333

with the ability to describe different shapes the clots formed by the shear flow of the media.334

In our recent studies [69, 42], the microscopic structure, connectivity, and bond stiffness have335

also been validated by comparing the assembled clusters against the results of experimentally336
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confocal microscopy tests performed by Dinsmore et al. on PC clusters [2, 1]. Moreover,337

the effective spring constants as of the interparticle bonds can be determined as functions338

of deformation by measuring the thermal fluctuations of particles in assembled clusters. To339

validate the simulation results, we have compared the particle fluctuations of the simulated340

clusters against experimental measurements provided in literature [1, 2, 12].341

4.2 Benchmarking of the Model Predictions342

The elastic behavior of different isolated PC clusters will be derived from the two sources:343

the presented model and the simulations. Next, the results are compared with each other.344

The model predictions are based on the mean conformation of the backbone chain and thus345

are not influenced by the local geometrical properties of clusters that does not influence346

any of the parameters {N, ζ, df , db}. Accordingly, the model considers the geometry of two347

clusters to be identical if their geometrical parameters {N, ζ, df , db} are identical.348

We have previously assembled 16 dense clusters, five clusters with N ≈ 32 particles,
five with 64 and three clusters with N = 96 and 128. Note that the initial structure of
the PC cluster is obtained by aggregation in shear flow simulated using fluctuation lattice-
Boltzmann method [72, 75]. The mean inter-particle elastic moduli Q, G and J were derived
by averaging over the spring moduli of all bonds. While the back bone chain is identified,
tracking its changes during deformation is computationally expensive. At this stage, we
average over all bonds since we cannot clearly identify and separate those of the backbone
chain in the course of deformation. In the next step, the bonds will be categorized based on
their connectivity index. Our recent study shows that the bonds with similar connectivity
index behave similar whether they are in the backbone chain or not [42]. Inter-particle
bonds control thermal motions of the particles. By measuring the thermal motions of a
bond i , its spring moduli in different DoFs, namely Qi, Gi and Ji are approximated using
the equipartition theorem [82]. Excluding thermal noises, these moduli are measured at
short time intervals in the course of deformation using the following relations

Qi (〈li〉)
1

〈li〉2
〈li − 〈li〉〉2 = kBT, (30)

Gi (〈φj,ik〉) 〈φj,ik − 〈φj,ik〉〉2 = kBT,

Ji (〈ϕij,kl〉) 〈ϕij,kl − 〈ϕij,kl〉〉2 = kBT,
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Where<> represents the average value. We previously discussed the process of derivation349

of the mean elastic moduli of inter-particle bonds [69]. Implementing the mean inter-particle350

elastic moduli Q,G and J along with {N, ζ, df , db} into the model, the model provides351

us with K(λ) (according to Eq.25). The model presented above includes eight material352

parameters: three mechanical {Q,G, J}, and four geometrical ones {N, ζ, df , db} and Ab.353

All parameters will be imported from the simulations, except Ab which is obtained by fitting354

to the response of one aggregate using the Levenberg-Marquardt algorithm. Here, in figures355

9 and 10 Ab = 0.4a2 is obtained by fitting of the model predictions against the behavior of356

the first cluster with 32 particles.357

Figure 9: Force-
displacement curves
derived from the sim-
ulation compared to
the predictions of the
analytical model for
the first aggregate with
32 particles. The me-
chanical parameters are
Q = 221, G = 41, J =
47[KBT/a].

The overall mechanical response of the clusters under applied tension can be divided into358

three main phases: (i) elastic phase, (ii) reformation phase, and (iii) yield phase. Each phase359

can be related to the state of the active backbone chain. Phase one illustrates the elastic360

phase where the backbone chain deforms and orientates towards the load direction. This361

phase is fully reversible as no permanent change occurs in the backbone chain structure.362

Phase two is associated with the partial or complete changes of the backbone chain. The363

changes take place due to the limited extensibility of the former backbone chain. Upon364

further deformation, the multi-particle links in the former backbone chain are debonded into365

several connected single-particle links. This process shortly adds the extensibility limit of366

the backbone chain; however, once all the soft multi-particles links are debonded, the cluster367

reaches its maximum extensibility limit and thus enters the next phase. Phase three describes368

continuous rearrangement and failure of the stress paths during the yielding process where369

local necking of the end bonds happens as illustrated in Fig 8(4). The proposed model is370

only relevant in prediction of the elastic phase.371

During the yield phase, affine or non-affine deformation of the clusters has been experi-372

mentally observed and reported [68]. The proposed model is only relevant in prediction of373

the elastic phase. However, the mechanical behavior of the clusters in the yield phase can374

still be formulated using recent approaches [68] which describe yielding as the decomposition375

of a cluster into smaller ones. To this end, the strain energy should be calculated as the sum376

of the energies of the newly formed clusters.377

In view of the strong anisotropic geometry of the clusters, each cluster has been subjected378

to uniaxial tension test at five different directions. These directions are chosen such that the379
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end-to-end distance of the formed backbone chain are similar in all cases. The behavior of380

a cluster in different directions versus the model predictions has been depicted in Fig. 9.381

Using the same geometrical parameters, the model predictions were then compared382

against the measured response of other four clusters assembled with N = 32 particles.383

Although the local geometry of these clusters is different, their geometrical parameters are384

almost similar. However, the mechanical parameters are different for each cluster. The good385

agreement between model predictions and measured values from simulations shown in Fig.386

10(a), were obtained automatically.387

The error bars here represent the vibration of clusters, not the standard deviation. Their388

magnitude mainly describe the amplitude of the vibrational expansion and compression of389

the clusters which results from the Brownian movement of the particles in small time window.390

The vibration of the polymers provides the cluster with a beating behavior resembling the391

one of heart. Thus, tracking the midpoint, peak or minimum of the vibration curve through392

deformation will give the same profile. In Fig. 8 and 9 the vibration range is shown by393

a shaded area. The lower bound depicts the behavior of the minimum value in vibration,394

the upper bound describes the behavior of the peak, and the solid line represents the mean395

behavior.396

Moreover, the model predictions of the clusters were compared against simulations. As397

expected from the model, a strong correlation was observed between the elastic behavior398

of the chain (for λ > 1.3) and its overall length (see Fig. 10(b)). No fitting procedure399

was performed here, and the illustrated agreement is obtained analytically which shows the400

predictive capability of the proposed model.401

Due to the irregular shape of the cluster, the length of the cluster varies at different402

directions. The results, however, show that the elastic behavior of the clusters remains almost403

identical regardless of the loading direction. This fact confirms the relevance of the proposed404

model, which describes the behavior for a cluster independent of the loading direction. In fig405

9, the behavior of five clusters, assembled in different shear flows, were compared against the406

model predictions. Despite the considerable difference between the shape of these clusters,407

their four shape descriptor parameters {N, ζ, df , db} were similar and thus their measured408

behavior were close to each other. Interestingly, the behavior predicted by the model aligns409

with the simulation results for all cases, which confirms the relevance of the chosen shape410

descriptor parameters.411

The model predicted the mesoscale behavior of PC clusters in elastic regime by repre-412

senting the interactions resulted from the polymer film around the particles as linear springs413

[68]. By adopting the ILS assumption, the model can be used for the clusters with variety414

of inter-particle bonds and interactions. All the material parameters defined in the model415

are physical, and have measurable quantities.416

The proposed model is mainly applicable for the dense clusters formed by aggregation417

of colloids and attractive or non-attractive polymers in shear flow. The load transfer mech-418

anism in these clusters is dominated by the formation of the backbone chain, which is a419

necessary condition for the proposed model. Such clusters are prevalent in nature and can420

be found in many binary solutions ranging from carbon black and silica aggregates in elas-421

tomers or thermoplastics, to platelets in blood clots to particulate nano-composites such as422

polymer bonded explosives. The proposed model is relevant when (i) the temperature is423

above the glass transition temperature of the matrix; (2) the particle concentration is below424

the percolation threshold and (3) only one type of particles exist in the solution.425
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Figure 10: Force-displacement data measured from Coarse-Grained Brownian Dynamics
simulation against the prediction of the proposed model for (a) different clusters with 32
particles, and (2) against different sizes of clusters.

5 Conclusion426

The load distribution in the cluster is best described by an entangled network of stress427

paths, where one stress path transmits most of the load. This path, which is referred to as428

the backbone chain, governs the response of the whole cluster.429

A new micromechanical model is proposed to predict the mechanical behavior of clusters430

under deformation by describing the response of backbone chains. The model takes into431

account two sets of geometrical and mechanical parameters. Four geometrical parameters432

are used to formulate six shape-descriptor parameters to define the changes of the cluster433

morphology in the course of deformation. The shape descriptors are derived through a434

generic statistical approach and are as follows435

• the end-to-end length L (see Eq. (2)),436

• the position vector to the center of gravity rG (see Eq. (4)),437

• the radius of gyration Rg (see Eq. (5)),438

• the radius of gyration R⊥g of the chain projected to the plane normal to the end-to-end439

direction (see Eq. (6)),440

• the relative normal length of the chain L⊥ projection on the plane normal to the441

end-to-end direction [18, 57] (see Eq. (19)),442

• the relative parallel length L‖ of the chain projection on the end-to-end direction (see443

Eq. (20)).444

The mechanical behavior of the clusters is formulated in terms of to the applied defor-445

mation and consequently in terms of the four geometrical parameters. Further information446

on the local geometry of the clusters is provided. All the material parameters of the model447

have physical meanings, except Ab; all can be derived experimentally. The model benefits448

from a simple derivation procedure, low computational costs and independent from the local449

geometry, which makes it an excellent choice for multi-scale simulations of binary compos-450

ites. The nonlinear elastic response of different sizes of PC clusters in large deformation can451

be predicted. Since no direct experimental tests on mechanical behavior of isolated clusters452

exist, the model predictions have been compared with an extensive set of simulated tests on453
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clusters assembled with Brownian Dynamics simulations. In previous studies, the simulation454

results were validated against several experimental tests. The model predictions show strong455

agreement with the simulations.456
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A Appendix: Relative Parallel and Normal Length667

A.1 Relative Parallel Length668

The relative parallel length of a relatively long chain (Ri ≫ l i and N ≫ 1) is given by

L2
‖ =

N∑

i=1

(Ri cos θi −Ri−1 cos θi−1)
2, (31)

=

N∑

i=1

Ri
2 cos2 θi +R2

i−1 cos
2 θi−1 − 2RiRi−1 cos θi cos θi−1. (32)

It can be shown that for a long chain, limN→∞E [θi − θi−1]θ = 0. Considering ∆ =
E [θi − θi−1]θ ≈ π

N
, one can assume sin(∆) ≈ ∆ and cos(∆) ≈ 1 in case of large N. Ac-

cordingly, the last term of Eq. (32) gives

RiRi−1 cos θi cos θi−1 =
Ri ·Ri−1

cos (∆)
cos θi cos θi−1, (33)

where

cos θi cos θi−1 =
1

2
(cos (θi + θi−1) + cos∆) ≈ 1

2
(cos (θi + θi−1) + 1)

=
1

2
(cos 2θi +∆sin 2θi + 1) ≈ cos2θi +

∆

2
sin 2θi, (34)
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and

N∑

i=1

Ri ·Ri−1 =
N∑

i=1

(R0 + r i) · (R0 + r i−1)

=
N∑

i=1

R2
0 +R0 ·

N∑

i=1

r i +R0 ·
N∑

i=1

r i−1 +
N∑

i=1

r i · r i−1

= NR2
0 + 2R0 ·

N∑

i=1

r i −R0 · L+

N∑

n=2

(
n∑

s=1

l s ·
n−1∑

t=1

l t

)

= NR2
0 − 2(N + 1)R2

0 −R0 · L+ l̄2
N∑

n=2

(
(n− 1) + (n− 1)2b(λ)

)

= −(N + 2)R2
0 +

Nl̄2

2
λ2 +

l̄2

6
N(N − 1) ((2N − 1) b(λ) + 3) . (35)

The radius of gyration given in Eq. (5) can be expanded as

R2
g =

1

N + 1

N∑

n=0

(rn − rG) · (rn − rG) =
1

N + 1

N∑

n=0

rn · rn − rG · rG. (36)

The first term which is also used in Eq. (7) is given as

N∑

n=1

rn · rn =

N∑

n=1

(
n∑

i=1

l i ·
n∑

j=1

l j

)

=

N∑

n=1




nl̄2 +

n∑

i,j=1
i6=j

l̄2 cos φij






=

N∑

n=1

l̄2 (n+ n (n− 1) b(λ)) =
l̄2

6
N (N + 1) (2b(λ) (N − 1)+3) . (37)

Here, although the expected value b(λ) of the parameter λ is calculated in terms of small
number of bonds n, the error is negligible as long as

√
n >> 1. This is a common assumption

in the classical perturbation theories [83, 84]. Studies on the influence of the bond correlation
on the chain end-to-end distance showed that this average scheme yields satisfactory results
even for short chains as well [85]. In view of Eqs. (43) and (37), the radius of gyration given
in Eq. (36) takes the form

R2
g =

l̄2

12

N (N + 2)

(N + 1)
((N − 1) b(λ) + 2) ≈ Nl̄

2

12
(Nb(λ) + 2) , (38)

which coincides with the predictions of the linear models [18, 84].669
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Accordingly, the relative parallel length given in view of Eq. (32) is formulated as

L2
‖ =

N∑

i=1

(
Ri

2 cos2 θi +R2
i−1 cos

2 θi−1 − 2RiRi−1 cos θi cos θi−1

)

= c
(
2(N + 1)R2

g − 2R2
0

)
− (2c+∆d)

N∑

i=1

Ri ·Ri−1

≈ cl̄2

6

[

N2 (N − 1)

(

(1− c)− πd

2N

)

b+ 4 (N + 1)

(

c− 1

2

)

+ (2−N) πd+ 2N2(1− c)

]

.

(39)

A.2 Relative Normal Length670

The relative normal length is formulated with respect to the parameters R2
⊥g, and R′

0
2 (see671

Eq. 19) . The projection of the radius of gyration R2
⊥g can be written by using (6) as672

(N + 1)R2
⊥g =

N∑

i=0

R′

i ·R′

i =
N∑

i=0

(Ri sin θi) · (Ri sin θi) = (N + 1) a(λ), (40)

where a(λ) = E
[
R2 sin2 θ

]

θ
represents the expected average of the geometrical parameter

R2
i sin

2 θi with respect to random parameter θ. The second term of Eq. (40) can be calculated
by Eq. (19), using the following decomposition

R′
0
2
= R0

2 − R‖0
2, (41)

whereR‖0 is the projection of the position vector of the first particle along the force direction.
The parameter R2

0 = rG can be derived from Eq. (4) as

(N + 1)2 r2G =
N∑

i=1

N∑

j=1

r i · r j =
N∑

i=1

r i · r i + 2
N−1∑

i=1

N∑

j=i+1

(
i∑

s=1

l s ·
j
∑

t=1

l t

)

=

N∑

i=1

r i · r i + 2l̄2
N−1∑

i=1

N∑

j=i+1

(i+ i (j − 1) b) (42)

=

N∑

i=1

r i · r i +
l̄2

12
N (N − 1) (N + 1) ((3N − 2) b+ 4) .

The first term can be further simplified ( as discussed in Eq. (37)), and rewritten as

r2G =
l̄2

12

N

(N + 1)

((
3N2 −N − 2

)
b+ 4N + 2

)
. (43)

Moreover, considering the length of the chain in the IUS given by Eq.(2), the parameter R‖0
can be expressed in terms of the stretch λ as R2

‖0 =
1
4
λ2Nl2. Simplifying this equation with

respect to Eq. (8) gives

R′
0
2
= l̄2

N(N − 1)(1− b)

12(N + 1)
. (44)
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Inserting this expression along with Eqs. (43) into (19) gives the relative normal length as

L2
⊥ = (N + 1)a(λ) + l̄2

N(N − 1)(1− b(λ))

12
≈ N2 l̄

2

12
(1− b(λ)) +Na(λ). (45)

B Appendix: PDF of Interparticle Angles673

The PDF of the angle φ evolves in the course of deformation. To describe this evolution,674

two stages of deformation are considered where the profile of the PDF is known (i) bell675

shape distribution at the IUS λ = 1, and (ii) Dirac delta profile at the fully stretched state676

λ = λmax with peak at φ = 0 where all the bonds are completely aligned.677

To approximate the PDF Pφ(φ, λ) that can describe both of these profiles, we consider
the following Gamma distribution function.

f(x|α, β) = βα

Γ(α)
xα−1e−βx, (46)

where Γ(α) denotes the Gamma function [86]. The parameters α and β are both functions
of λ and N . Under tension, the bond vectors l i gradually align with the force direction (see
Eq. 3) so that the angles φij between these vectors tend to zero. The mean value of the
distribution function µφ (λ,N) = α

β
varies with the applied deformation as shown in Eq. 12

(a). Random distribution of bond directions at the IUS and the complete alignment of bond
in the force direction at the maximum deformation λmax imply that

E [cos (φ)]φ

∣
∣
∣
λ=λmax

= 0 ⇒ µφ (1, N) =
π

2
, (47)

E [cos (φ)]φ

∣
∣
∣
λ=λmax

= 1 ⇒ µφ (λmax, N) = 0, (48)

where λmax = lmax

l

√
N . Considering φ ∈ [0, π], normalization of the density Gamma distri-

bution Eq. (46) to this range gives

Pφ(φ, λ) = gφ(λ) [f(φ|α(λ), β(λ)) + f(π − φ|γ(λ), β(λ))] , (49)

where gφ is a normalization function to ensure
π∫

0

Pφ(φ, λ)dφ = 1. An additional condition on

the distribution function Pφ is applied by Eq. (7). Indeed, inserting Eq. (49) into Eq. (8)
yields

λ2 =

(
l̄

l

)2


1 + (N − 1)

π∫

0

Pφ(φ, λ)cos (φ)dφ



 , (50)

which can be used in order to evaluate the PDF of α(λ), β(λ) and γ(λ). Note that any
other type of distribution function can be used here as long as it satisfies Eqs. (47) and
(50). The Gamma distribution here is chosen due to its ability in describing eccentric peaks
in distribution of φ. The assumed PDF is consistent with the simulation results, and can
describes the boundary conditions quite well (see Fig.12b). The choice of PDF here can be
optimized for clusters with different morphologies, e.g. ultra-dense clusters with wave-like
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stress propagation mechanism. Derivation of the analytical solution of Eq. (50) is very

difficult because of the complexity of the mathematical representation of
(

l̄
l

)2

. Here, by

using the least-square-method, the residual of Eq. (50) is calculated by

R =

(
l

l̄

)2

− 1

λ2



1 + (N − 1)

π∫

0

Pφ(φ, λ)cos (φ)dφ



 . (51)

Next, the stationary of the residual Π =
λmax∫

1

R2dλ is calculated over a class of test functions

defined by

α ≈ α̂ =
∑

i

pi (λmax − λ)qi , γ ≈ γ̂ =
∑

i

pγ,i

(
λ

λmax

)qγ,i

, β ≈ β̂ =
∑

i

riλ
si(N − 1)ti,

(52)
where, α̂, β̂, and γ̂ represent the approximate solutions of the α, β, and γ that can satisfy678

Eq.50. Their magnitude can be derived from the boundary conditions of the distribution,679

namely680

(i) the sharpness of the PDF at the pole described by α
β2 such that limN→0

α
β2 = ∞.681

(ii) The distribution function flattens where the number of bonds tends to infinity.682

(iii)At the IUS, the bond vectors are completely uncorrelated, so we have

Pφ (φ, 1) =
1

2
sinφ. (53)

(iv) In the fully stretched state, all the bond vectors are aligned and thus φij = 0. Hence,

Pφ (φ, λmax) = δ (φ|0) , (54)

where δ denotes the Kronecker-Delta. The residual function (Eq. (51)) are minimized with683

respect to variables pi, qi, ri, si, pγ,i, qγ,i and ti (i = 1, 2) using of the Levenberg-Marquardt684

algorithm. The calculated values for a backbone chain of 100 particles are given in Table685

1 and the estimated distributed function Pφ (φ, λ) is plotted in Fig. 11(b) against φ for686

different values of λ.

Table 1: Numerical values of the parameters in Eq. (52)

i pi qi ri si ti pγ,i qγ,i

1 0.008 2.589 0.0007 2.385 0.509 169.2 6.057

2 0.954 0.0856 0.030 -0.870 0.921 23.37 -0.168

687

In Fig. 11 (a), the calculated changes in the chain end-to-end distance given in Eq. (50)688

is plotted against λ for different clusters sizes based on the values given in Table 1. The plot689

illustrates the accuracy of the approximated functions. In the vicinity of the fully stretched690

state, the error become stronger as more terms of the series α, β and γ (Eq. (52)) are691

required. However, backbone chains are ruptured far before reaching their theoretical fully692

stretched state. For this reason the error will not become critical in the range of validity of693

model which is the elastic phase.694
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Figure 11: (a) Square root of the right hand side of Eq. (50) plotted versus λ for clusters
with different lengths. (b) Interparticle angular distribution of Pφ plotted for different stretch
levels. The movement of the peak toward zero angle with increasing stretch implies gradual
alignment at larger deformations.

B.1 Deformation of interparticle bonds695

The length of the backbone chain in the deformed configuration is given by

L =
N∑

i=1

(
l̄ cosωi

)
= Nl̄E [cosω]ω , (55)

which in view of the Eq. (2) yields l
l̄
=

√
N
E

[cosω]ω . By implementing this result into Eq.
(50), we have

l

l̄
= 1− Ḡ

Q

(

E [φ]φ|λ=1 − E
[

φ̂
]

φ

)(

l̄E

[
1

r′

]

θ

)

E [cosω]ω , (56)

where the variables φij and r′i are independent of each other. φ̂ and φ are weakly correlated
since their interaction is defined by the random parameter ωi. The magnitudes of E [φ]φ|λ=1

and E
[

φ̂
]

φ
obtained from Eq. (26) and plotted in Fig. 12 (b) against λ. The mean value of

E
[
1
r′

]

θ
will then be obtained by using the PDF of θ through specific procedure described in

Appendix D. Considering the symmetric distribution of ω around ω = 0 at different stages
of deformation, one has E [cosω]ω = 1. Consequently Eq. (56) yields

l

l̄
=

√
N

√
N + Ḡ

Q
λl̄

(

E [φ]φ|λ=1 − E
[

φ̂
]

φ

)

E
[
1
r′

]

θ

, (57)

which can be inserted in Eq. (50) in order to calculate b.696

C Appendix: PDF of Angles of Position Vectors697

The PDF Pθ(θ, λ) of the angle θ is formulated through discretization of the sample space of698

the backbone chain which defines the minimum space volume that host all possible confor-699

mations of the backbone chain.700
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Figure 12: (left) Mean values of the bond angles E 〈φij〉 and E 〈θ〉 plotted versus stretch.
Note that at λ = λmax, the values of both these parameters become zero. (right) The angular
distribution of the position vectors Pθ(θ, λ) at different stretch levels.
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Figure 13: (a) The ellipsoid representing possible positions of the backbone chain particles.
The dark gray zone illustrates a cone element of all particles positioned between the angles
θ and θ + dθ. (b) The front view of the cone element dθ.

Consider a backbone chain with an end-to-end distance L and a contour length LC = Nl̄,701

the sample space is represented by the ellipsoid shown in Fig. 13. The ellipsoid represents702

all the possible positions of the particles of the backbone chain in space.703

The center of gravity CG of the backbone chain lies on the reflection plane P with an
approximate offset R′

N from the end-to-end connecting line. Now, by representing the volume
of the solid angle at angle θ by dVθ (the dark gray-zone in Fig.13), the PDF of θ can be
formulated as

Pθ(θ, λ)dθ =
dVθ

Vell
, (58)

where Vell =
π∫

0

dVθ is the sample space and represents the volume of the ellipsoid. Here,

the value of dVθ is defined based on integration of two parameters; (i) the volume of the
infinitesimal element dVrθΦ, and (ii) Pp(r, θ,Φ) which denotes the probability of existence of
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a chain particle at dVrθΦ. Accordingly,

dVθ = dθ

2π∫

0

R(θ,Φ)∫

0

r2 sin θPp(r, θ,Φ)drdΦ, (59)

where Pp(r, θ,Φ) denotes the probability of existence of a particle at a particular position704

defined by the coordinates r, θ and Φ (see appendix C). Here, R(θ,Φ) denotes the outer705

radius of the ellipsoid at the angles θ and Φ).706

C.1 Cross-sectional Averaging707

The expected value of trigonometric functions can be derived by implementing Eq.(58) into708

Eq.(26). The procedure should be altered for calculation of E
[
1
r′

]

θ
represented in Eq. (57),709

since it requires an averaging of the 1
r′
over projected probability space.710

An accurate estimate of upper and lower bounds of E
[
1
r′

]

θ
can hardly be obtained using

statistical approaches. Here, the mean values of 1
r̄′
= l̄

r′
are calculated by deriving the value

of
〈

1
r̄′

〉

θ
at different cross-sectional planes of the ellipsoid sample space, and then averaging

it over the whole ellipsoid (see Fig. 13b). The average of 1
r′
in a cross-sectional plane Pθ of

the ellipsoid is expressed by

〈
1

r̄′

〉

θ

=
l̄2

Aθ

2π∫

0

R̄(θ,Φ) sin θ∫

0

(
1

r′

)

r′Pp(r, θ,Φ)dr
′dΦ,

Aθ =

2π∫

0

R(θ,Φ) sin θ∫

0

r′Pp(r, θ,Φ)dr
′dΦ, (60)

where Aθ is the area of the cross-sectional plane Pθ and r′ = r sin θ. Then, one can obtain
the mean value

〈
1
r̄′

〉

θ
over the whole ellipsoid by

E

[
1

r′

]

θ

=

π∫

0

〈
1

r̄′

〉

θ

AθR̄(θ, 0) cos θdθ. (61)

C.2 PDF of Backbone Chain Particles711

Here, we calculate Pp(r, θ,Φ) which denotes the probability of existence of a particle of chain
at dVrθΦ (see Eq.(59)). In the IUS state, the probability density of the nth particle to be at
distance between r and r + dr from the 0th segment is

Pseg(n, r̄)dr̄ =
4√
π
B3r̄2e−B2r̄2dr̄, where Pseg(n, r̄) = 0 ∀n < r̄ and B =

√

3

2n
. (62)

Implementing this equation to all the particles of the chain, the probability of finding a
particle at the spherical shell of radius r and thickness dr with the origin at particle 0, is
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given by

Psh(N, r̄)dr̄ =
1

N

N∑

n=1

P (n, r̄)dr̄ =
A

N
r̄2

N∑

n=1

(

ne
r̄2

n

)− 3

2

(63)

≃ A

N

N∫

n=r̄

(

ne
r̄2

n

)− 3

2

dn, where A = 3r̄2
√

6

π
.

Accordingly, the PDF of existence of a particle at an infinitesimal element dVrθΦ is given by
Pa(N, r̄)dr̄ as

Pa(N, r̄)dr̄ =
Psh(N, r̄)dr

4πr̄2
=

3

2πNr̄

(

erf

(√

3r̄

2

)

− erf

(√

3r̄2

2N

))

dr̄ ∀r > 0. (64)

Since the position of the needs of the chain is known, let us divide the backbone chain in the712

IUS into two chains with N1 and N2 segments which are connected to each other by their713

last links. The probability of the connecting particle to be at a particular position is given714

by Pa(N1, r̄1)Pa(N2, r̄2), where r̄1 = r1
l̄
and r̄2 = r2

l̄
denote the normalized distances of the715

particle from each ends of the chain. Since the positions of the first and the last particle are716

known and their volume is considered non-zero, the total sample space V is divided into two717

following regions.718

• V1: the space occupied by the 1st and last particles at the ends of the BB chain-719

hatched area in Fig. 14. Two particles exist in this region.720

• V2: the volume of the ellipsoid excluding V1 - plain area in Fig. 14. N − 1 of N + 1721

particles exist in this region.722

Moreover, we know Pp(r, θ,Φ) satisfies the following conditions

∫

V

Pp(r, θ,Φ)dV = 1,

∫

V1

Pp(r, θ,Φ)dV =
2

N + 1
,

∫

V2

Pp(r, θ,Φ)dV =
N − 1

N + 1
. (65)

Since V1 is fully occupied by the end particles, Pp(r, θ,Φ) has a constant value there. Thus,
one can write

Pp(r, θ,Φ) =

{ 2
N+1

3
8

1
πl3

V1
N−1
N+1

1
gp
pa(N1, r̄1)pa(N2, r̄2) V2

, (66)

where

gp =

∫

V2

pa(N1, r̄1)pa(N2, r̄2)dV, (67)

is the term normalizing Pa(N1, r̄1)Pa(N2, r̄2) in V2. The parameters r1 and r2 can be derived
from

r1
2 = r2 +R′

0
2
+R2

‖0 − 2rR′
0 sin θ cosΦ− 2rR‖0 cos θ. (68)
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Figure 14: (a) Dividing the backbone chain into two ideal chains to formulate the probability
of a particle in space and (b) schematical view of this probability.

where N1 and N2 represent the estimated numbers of segments that connect the particle
in consideration with the ends of the backbone chain as shown in Fig. 14. The entropic
force of a chain with N segments and the normalized end-to-end distance r̄ is written by
F (r̄, N) = g( r̄

N
) (see e.g. [87]). Since the entropic forces at both parts of the backbone

chain are identical, one has r̄1
N1

= r̄2
N2

. Keeping in mind that the number of segments of the
backbone chain with N + 1 particles is N1 +N2 = N , one can further write

N1 = N
r̄1

r̄1 + r̄2
, N2 = N

r̄2
r̄1 + r̄2

. (69)
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