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Abstract 

While the interplay between neuronal excitability properties and global properties of 

network topology is known to affect network propensity for synchronization, it is not 

clear how detailed characteristics of these properties affect spatio-temporal pattern 

formation. Here, we study mixed networks, composed of neurons having Type I and/or 

Type II phase response curves, with varying distributions of local and random 

connections and show that not only average network properties, but also the connectivity 

distribution statistics, significantly affect network synchrony. Namely, we study networks 

with fixed network-wide properties, but vary the number of random connections that 

nodes project. We show that varying node excitability (Type I vs Type II) influences 

network synchrony most dramatically for systems with long-tailed distributions of the 

number of random connections per node. This indicates that a cluster of even a few 

highly re-wired cells with a high propensity for synchronization can alter the degree of 

synchrony in the network as a whole.  We show this effect generally on a network of 

coupled Kuramoto oscillators and investigate the impact of this effect more thoroughly in 

pulse coupled networks of biophysical neurons. 
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I. Introduction  
 

Synchronization in complex networks has been studied extensively over the last two 

decades [1],[2],[3],[4],[5]. In the brain, synchronization of neuronal populations has been 

associated with many brain functions, including attention and memory formation 

[6],[7],[8],[9]. On the other hand, aberrant synchrony is implicated in many pathologies 

of the brain, such as epilepsy [10], Parkinson’s disease [11],[12], and schizophrenia [13], 

underscoring the need to better understand mechanisms that generate and promote 

synchronization of neuronal networks. 

 Generally, the emergence of synchronous spatiotemporal activity patterns may be 

explained by two broad classes of mechanisms: 1) excitability properties of individual 

network nodes, and 2) characteristics of network coupling statistics. Neuronal excitability 

falls into one of two categories, depending on the bifurcation structure observed in the 

neuron’s transition to firing. In Type I neurons, repetitive spiking is initiated by a saddle-

node on an invariant cycle (SNIC) bifurcation. These neurons act as integrators, with 

firing frequency increasing sharply from the arbitrarily low levels observed at firing 

threshold, and they exhibit a low propensity for synchrony when coupled by excitation.  

Type II neurons transition to firing through an Andronov-Hopf bifurcation, leading to a 

discontinuous and shallow frequency-current curve, and higher propensity for 

synchronization when coupled together [14],[15],[16],[17]. Generally, these excitability 

types result in different profiles of the neuronal phase response curve (PRC), which 

captures the neuronal response to brief stimulation [18],[19],[20]. Usually, Type I cells 

exhibit exclusively phase advances in response to excitatory stimuli arriving at different 

times during the firing cycle, while Type II cells display both phase delays and advances. 

Experimental results show that both of these cell types are present in the brain, with some 

neurons capable of switching types [21]. 

 

Different frameworks for network connectivity have been used to investigate the 

influence of network topology upon neuronal synchronization [22]. Among these 

frameworks, small-world and scale free architectures have been widely used. The small-
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world regime is defined as having a high clustering coefficient and small path length 

[23],[24],[25],[26] . The Watts-Strogatz model uses a single parameter, the rewiring 

probability, to transition between a locally connected network, through the small world 

regime to a completely random network [27]. The scale free architecture introduces 

highly interconnected neurons called hub cells, which have been shown to orchestrate 

synchrony in experimental models of epilepsy [28],[29],[30]. A derivative of the latter is 

the “rich club” structure [31],[32],[33],[34],[35] in which hub cells are interconnected 

amongst themselves. We have shown in previous work that feedback between neuronal 

excitability type and network structure dramatically influence network synchrony [36]. 

Namely, we showed that Type II networks synchronize to much higher degree than their 

identical Type I counterparts. Recently we have also shown that in scale-free networks 

with mixed Type I and Type II cells, synchronization is enhanced by placing Type II cells 

(rather than Type I cells) as hubs [37].  

 

In the case of small world connectivity, the network properties are assessed globally for 

the whole system, whether through estimation of mean path length and clustering 

coefficient or rewiring probability. Here we introduce a Watts-Strogatz type of small-

world model having heterogeneous structure in which each cell is assigned an individual 

rewiring probability. We vary distribution statistics (i.e. we use exponential, Poisson and 

uniform distributions) of these rewiring probabilities but constrain the average, network-

wide rewiring probability to be constant (Fig 1). We then compare the effect of 

interactions between placement of node excitability type and statistics of network 

connectivity structure. Namely we compare the case in which highly re-wired (HWR) 

nodes have Type I excitability with the opposite case, in which highly re-wired nodes are 

Type II. We perform this comparison in a system of continuously coupled Kuramoto 

oscillators [38], [39],[40] and in networks of pulse coupled biophysical model neurons. 

Our results show that, generally, networks in which Type II cells have a large number of 

re-wired connections synchronize much better than those in which Type I cells are highly 

re-wired. However, the degree of synchronization depends on the distribution of re-wired 

connections per cell.  Specifically, we show that distributions with a relatively longer tail 

of re-wired connections per cell, such as an exponential distribution in our case, can 
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increase the propensity for network synchronization, depending on excitability type, 

indicating that a few highly re-wired cells may drive synchrony in a network as a whole. 

Finally, we investigate the effect of forming clusters among the highly re-wired cells, or 

“rich clubs,” and show that interconnecting the most highly re-wired cells enhances 

synchronous dynamics when such cells are Type II, but not when they are Type I. These 

results indicate that the distribution of structural heterogeneities within the network is an 

important factor in spatio-temporal pattern formation and that relatively few 

preferentially connected nodes can drive network wide synchrony. 
 

II. Continuously coupled Kuramoto oscillators  

 

We first investigate the impact of connectivity distributions and excitability type on 

spatio-temporal pattern formation in a system of continuously coupled Kuramoto 

oscillators. Here, the phase dynamics were governed by: 

dφi
dt

=ωi + A G ri , j( )
j=1

N

∑ K φi ,φ j( )
,       (1)

 

where, !ω i  is the natural frequency of the i-th oscillator, G is the connectivity matrix and 

and K denotes the phase coupling function. We modified the phase coupling to be able to 

continuously change the phase response curve: 

!!
K φi ,φ j( ) =u sin φi −φ j( )( )− 1−u( ) sin φi −φ j( )

2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

    (2)

 

Depending on the parmeter u oscillators continuously transition from Type I to Type II   

PRC.  

The networks were composed of 1000 oscillators with 4% connectivity (40 outgoing 

connections per node), situated in a one-dimensional ring with periodic boundary 

conditions.  
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In the standard Watts–Strogatz small-world connectivity paradigm, each synaptic 

connection is assigned the same re-wiring probability, which determines whether its 

target will remain a neighboring cell or be re-wired to a random target cell in the network 

(independent of their distance). This paradigm results in an approximately Poisson 

distribution for the number of re-wired outgoing connections per neuron (Fig. 1 top-row). 

Here, we modified the standard Watts–Strogatz‘s connectivity (where every connection 

in the network is re-wired with predefined probability) by first specifying the global re-

wiring fraction within the network (P), and consequently the total number of re-wired 

connections.  We then employed a specified distribution to assign the number of re-wired 

connections projecting from each individual neurons. We used three different 

distributions: a)  ”No Variance” distribution, in which all neurons shared the same 

number of re-wired connections, b) Uniform distribution with a defined average and 

fixed variance (Fig. 1 middle-row), and c) Exponential distribution (Fig. 1 bottom-row). 

We then compare these connectivity paradigms with conventional small-world topology, 

which has a Poisson distribution of re-wired connections per cell.   

We defined two, equally sized populations of nodes having a Type I PRC (u = 0.0) or a 

Type II PRC (u=1.0), (Fig.	 2a) and subsequently studied network spatio-temporal 

patterning for two cases: 1) when Type I oscillators had highly re-wired connections and, 

2) when Type II oscillators were highly re-wired.  We measured the change in synchrony 

for varying coupling strength A. 

We measured synchrony using the so-called synchrony index defined in [30-31]. The 

measure is based on the calculation of the mean population-averaged fluctuations over an 

extended period of time, normalized to the average of individual neurons’ fluctuations. In 

order to calculate the synchrony index (λ) from spike timings, they were convolved with 

a Gaussian (here we used a 2ms width; the obtained results are not dependent on the 

Gaussian width), averaged across all neurons at each time point, and the variance across 

time was computed (!!σ V
2 = [V(t)]2

t
−[ V(t)

t
]2 ). The variances of individual neuronal 

voltage traces across time were computed, and then averaged over all neurons (!!σ Vi

2 ). 

Namely, λ was then computed as:
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!!

λ =
σ V

2

1
N

σ Vi

2

i=1

N

∑
                                      (6) 

λ is bounded between 0 and 1, zero for asynchronous dynamics and 1 for complete 

synchrony across the network. 

 

We generally observed a change in degree of synchrony when Type II nodes were highly 

re-wired, with overall synchrony increasing with coupling strength (Fig. 2b). However by 

far the largest change in the degree of synchrony was observed when the rewiring 

probabilities were drawn from an exponential distribution (Fig. 2b, black/light gray 

dashed line).  

III. Network of pulse coupled neurons. 

We next investigate the impact of this result in networks of pulse coupled biophysical 

model neurons. We employed a Hodgkin Huxley type neuronal model with a fast inward 

Na+ current, delayed rectifier K+ current, and a leakage current. Cholinergic modulation 

has been experimentally shown to switch the PRCs of cortical neurons from Type II to 

Type I [21]. This effect is known to be driven by a slow, M-type K+ current (gated by gKs) 

responsible for spike frequency adaptation [29]. The equation governing neuronal 

dynamics is given by: 

C
dVi
dt

=−gNam∞

3(Vi )h(Vi −VNa)− gKdrn4(Vi −VK )− gKsS(Vi −VK )− gL(Vi −VL)+ Idrive + Iijsyn    (3)  

where C =1.0μF/cm2 and Iij

syn  is the synaptic current. The synaptic current from neuron 

‘j’ to ‘i’ is governed by: 

Iij
syn =W exp(− t −t j

τ
)(Esyn −Vi )                   (4) 

where tj is the spike time of neuron j, and W is the synaptic strength which was kept 
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constant for all the connections, and we fixed τ=0.5 ms and  Esyn=0 mV.  I
drive

 is an 

externally applied current that remains constant for each neuron within a simulation, but 

depending on the heterogeneity level needed for each simulation the spread of external 

current across neurons was set appropriately. In all the simulations in this paper, except 

Fig. 7, the I
drive

 was set to generate an average of 15 Hz with frequency spread of 26.6%, 

Type I:!!I drive =0.158±0.038 , Type II:!!I drive =1.22±0.18 . For the results presented in Fig. 

7 the frequency spread changes from 0% (0Hz) to 52% (8Hz), Type I:

!!I drive =0.158±0.076 ; Type II: !!I drive =1.22±0.37 . The value of constant parameters used 

in this model are the same for both Type I and Type II neurons except gKs which is 

gKs=0.1 mS/cm2 for Type I and gKs=0.8 mS/cm2 for Type II neurons: gNa = 24.0 mS/cm2, 

gKdr = 3.0 mS/cm2, gL = 0.02 mS/cm2, VNa = 55.0 mV, VK = −90.0 mV, and V
L = −60.0 

mV. 

In equation (3) m∞ and h are responsible for activation and inactivation of the Na 

current, and their dynamics are governed by m∞(V ) = 1/(1 + e(−V − 30.0)/9.5) and  dh/dt = α

h(h∞(V ) − h)/τh(V ),with  h∞(V ) = 1/(1 + e(V + 53.0)/7.0) and τh(V ) = 0.37 + 2.78/(1 + 

e(V + 40.5)/6.0). The dynamics of the gating variable for the delayed rectifier potassium 

current were given by dn/dt = (n∞(V ) − h)/τn(V ), with n∞(V ) = 1/(1 + e(−V − 30.0)/10.0) 

andτn(V ) = 0.37+ 1.85/(1 + e(V +27.0)/15.0). Finally, the gating variable for the slow, M-type 

potassium current was governed by ds/dt = αs (s∞(V) − s)/75.0, and s∞(V ) = 1/(1 + 

e(−V − 39.0)/5.0). The parameter values were adopted from [21] and are established 

experimentally. 

We model the acetylcholine mediated change in the PRC by decreasing gKs from 0.8 

mS/cm2 to 0.1 mS/cm2.  This mimics the effect of acetylcholine in switching the neuronal 

PRC from Type II to Type I [43]. Figure 3a depicts the PRC for these two cases, 

calculated using the following equation: 

!!
Δ(θ )=

TOriginal −TPerturbed(θ )
TOriginal

  (5) 
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 where θ is the phase at which the input is received, Toriginal is the period of the 

unperturbed oscillator, Tperturbed is the duration of the spike cycle during which the input is 

received,  and Δ can be positive (phase advance) or negative (phase delay).  

We considered networks composed of 1000 excitatory cortical pyramidal cells with the 

same connectivity as in the coupled Kuramoto system described above. For the majority 

of our results, we set the total number of re-wired connections, or global re-wiring 

fraction P, to 15% (which essentially corresponds to a re-wiring probability of p = 0.15 in 

the standard Watts-Strogatz connectivity paradigm). As before, we constructed networks 

of excitatory cells with mixed 50% - 50% Type I and Type II excitability properties.  

 

As in the case of the Kuramoto network, to investigate the interplay between the statistics 

of network structure and cellular excitability in generating network dynamics, we 

compare two different regimes: (a) Type I Highly Re-wired (HRW), in which neurons 

with higher numbers of re-wired connections are selectively assigned Type I excitability 

and those with lower numbers of re-wired connections assigned Type II excitability (Fig. 

1b, left column), and (b) Type II HRW, in which neurons with higher numbers of re-

wired connections are selectively assigned Type II excitability and those with fewer re-

wired connections are Type I (Fig. 1b, right column).   

 

We first compared (Fig 3c) network synchrony (using synchrony index as above) for 

each connectivity distribution for the two cases of Type I HRW (light gray curves) and 

Type II HRW (black curves), as a function of synaptic strength W. For all connectivity 

architectures, the Type II HRW networks exhibited significantly higher synchrony in 

comparison with the Type I HRW networks. However, the largest difference in 

synchrony for Type II HRW versus Type I HRW regimes occurred for the exponential 

distribution, which has the widest range of ratios of re-wired to local connections across 

cells.  In this regime, the excitability type of the few neurons that have all or most of their 

connections re-wired resulted in dramatically different network dynamics.  As shown in 

the raster plots of Fig. 3d (first and second columns), network synchrony is visibly 

increased when the highly re-wired cells have Type II excitability. Further, increases in 
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the synaptic strength W drove both Type I HRW and Type II HRW networks out of 

synchrony (Fig. 3d, third column). This was primarily due to the mismatch of Type I and 

Type II firing responses to increased excitation, dictated by their disparate F-I curves, as 

well as a transition to bursting.  
 

 

To check whether the observed increase in synchrony was solely due to higher 

synchronization only among the Type II cells, we separately measured the synchrony 

index in each population for the two cases (Fig. 4a,b). The increase of synchrony was 

more pronounced for the Type II neurons when they were highly re-wired (Fig 4b) but 

was also observed for the Type I neurons for the same case (Fig 4a). This indicates that 

Type II neurons can lead both populations of neurons to synchronous activity, whereas if 

Type I neurons have more long-distance connections, they attenuate the emergence of 

synchronous spatio-temporal patterns. 
  

 

In contrast to these mixed cell networks, the dynamics of homogeneous networks 

composed solely of either Type I or Type II neurons (Fig. 5) are much less sensitive to 

variations in network connectivity architecture.  Figure 5a displays the synchrony index 

for homogeneous networks of Type I and Type II neurons as a function of synaptic 

weight W for Poisson, uniform, exponential and no variance re-wiring distributions. The 

homogeneous Type I networks show no signs of synchrony for any of the connectivity 

paradigms (light gray line along bottom axis).  On the other hand, Type II networks show 

a significant tendency to synchronize, and increasing coupling strength leads to highly 

synchronous dynamics in all connectivity frameworks. Again, an extreme increase in the 

synaptic weight drives the network dynamics out of synchrony, in agreement with 

previous results showing that increasing the firing rate of Type II neurons leads to the 

disappearance of the phase delay region of the PRC, adversely affecting network 

synchrony [37]. 	

 



	 10	

These divergent effects on network synchrony are due to the interplay between individual 

neuronal properties and network architecture, and were robust for low values of global re-

wiring fraction P and for different fractions of cell types in the network. As illustrated in 

Figure 6a, the difference between Type I HRW and Type II HRW scenarios (inset) was 

greatest for small values of global rewiring fraction, namely P = 0.1 - 0.2, which 

corresponds to the small-world network regime. As P increased further, synchrony 

increased overall, and the differences across connectivity distributions decreased, due to 

the introduction of many re-wired connections.  When the fraction of Type II cells in the 

network was varied from 50% (Fig 6b), differences in network synchronization remained 

between the Type I and Type II HRW scenarios, with the greatest differences occurring 

when less than half of the cells were Type II (inset). 
 
 
We also examined the influence of heterogeneity in intrinsic cellular firing frequency on 

the difference in network synchrony between the Type II HRW and Type I HRW 

scenarios (Fig. 7). While the mean neuronal firing frequency remained 15 Hz, we varied 

its spread around that value. When heterogeneity was low, networks tended to 

synchronize regardless of their connectivity structure, but by increasing the 

heterogeneity, Type II HRW networks maintained synchronization, while it quickly 

degraded in Type I HRW networks. The greatest difference between scenarios occurred 

for a range of 12-18 Hz (spread of 40%) in intrinsic cellular frequencies for networks 

with the exponential and Poisson re-wiring distributions, as shown in the raster plots in 

Figure 7b.  For larger heterogeneity in firing frequencies, networks in either the Type I or 

Type II HRW scenarios were not able to synchronize.  
	  
 
 

IV. Synchrony in networks with high connectivity clusters  

We also investigated effects on network synchrony when clusters among either highly re-

wired Type I cells or highly re-wired Type II cells were formed (Fig. 8). We created 

clusters among the top fractions of highly re-wired neurons by interconnecting all 

neurons within that group. Here we set the synaptic strength to be such that both types of 
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networks, Type I HRW and Type II HRW, did not show significant synchrony (W=0.005 

mS/cm2, Fig. 8b panels I and II). We then added connections between different fractions 

of the most highly re-wired neurons. In Type I HRW networks, interconnecting up to 

12% of the most highly re-wired cells did not appreciably change the degree of 

synchrony in the system (Fig. 8a, light gray curves, Fig. 8b panel III). In Type II HRW 

networks, however, even a small fraction of additional connections among the most re-

wired cells increased network synchronization (Fig. 8a black curves, Fig. 8b panel IV). 

Thus, these results indicate that a cluster consisting of a few Type II neurons with long-

distance connections can drive network dynamics toward synchrony, while a similar 

connectivity structure involving Type I neurons does not facilitate the emergence of 

synchronous activity. To explore whether the emergence of synchrony was due to 

interconnecting Type II neurons, regardless of their connectivity, or whether their long-

range connections made a difference, we performed simulations in which we formed 

clusters among Type II or Type I neurons with the lowest number of re-wired 

connections (Fig. 8a green and purple curves, respectively). Synchronization increased 

with the formation of clusters among Type II cells in the uniform distribution networks 

and particularly in the exponential distribution networks, but higher synchronization was 

exhibited when the clustered cells were highly re-wired.  In particular, in the exponential 

distribution networks, forming a cluster of minimally re-wired Type II neurons resulted 

in the formation of domains of local synchronous activity (Fig. 8b panel V), but the 

overall level of synchrony was lower as compared to the case when the most highly re-

wired Type II neurons formed a cluster (Fig. 8b panel IV).  Interconnecting minimally re-

wired Type I neurons in a cluster did not affect synchrony (Fig. 8a purple curves), as 

expected from the lack of effect of clusters of highly re-wired Type I neurons.  These 

results show that the excitability type of the neurons within a cluster as well as the 

statistics of their connectivity play an important role in facilitating the emergence of 

global synchrony.  
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VII. Discussion 

In this study we have explored the interaction between excitability properties and local 

connectivity characteristics of individual nodes in affecting network synchronization. 

Namely, we investigated how the effects of structural network heterogeneities coupled 

with varying nodal dynamics can lead to modifications in network-wide activity patterns. 

We studied this phenomenon for a system of continuously coupled Kuramoto oscillators 

and investigated its impact in networks of pulse coupled biophysical model neurons. For 

Kuramoto oscillators, we modified the phase coupling to model a continuous switch from 

Type I to Type II coupling responses.  In the neuronal networks,  we varied activation of 

the muscarinic receptor which is known to mediate the transition between Type I and 

Type II PRCs. The results are largely the same for both systems. The nodes in the 

network were allowed to have varying numbers of re-wired connections, while at the 

same time their excitability exhibited Type I or Type II characteristics.  We varied the 

network distributions of re-wired connections per node between Poisson, uniform and 

exponential distributions. We showed that highly re-wired nodes of Type II excitability 

facilitate increased levels of network-wide synchrony. They form a distributed backbone 

in the network driving other nodes toward synchrony. This effect was exacerbated in the 

re-wiring distribution having the longest tail (namely the exponential distribution). This 

distribution exhibited the greatest change in synchrony when the excitability type of the 

nodes with the highest numbers of re-wired connections was changed from Type I to 

Type II. This indicates that relatively few highly re-wired Type II cells can significantly 

increase the level of network-wide synchrony.  However, increased synchronization is 

not realized when these highly re-wired nodes have Type I excitability. 

 

In the neuronal networks, the effect of a small population of highly-re-wired Type II cells 

on synchrony was further exacerbated when we allowed these highly re-wired Type II 

cells to form connected clusters. In this case even a small Type II cluster, irrespective of 

whether it was formed from highly re-wired cells or minimally re-wired cells, drove a 

significant increase in network-wide synchrony. For exponential distribution networks, 

the difference in improved synchronization induced by clusters of highly re-wired 

compared to minimally re-wired Type II cells was greatest, reflecting the large 



	 13	

differential in the number of re-wired connections per cell at either end of the 

distribution.   

Thus,	 our	 results	 indicate	 that	 heterogeneity	 in	 cellular	 connectivity,	 and	

subsequently	not	only	the	first	moment	but	also	the	second	moment	of	connectivity	

statistics,	are	important	for	spatio-temporal	pattern	formation	in	the	network.	This	

result	 may	 have	 significant	 implications	 for	 characterizing	 real-world	 network	

connectivity	 patterns,	 since	 often	 connectivity	 statistics	 are	 known	only	 for	 a	 few	

identified	 cells.	 We	 show	 that	 relatively	 few	 cells	 of	 specific	 dynamical	 and	

connectivity	properties	can	significantly	change	spatio-temporal	patterning.	

We	note	that	our	neuronal	networks	were	limited	only	to	excitatory	cells.	We	have	

previously	 shown,	 however,	 that	 general	 differences	 between	 Type	 I	 and	 Type	 II	

network	synchronizability	remains	unchanged	with	the	addition	of	 inhibitory	cells	

to	the	network	[36].		The	one-dimensional	topology	on	which	we	base	our	networks	

is	also	clearly	unrealistic,	but	again	the	general	synchrony	results	are	known	to	hold	

for	higher	dimensional	systems.	Furthermore,	the	addition	of	connection	shortcuts	

makes	the	notion	of	initial	dimensionality	largely	irrelevant.	 

The results of this study may be pertinent for the modulation of neuronal excitability in 

the brain during sleep and wake states. It has been shown that the intrinsic excitability of 

neurons can be modulated by acetylcholine levels [21]: high levels of acetylcholine 

(ACh), during waking and rapid eye movement (REM) sleep, drive neuronal excitability 

towards Type I behavior, while the absence of ACh during slow wave sleep pushes 

excitability towards Type II. We show that relatively few neurons expressing receptors 

that are sensitive to ACh levels can dramatically change network-wide dynamics.  

The synchronizing role of the Type II clusters maybe also be important to understanding 

pathological brain activity. It has been shown that upon an injury to the dentate gyrus, its 

circuits undergo architectural rearrangements, which include formation of recurrent 

connections among excitatory granule cells. These changes make its circuit hyper-

excitable and prone to generating epileptic seizures [44],[45],[46]. Morgan and Soltesz 

showed that even by keeping the number of connections constant throughout the network 
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while assigning more connections to a few granule cells and interconnecting these hubs 

can create a circuit with hyper-excitable characteristics prone to generating seizure like 

activity [47].  Our results suggest that seizure promotion by this mechanism would be 

strengthened if the interconnected cells had Type II excitability properties. 
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FIGURE CAPTIONS 
Figure 1. a) Examples of connectivity matrices for three different distributions of rewiring 
probability of individual cells b) Histograms of the number of neurons with a specific number of 
re-wired connections for the standard Poisson (top row), uniform (middle row) and exponential 
(bottom row) re-wiring distributions for Type I (left column) and Type II Highly Re-wired 
scenarios (right column), for a mixed network of 50% Type I and 50% Type II cells. In the Type I 
Highly Re-wired scenario (left column panels), neurons with the higher number of re-wired 
outgoing connections have Type I excitability characteristics (light gray bars), while in the Type 
II Highly re-wired scenario (right column panels) Type II neurons have a higher number of re-
wired outgoing connections (black bars). 

 

Figure 2. Synchrony in a heterogeneous network of Type I and Type II coupled Kuramoto 
oscillators (N=1000). a) Corresponding PRC for different values of the parameter u that switches 
the synchronization properties of the Kuramoto oscillators b) Synchrony index as a function of 
coupling strength for various distributions of rewiring probability of nodal connections: no 
variance (dark gray solid line), uniform (solid lines), Poisson (dotted lines) and exponential 
(dashed lines). Type I Highly Re-wired (Type I HRW) nodes are denoted in light gray; Type II 
HRW in black. Averaged network wide rewiring probability is p=0.15.  

 

Figure 3. Network of pulse coupled neurons. a,b) Phase response curves (PRCs) and frequency- 
current (F-I) curves for Type I (gKs=0.1 mS/cm2 , light gray curves) and Type II (gKs=0.8 

mS/cm2, black curves) neurons. c) Synchrony in a heterogeneous network of Type I (50%) and 
Type II (50%) neurons as a function of synaptic strength for no variance (dark gray solid line), 
uniform (solid lines), Poisson (dotted lines) and exponential (dashed lines) distributions for the 
Type I Highly Re-wired (Type I HRW, light gray curves) and Type II Highly Re-wired (Type II 
HRW, black curves) scenarios. The networks in these simulations have a global re-wiring fraction 
of P=0.15 and cellular frequency distribution of 15±2 Hz. d) Examples of raster plots (light gray 
dots: Type I neurons, black dots: Type II neurons) for exponential distribution networks with 
synaptic strengths of W=0.0075 (left column), 0.01 (middle) and 0.02 mS/cm2 (right column) in 
the Type I HRW (top row) and Type II HRW (bottom row) scenarios.  

 
Figure 4. Synchronization characteristics of Type I and Type II subpopulations. a) Synchrony in 
a heterogeneous network of Type I (50%) and Type II (50%) neurons within Type I cell group; b) 
synchrony within Type II cells as a function of synaptic weight. Synchrony increases within both 
populations when the Type II population is highly re-wired, indicating that Type II cells mediate 
synchrony within the whole network. The networks in these simulations have a global re-wiring 
fraction of P=0.15 and cellular frequency distribution of 15±2 Hz. 
	
	
Figure 5. Synchrony in homogeneous networks of Type I and II neurons as a function of synaptic 
weight. (a) Type I networks display highly asynchronous dynamics for all connectivity paradigms 
and for synaptic weights as high as W=0.02 mS/cm2. Homogeneous networks of Type II neurons, 
however, readily synchronize for small and intermediate synaptic strengths. (b) Raster plots of 
network activity for Type I (top row) and Type II (bottom row) networks with synaptic strengths 
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of W=0.0075 mS/cm2 (left column) and W=0.02 mS/cm2 (right column). Note different time 
scales. Here the exponential connectivity paradigm was employed, with the same parameters for 
Type I and Type II simulations (P=0.15, intrinsic cell frequency 15±2Hz). 
 
 
Figure 6.  Synchrony as a function of global re-wiring fraction and Type II fraction. (a) 
Synchrony of a mixed network of 50% Type I and 50% Type II neurons as a function of global 
re-wiring fraction P for no variance and uniform, Poisson and exponential distributions for both 
Type I HRW (light gray curves) and Type II HRW (black curves) scenarios. (b) Synchrony for a 
mixed network of Type I and Type II neurons, for different fractions of Type II neurons, where 
0% Type II is a homogeneous Type I network and 100% is a homogeneous Type II network 
(P=0.15). (a,b) Insets show the differences between synchrony index values for Type II HRW and 
Type I HRW scenarios in the different re-wiring distributions (solid line: uniform ; dashed line: 
exponential, dotted line: Poisson). In all these simulations the intrinsic cell frequency was 
15±2Hz, with synaptic weight W=0.01 mS/cm2. 
	
 
Figure 7. Synchrony as a function of heterogeneity in intrinsic neuron firing frequencies.  (a) 
Synchrony of a mixed network of 50% Type I and 50% Type II neurons as a function of the 
percent spread around a mean neuronal firing frequency of 15 Hz for no variance and uniform, 
Poisson and exponential re-wiring distributions for Type I HRW (light gray curves) and Type II 
HRW (black curves) scenarios.  These networks had a global rewiring fraction of P=0.15 and 
synaptic weights of 0.01 mS/cm2. Inset shows the difference between synchrony index values of 
Type I and Type II HRW scenarios (solid line: uniform distribution; dashed line: exponential, and 
dotted line for Poisson). (b) Raster plots for Type I HRW (top row) and Type II HRW (bottom 
row) scenarios for exponential (left column) and Poisson (right column) re-wiring distributions 
with a 40% frequency spread.  
	
 
Figure 8. Synchrony in networks with high connectivity clusters. a) Synchronization of mixed 
networks of 50% Type I and 50% Type II cells with P=0.15, and W=0.005 mS/cm2. Here we 
interconnected a fraction of the most highly re-wired or least re-wired neurons to form connected 
clusters in the Poisson (top panel), uniform (middle panel) and exponential (bottom panel) 
distributions for the Type I HRW and Type II HRW cases. b) Example raster plots for 
exponential distribution networks in the Type I HRW (left column) and Type II HRW (right 
column) scenarios before the cluster is formed (top row), with a cluster consisting of the top 12% 
of highly re-wired neurons (middle row), and with a cluster consisting of the lowest 12% of re-
wired neurons (bottom row) (panel numbers I-VI correspond to labeled points on curves in 
bottom panel of a).  
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