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Effects of spatial diffusion in a Kauffman-like model for prebiotic evolution previously studied in
a ’well-mixed’ limit are reported. The previous model was parametrized by a parameter p defined as
the probability that a possible reaction in a network of reactions characterizing the artificial chem-
istry actually appears in the chemical network. In the model reported here, we numerically study
a grid of such well-mixed reactors on a two-dimensional spatial lattice in which the model chemi-
cal constituents can hop between neighboring reactors at a rate controlled by a second parameter
η. We report the frequency of appearance of three distinct types of nonequilibrium steady states,
characterized as ’diffusively-alive-locally-dead’ (DALD),’diffusively-dead-locally-alive’ (DDLA) and
’diffusively-alive-locally-alive’ (DALA). The types are defined according to whether they are chem-
ically equilibrated at each site, diffusively equilibrated between sites, or neither, respectively. With
our parametrization of the definitions of these nonequilibrium states, many of the DALA states are
growing rapidly in population due to the explosive population growth of a few sites, while their
entropy remains well below its equilibrium value. Sharp temporal transitions occur as exploding
sites appear. DALD states occur less commonly than the other types and also usually harbor a few
explosively growing sites but transitions are less sharp than in DALA systems.

I. INTRODUCTION

In many models and discussions of prebiotic evolution,
spatial considerations play a central role. The reason is
that the processes that might result in nonequilibrium
(lifelike) states, however defined, tend to be fragile and
susceptible to decay to equilibrium by various kinds of
perturbation. Spatial isolation from perturbations is of-
ten invoked as a mechanism by which such decay might
be avoided [1, 2]. Spatial isolation is often similarly in-
voked as a way of protecting nonequilibrium metastable
behavior from decay to equilibrium at later stages of evo-
lution [3].
However in studies of a model of prebiotic evolution

on which we previously reported [4], the artificial chemi-
cal system was assumed to be ’well mixed’ so that every
molecule could react with every other one, as it is in
many similar models [5] and explicit effects of any spa-
tial heterogeneity were ignored. When metastable ’life-
like’ states occurred in that model, they were protected
from decay to equilibrium by bottlenecks in the dynam-
ics of these states due to the sparseness of the network
of chemical reactions without any explicit reference to
space.

We did find that metastable nonequilibrium states oc-
curred in that model, as long as the network of chemical
reactions was sufficiently sparse to block decay to equi-
librium, but sufficiently connected to allow growth of the
molecular ensemble out to the maximum allowed lengths.
The sparseness of the chemical network was characterized
by a parameter p (the probability that a chemical reac-
tion from a list of all possible reactions is included in the
chemical network) and, in terms of it, the probability of
occurrence of lifelike states had a maximum at a small
finite value of p.
Here we report results of simulations of an extension

of that model which allows the possibility of the diffu-
sion of the (artificial) chemical constituents on a spatial
lattice. We place copies of our previous model on the
vertices of a two dimensional lattice and allow molecules
to hop between these ’islands’ (or perhaps ’cells’) at a
rate controlled by a second parameter η. There are two
implicit time scales in such a model: one characteriz-
ing intra-island reactions (controlled by p) and the other
characterizing the diffusion between islands (controlled
by η). As a physical realization one might imagine a het-
erogeneous mineral surface on which reacting regions are
separated by diffusion barriers.

We address the question of the effects of the presence
of this type of diffusion on the likelihood of appearance,
and possibly growth and evolution of ’lifelike’ states as
studied earlier in the absence of diffusion. In the previous
study, we characterized a steady state system as ’lifelike’
under the condition that it was out of chemical equilib-
rium and had dynamic internal chemistry. In the model
studied here we explore three kinds of nonequilibrium
steady states which are respectively out of diffusive equi-
librium but in chemical equilibrium within each island
(DALD), in diffusive equilibrium but out of equilibrium
on each island (DDLA) or out of equilibrium in both re-
spects (DALA). All are found to occasionally occur with
measurable frequency in the model in different regions of
the p-η plane.

In the next section we describe our previous model and
its extension to a system consisting of a two-dimensional
lattice of ’islands’ or local sites. Population dynamics
with identical chemical networks are simulated, as in our
previous model, on each site, but now diffusion may occur
between these sites. (In the rest of the paper we will use
the terms ’islands’ and ’sites’ interchangeably to refer
to the same entities in the model.) Sections three and
four summarize the entropic criteria used to distinguish
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the three kinds of nonequilibrium/lifelike states. Sections
five and six present results followed by discussion and
conclusions.

II. MODEL

As in our previous work [4], and following [5–7], the en-
tities which we call ’polymers’ or, equivalently ’molecules’
in the model are strings of 0’s and 1’s which abstractly
represent polymers built from two types of monomers.
Further discussion of this choice appears in [4]. A qual-
itative ’roadmap’ of the computations which we carry
out in all the Kauffman like models which we have been
studying for a single site is shown in figure 1. Given
model parameters, namely p for the single island model
of reference [4] and p and η for the model studied here, we
first generate a large ensemble of ’artificial chemistries’
numerically. The chemical constituents or species that
are modeled as binary polymer strings may, in the model,
undergo ligation and scission. The parameter p is the
probability that, of all the possible ligations and scis-
sions which are possible for polymers of length up to
a maximum lmax, a particular reaction is included in a
realization of the model. To generate general conclu-
sions in the absence of detailed knowledge of the rates of
such reactions in terrestrial or putative extraterrestrial
biochemistry, we generate a large (typically 104) set of
’artificial chemistries’ consistent with the parameters p
and then compute probabilities of various types of oc-
currences by averaging over the resulting ensemble of ar-
tificial chemistries and dynamic realizations. The algo-
rithm for generating, given p, an artificial chemistry on
a single chemically ’well-mixed’ site is the same as that
fully described and used in reference [4]. In the work
described here we use the same procedure to generate
chemical networks and then distribute identical copies of
each such network on all the sites of the spatial lattice in
order to carry our dynamical simulations. The dynam-
ics of the model described here differs from that in [4]
because the transfer of molecules between the sites is an
allowed dynamical event as described below and in Ap-
pendix A. Some discussion of the choice to use identical
chemical networks on all the sites appears below.
As before, population dynamics are computed only for

networks which are ’viable’, by which we mean that there
is at least one reaction path from a ’food set’, here chosen
to be a set of monomers and dimers, to a polymer string
of the largest allowed size. (In reference [4] the largest
allowed polymer comprised ten monomers for most of the
reported results, but here computational limitations have
forced a limitation to a largest polymer length of six in
most reported results.)
The population dynamics themselves are generated

stochastically many times for each artificial chemical net-
work. The results of these dynamical simulations are not
identical, even when dynamics are carried out on identi-
cal chemical networks, because the dynamics are stochas-

FIG. 1: Structure of the model implementation for a single
site.

tic and, therefore, not deterministic. From the entire en-
semple of dynamical results we then generate statistics
for the probability of occurrence of various types of re-
sulting steady states, deemed by one definition or another
to be lifelike. (For example in reference [4] we typically
generated about 50 dynamic realizations for each chemi-
cal network, and carried out simulations on roughly 104

chemical networks for each value of p.)

Fixing p and requiring viability on each site does not
fully define the two-dimensional model of sites on a two
dimensional lattice. Options for fully defining the model
include (i) generating an artificial chemical network con-
sistent with p and then reproducing it on all the sites;
(ii) generating a chemical network and reproducing it on
each site, but assigning different reaction rates v (as de-
fined in reference [4] and in equation 1 below) to each
chosen reaction in the network on different sites; (iii) gen-
erating different chemical networks, consistent with the
same p, that are placed on each site (so that dynamics
are carried out with different possible chemical reactions
at each site); (iv) keeping only p the same on each site,
so there are heterogeneous chemistries at each site, as in
(iii), but lift the requirement that the networks on each
island must be viable; or (v) placing different chemical
networks at each site using a spatially dependent varia-
tion of p across the lattice of sites. Option (v) requires
the introduction of new parameters to characterize any
variation in p.

In the present paper, we report results on a model
in which we took option (i). Because the dynamics are
stochastically implemented, it will not necessarily be the
case in option (i) that all of the sites will realize steady
states in the same manner (if at all). An argument in
favor of option (i) is that one might expect the laws of
chemistry to be independent of the location of the reac-
tants in space. On the other hand, chemical heterogene-
ity may be realized at different spatial sites due to spatial
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variation in such environmental variables as temperature
or pH. Thus options (ii) through (v) might roughly model
real situations not realized by option (i). Many interest-
ing new topological and dynamical possibilities arise in
options (ii) through (v), and we plan to study them later.

Using option (i), we define a ’viable’ network as one
which contains at least one reaction path allowing pro-
duction of a polymer of maximum length starting from
the food set. We only carried out dynamics simulations
for those networks which were found to be viable, as in
reference [4]. In the calculations giving the reported re-
sults, we used an 8×8 square lattice of sites with peri-
odic boundary conditions and a maximum polymer size
of six. The maximum polymer size is unfortunately small
but was imposed by computational limitations. With an
approximate periodicity determined by the parameter η,
diffusive ’hops’ of randomly selected molecules were made
from their resident site to one of its four neighbors. The
precise relation of η to the number of diffusive events is
described in Appendix A where a review of the Gillespie
algorithm[8] used in the dynamics simulations also is pre-
sented. Roughly, η is the fraction of dynamical events,
which include both reactions and diffusive hops, which
are diffusive hops. An interesting and somewhat unex-
pected result to be discussed in more detail below is that
the model only exhibits interesting behavior at low dif-
fusion, i.e., at small values of η.

The chemical dynamics of the model has the same form
within each site as that for the single site model described
in [4] and is governed by stochastic implementation of the
probabilities described in the master equation

dnl/dt =
∑

l′,m,e[vl,l′,m,e(−kdnln
′

lne + k−1
d nmne)

+vm,l′,l,e(+kdnmn′

lne − k−1
d nlne)]. (1)

where nl is the number of polymers of species l, vl,l′,m,e

is proportional to the rate of the reaction l + l′
e−→m, e

denotes the catalyst, l and l′ denote the polymer species
combined during ligation or produced during cleavage,
andm denotes the product of ligation or the reactant dur-
ing cleavage. As discussed in reference [4], the parameter
kd is a rough proxy for the effects of temperature in the
model. As before, in the simulation results reported here
we set kd = 1 corresponding to ’infinite temperature’,
which simply means that forward and reverse reactions
have equal probability.

In the dynamics portion of the code within this model,
we added a procedure to check, during each dynamic
simulation, that the calculated ratio of instantaneous
to equilibrium entropy had reached steady state as de-
scribed in Appendix B. This was done because, with very
small η values, the dynamical simulations took signifi-
cantly longer to reach steady state than they had in the
single site case, and we needed to both be sure that the
systems were in fact in steady state and to save compu-
tational resources by not carrying out excessive compu-
tational simulation after steady state had been reached.

III. INSTANTANEOUS, PARTIALLY

EQUILIBRATED, AND GLOBALLY

EQUILIBRATED ENTROPIES

The number of spatial islands is set to a value M (here
64) and the maximum ’polymer’ length to a value lmax

(here 6). A fine-grained, ’microscopic’ description of a
state is given by a (2lmax+1−2)M -tuple of integers {nl,i}
where l labels specific species as in reference [4] and nl,i

is the number of ’polymers’ of species l on site i. Gen-
eralizing the coarse graining procedure used in reference
[4] for a single site, we introduce a coarse graining that is
specified by the set of numbers {NL,i} where NL,i is the
number of ’polymers’ of length L on site i. There can
be a further coarse-graining to describe a ’macrostate’
within our multisite model by specifying solely the set of

numbers {NL} where NL =
∑M

i=1 NL,i is the total num-
ber of polymers with length L in the system. With this
notation one finds the number Wglobal of microstates as-
sociated with the coarser macrostate specified by {NL}
to be

Wglobal({NL}) =
∏

L

(NL + 2LM − 1)!

(2LM − 1)!NL!
=

=
∏

L

∑

∑
i NL,i=NL

M
∏

i=1

(NL,i + 2L − 1)!

(2L − 1)!NL,i!
. (2)

A formal derivation of the second equality appears in
Appendix C. We refer to Sglobal = lnWglobal as the in-
stantaneous global entropy.

Maximizing ln(Wglobal) subject to the condition
∑

L NL = N (the total number of polymers in a system)
gives

Sglobal,eq(N) = (MGlmax
− lmax)F

(

N

MGlmax
− lmax

)

(3)
for the equilibrium global entropy. Here F (x) = (1 +
x) ln(1 + x) − x lnx, Stirling’s approximation has been
used, Glmax

= 2lmax+1 − 2, and the Boltzmann constant
(kB) has been dropped for convenience. This entropy
maximization corresponds to fully equilibrated popula-
tions of NL,i = gLN/(MGlmax

) for polymers of length L
at site i, where gL = 2L − 1.

At the less coarse grained level, corresponding to speci-
fying the set of numbers {NL,i}, we define a local entropy
Si at each site

Si({NL,i}) =
∑

L

ln

[

(NL,i + 2L − 1)!

(2L − 1)!NL,i!

]

(4)

and a total local entropy

S({NL,i}) =
M
∑

i=1

Si({NL,i}). (5)
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FIG. 2: Instantaneous, global, and globally equilibrated en-
tropies as a function of the number of reaction steps for a
realization of the dynamics with p = 0.00761 and η = 10−7.

From the second expression for Wglobal above (as derived
in Appendix C) we then have

Sglobal({NL}) = ln





∑

∑
i NL,i=NL

exp(S({NL,i}))



 . (6)

From this it is easy to show that it will always be the case
that Sglobal ≥ S with the equality only holding approx-
imately if the sum in the exponent on the right of the
expression above relating Sglobal to S is dominated by its
largest term. These nonequilibrium quantities can both
be evaluated using the instantaneous values of {NL,i} at
any time during the simulation. We show some exam-
ples of such evaluations in figure 2. As expected, the
inequality is always obeyed but the conditions for the
near equality are not always met.
If we maximize S subject only to the constraint

∑

L,iNL,i = N then we find

Seq(N) = MGlmax
F

(

N

MGlmax

)

, (7)

which is close to but less than the maximum value of
Sglobal given by equation 3. In our simulations MGlmax

−
lmax = 64(27 − 2)− 6 = 16250 whereas MGlmax

= 16256
so the difference is negligible and will shrink further for
larger lmax. Thus we see that, at equilibrium, the sum in
(6) is very nearly dominated by its largest term and maxi-
mizing either S or Sglobal leads to global equilibrium with
the population distributions NL,i = gLN/(MGlmax

).
We now consider the possibility of partial equilibra-

tions, focusing attention on S. We can maximize S as
a function of the set of numbers {NL,i} for fixed values
of {NL} without requiring that the values NL,i within
a site take the equilibrium values resulting from the re-
actions within each site. We refer to this as ’diffusive

equilibration’, and we expect it to occur for sufficiently
large values of η. Maximizing S subject to the conditions
∑

i NL,i = NL gives

Sdiff eq({NL}) = M
∑

L

gLF

(

NL

gLM

)

(8)

in which F (x) = (1 + x) ln(1 + x) − x lnx as before
(but x has a different value). In this case, the equi-
librium values for the number of polymers of length L
at site i is given by NL,i = NL/M , which intuitively is
expected in diffusive equilibrium. If the instantaneous
state is close to this diffusively equilibrated state with
NL,i = NL/M but far from the fully equilibrated state
with NL,i = gLN/(MGlmax

) then we refer to the system
as ’diffusively dead and locally alive’ (DDLA)
Turning to the other type of partial equilibration, we

maximize S subject to the conditions that the numbers
of polymers at the sites, i.e., Ni =

∑

L NL,i, are fixed
but we do not require that NL =

∑

i NL,i be fixed. In
this way, the maximization takes account of equilibration
through the chemical reactions within each site but does
not require diffusive equilibrium. The resulting partially
equilibrated entropy is found to be

Schem eq({Ni}) = Glmax

∑

i

F (Ni/Glmax
) (9)

and the corresponding population distribution is NL,i =
gLNi/Glmax

When the instantaneously evaluated values
of NL,i are close to this distribution but far from the fully
equilibrated distribution NL,i = gLN/(MGlmax

) then we
refer to the system as ’diffusively alive and locally dead’
(DALD).
If the instantaneous values NL,i are far from both par-

tially equilibrated distributions we refer to the system
as diffusively alive and locally alive (DALA). The quan-
titative definitions chosen to characterize ’close to’ and
’far from’ in these descriptions are provided in the next
section.

IV. DISCRIMINATING PARTIALLY

EQUILIBRATED FROM FULLY NON

EQUILIBRIUM STATES IN THE SIMULATIONS

Though the partially equilibrated states defined above
are well defined, it is not sufficient to compare the instan-
taneous value of S to the partially equilibrated values in
order to determine whether the instantaneous state is
partially equilibrated in one of the states defined. In-
stead, we consider the position of the state in the space
of ’macrostates’ defined by the set of variables {NL,i}.
The number of these variables is lmaxM which in our
simulations is 384 and is to be contrasted with the ’mi-
crostate’ specification in terms of the variables {nl,i} of
which there areMGlmax

, which is 8064 in our simulations.
We have shown above that when S is maximized at

fixed NL =
∑

i NL,i , which we call diffusive equilibra-
tion, then the set of numbers {NL,i} take the values
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∑
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FIG. 3: Illustration of the geometry of the macrospace in
which partial equilibrations can take place. P represents the
Mlmax-tuple {NL,i} of instantaneous populations during the
simulation. Pd is the Mlmax-tuple of populations which max-
imize the entropy S under the constraint NL =

∑
i NL,i and

Pc is the Mlmax-tuple of populations which maximize the en-
tropy S under the constraint Ni =

∑
L NL,i. The plane illus-

trated is the two dimensional plane in which the two Mlmax

dimensional vectors Pc−P and Pd−P lie. The lines between
them in the picture are the projections of the hyperplanes
defined by the constraints Ni =

∑
L NL,i and NL =

∑
i NL,i

onto the plane of the figure. The quantities Rc and Rd are
the Euclidean norms of those vectors as defined in equations
10.

NL,i = NL/M . We can regard this maximization as tak-
ing place in a hyperplane in the space of macrostates
defined by the constraint equations of which there are
lmax so the hyperplane has dimension (M − 1)lmax. We
denote the partially equilibrated position NL,i = NL/M
in that hyperplane by Pd (which is a 384-tuple of num-
bers). Similarly we showed that if we maximize S at fixed
Ni =

∑

L NL,i then the maximum occurs at the point
NL,i = gLNi/Glmax

. That maximization takes place in
another hyperplane of dimension M(lmax−1). We denote
that point of chemical equilibration by Pc. We provide a
simplified sketch to illustrate the situation in figure 3.
In the simulations reported below, there is another con-

straint, namely that the ’food’ populations on each site
are kept at a fixed value (50 in the reported results) and
are therefore not expected to equilibrate. Thus the relax-
ation toward equilibrium to which the discussion in this
section applies is actually carried out numerically in the
chemical space not including the food set, and so the di-
mensions in figure 3 are all reduced by 128 (= 2M , since
the food set consists of polymers of length one and two).
At any point during the simulation we have values of

the variables {NL,i} and easily compute the coordinates
of the instantaneous point P in the macrospace (which
is just given by the values of {NL,i} ) and of the par-
tially equilibrated points Pd and Pc from those values.
To determine how close the instantaneous values of the

macrovariables are to partial diffusive or partial chemi-
cal equilibration, we compute the Euclidean distances in
the macrospace between the instantaneous point P and
the partially equilibrated points Pd and Pc, denoting the
distances by Rd and Rc, respectively:

Rc =

√

∑

L,i

(NL,i − gLNi/Glmax
)2 ,

Rd =

√

∑

L,i

(NL,i −NL/M)2. (10)

If a system is fully globally equilibrated, both values will
be near zero, but cases in which one value is small and
the other is large are realized in the simulations and pro-
vide a quantitative definition of the meaning of partial
equilibration in the two senses discussed. We are only in-
terested in states for which the instantaneous calculated
entropy S (found from equation 5) is less than its fully
equilibrated value (found from equation 7), following our
earlier postulate that lifelike states must not be in full
equilibrium[4]. Given that constraint, we then separate
the entropically steady states which we find to be out of
equilibrium by values of Rc and Rd. We find, as we show
below, that they fall roughly into classes characterizable
as diffusively dead and locally alive (DDLA, small Rd,
large Rc), diffusively alive and locally dead (DALD, large
Rd, small Rc) and diffusively and locally alive (DALA,
large Rd and Rc ). An appropriate normalization for the

values of R is 1/(
√
2N) where N is the total number of

polymers, because it is easy to show that the maximum
value of R at given N is

√
2N .

V. RESULTS FOR FREQUENCY

DISTRIBUTIONS OF UNEQUILIBRATED AND

PARTIALLY EQUILIBRATED STATES

In figures 4 and 5 we show three dimensional scatter
plots indicating the steady state values of the quanti-
ties Rd/(

√
2N) and Rc/(

√
2N) for systems in entropi-

cally steady states such that S/Sglobal,eq is less than 0.6
and thus out of global equilibrium. As noted at the end
of the last section, these results are obtained by use of the
population statistics of the ’non-food’ populations only,
excluding the six species of ’food’ polymers of lengths
one and two whose total populations per site are held
at 50. Scatter plots are shown for several values of the
parameters p and η.
In these and other results reported in this paper we

have not applied the dynamical constraint discussed in
[4] when selecting states deemed lifelike. That constraint
assured that the states selected continued to behave in
a sufficiently dynamical manner though the ratio of the
entropy to its equilibrium value had reached steady state.
The dynamical constraint was not used here because do-
ing so imposed an unacceptable numerical burden in this
larger system. However we have made calculations in
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FIG. 4: Scatter plots of the normalized distances from par-
tial equilibria on the horizontal and vertical axes and their
entropy ratio denoted by the point color for p = 0.00320 and
differing values of η. Out of 105 randomly constructed net-
works the ones deemed viable had 50 ensembles simulated
each with a different initial condition and plotted. The dashed
lines denote the cutoff values of 0.03/

√
2 used for the different

classifications of lifelike.
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differing values of η. Out of 104 randomly constructed net-
works the ones deemed viable had 10 ensembles simulated
each with a different initial condition and plotted. The dashed
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a few cases as reported in section VII which suggest
that adding the dynamical constraint does not change
the overall dependence of lifelike frequencies on p and η
significantly, though the number of states deemed lifelike
is reduced.

As discussed, the entropically steady state values fall
roughly into three groups: those with small Rd/(

√
2N)
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FIG. 6: Comparison of results for the probability of occur-
rence of steady states with S/Seq < 0.6 in the single site, well
mixed, model of reference [4] (with lmax = 6) with results for
the probability of occurrence of states with S/Sglobal,eq < 0.6
in the model of this paper with η = 0.5 and lmax = 6.

and large Rc/(
√
2N), which are regarded as diffu-

sively dead and locally alive (DDLA); those with small

Rc/(
√
2N) and large Rd/(

√
2N) as diffusively alive and

locally dead (DALD), and those with both Rc/(
√
2N)

and Rd/(
√
2N) large as diffusively and locally alive

(DALA). By choosing, somewhat arbitrarily, cutoffs of

0.03/
√
2 on Rc/(

√
2N) and Rd/(

√
2N) to define these

different types we can get an overview of the parameter
dependence of the likelihood of these different types of
steady states as indicated in figures 7.

The sample of results shown in figures 4 and 5 are
quite characteristic in showing that DALD states, which
would occur near zero along the horizontal axes of the
figures are quite rare (Data on their abundance appears
in figure 7a). DDLA states (with probablity distributions
shown in figure 7b) appear along the vertical axes and
match the behavior we observed in the single site studies
of reference [4] at large η quite well as shown in figure 6.
These states are essentially spatially homogeneous copies
of our previous single site results.

The most unexpected results are the DALA states ap-
pearing as a band along a diagonal line in the Rc − Rd

plane, which is particularly evident in figure 5, though
similar, sometimes more complex, distributions appear
in that region for other values of p as seen in figure 4.

The distribution of DALA states as a function of p
and η appears in figure 7c. Of particular interest with re-
gard to the DALA distribution is the fact that the DALA
states appear for quite large values p, where our single
site model gave mainly chemically equilibrated systems.
In terms of our postulated criterion for ’lifelike’ states,
namely that they should be out of equilibrium, these
states seem to be attractive candidates for a new kind
of lifelike state in the model. Accordingly, we explored
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their nature further as described in the next section.

VI. DALA AND DALD STATE ANALYSES AND

POPULATION GROWTH RATES

An interesting and surprising result is that many
DALA states occur at small values of η, as expected,
but at relatively large values of p at which our earlier
one-site studies would suggest that local (chemical) equi-
librium would commonly occur. To study these states
further we have explored their detailed dynamical history
in some cases as illustrated in figures 8. In these cases,
after an initial, apparently stable, steady state exhibiting
similar (though not identical) out of equilibrium behav-
ior on all sites, a single site suddenly and explosively
grows in population to completely dominate the total
population, after which the system subsides into a new
metastable state with a lower entropy ratio S/Sglobal,eq.
The site with dominant population (typically nearly 50
times larger than other sites) has a single site entropy
which is nearly in chemical equilibrium, while the other
sites remain far from chemical equilibrium. At the ’ex-
ploded’ site an analysis of the flows, illustrated in figure
8, shows that the site has saturated the limit of 950 non-
food polymers per site and polymers are being removed
as well as added to maintain the food set at the minimum
value taken to be 50 here. It appears however that the
’explosion’ may be triggered by a rare diffusive transfer
of a molecule from a neighboring site as discussed below.
These explosive events can occur more than once in a

simulation run, as shown in figure 9, leading to an ad-
ditional high population site at each explosive growth
episode. Sometimes the high population states occur to-
gether in space but in other cases they are widely sepa-
rated. We computed the correlation function of the pop-
ulations on different sites over the ensemble of DALA as
shown in figure 10. Figure 10 shows, that, on average,
there are correlations between the populations on differ-
ent sites which grow stronger as η increases, as expected
intuitively.
In order to distinguish the states with explosive sites

from those without explosive sites, we define a steady
state to have a disproportionate population spread (DPS)
if there is at least one site with a non-food population of
over 900 and at least one site with a non-food popula-
tion of less than 100. Using this classification of states
represented by points in the DALA region of the scatter
plots in figures 4 and 5 gives results shown in figure 11.
Comparing figures 5b and 11cd indicates that, at least
when p = 0.00761 and η = 10−5, the diagonal band of
DALA states are essentially all of the exploding, DPS,
type. This pattern is repeated for most of the studied
values of p though, as illustrated by comparing figure 4b
with figures 11ab for p = 0.00320 and η = 10−5, the sit-
uation is more complex in some cases (The range of p’s
explored is shown in figure 7).
Computing the frequencies with which the states pre-

viously classified as DALA were also of the exploding,
DPS, type occur in the ensemble of dynamically simu-
lated states yields the figure 12. Comparing figure 12
with figure 7c indicates that most (roughly 70%) of the
states classified as DALA are of the exploding, DPS type.
The other states classified as DALA are similar to the
DDLA states. At large η they appear to be similar to
the nonequilibrium states found in [4].

We further investigate the DALA DPS and Non-DPS
states by studying the non-food polymer population
growth rate. In figure 13 we plot the values of the loga-
rithmic derivative of S/Sglobal,eq with respect to the real
(Gillespie) time on the vertical axis and the correspond-
ing logarithmic derivative of the non-food molecule pop-
ulation on the horizontal axis. Each point gives the av-
erage value of these two quantities for a different dy-
namical system while it is in an entropic steady state
as determined by our code. Results are shown for DPS
and Non-DPS DALA states and η = 10−5 with 0.00761
in figure 13. As expected the points cluster around zero
on the y- (entropy growth rate) axis as the code selects
states in entropic steady state as explained in Appendix
B. For most values of p and η results like those in fig-
ures 13a and 13b for p = 0.00761 are seen so that, un-
like our previous results on single sites, the population of
many of the DPS states with exploding sites is exponen-
tially growing in time. Though exponential population
growth may suggest possibilities of evolutionary phenom-
ena within the model, it is not clear that these explosive
DPS states should be regarded as lifelike, as discussed
in the next section. We have not established that all of
the states with exponentially growing populations have
exploding sites. However, when we perform ensemble av-
erages on the states represented by points in figure 13, we
find that, on average, the DPS populations are growing
exponentially in time and the non-DPS populations are
not.

Combining these results, it is inferred that the DALA
which do not have exploding sites (Non-DPS states)
are similar to those seen in reference [4], where we
found a chemically non-equilibrated entropic steady state
and very little population growth. Many DALA states
have sites where the population has exploded and have
reached local chemical equilibrium, while many sites in
those states have low populations and nonequilibrium en-
tropies. The very small values of S/Sglobal,eq in those
states arise because the lattice is diffusively very far from
equilibrium.

Individual sites in the DALD states are closer to chem-
ical equilibrium than those in the DALA states, as ex-
pected. Detailed inspection of the temporal history of
several DALD states reveals sites with exploding popu-
lations as in the DALA states. The exploding sites in
DALD states appear much faster and grow at a slower
rate than those in the DALA states, so that the tem-
poral transition to a low entropy state is less sharp, as
illustrated in Figure 14.
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FIG. 7: The probabilities of forming the different lifelike states DALD (a), DDLA (b) and DALA (c) as well as the probability
of the system being generally lifelike (S/Sglobal,eq < 0.6) in (d) given a random network formed with parameter p and simulated
with hopping parameter η. (The sum of the values in (a), (b), and (c) yields (d).)

VII. DISCUSSION AND CONCLUSIONS

Extending our previous model by reproducing it on the
sites of a lattice and allowing diffusion of molecules be-
tween the sites, we have numerically explored the prob-
ability and nature of dynamical nonequilibrium states
as a function of the parameters p and η which respec-
tively control the chemical reaction and diffusion rates.
For large η we see results which are similar to those ob-
tained earlier [4] for single sites. For smaller η we dis-
tinguish nonequilibrium states which are partially equi-
librated with respect to chemical reactions but not diffu-
sion (DALD), with respect to diffusion but not chemical
reactions (DDLA), and with respect to those that are not
partially equilibrated in either sense (DALA). The fre-
quencies with which these different nonequilibrium states
appear in our numerical model of 8×8 sites on a square
lattice as a function of p and η is summarized in figure
7. DALD states appear rarely in a restricted range of p
at small η. DDLA states appear at larger η in a fash-
ion whose p dependence mirrors that found earlier for

single sites. These states appear to consist essentially of
reproductions of our previous results on all the sites.

The distribution and nature of the DALA states was
unexpectedly interesting. They occur with relatively
high frequency at p values, which are large enough to
drive most single sites to equilibrium, and at small η.
Exploring the nature of the DALA states in more de-
tail, we found that they fall broadly in two groups as
illustrated in the scatter plots in figure 5. The less inter-
esting group is qualitatively similar to the DDLA states,
and those states were classified as DALA only as a con-
sequence of our choice of cutoff for nonequilibrium states
in the definition of DALA. The more interesting group
is represented by the states scattered along a diagonal in
figure 5. As discussed and illustrated in figures 7 and 8,
they consist almost entirely of systems in which a small
fraction of the 64 sites have, suddenly on the Gillespie
real time scale, ’exploded’ in the sense that their popula-
tion has begun to grow exponentially in time while their
local entropy goes to equilibrium.

We find that the source of the material feeding these
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explosions comes from the local food source, which is
maintained at a fixed value in the simulation. It does
not necessarily arise from diffusion of particles from the
surrounding sites, which remain locally out of equilibrium
and lifelike by our previous single site criterion. There is
some evidence, not yet fully confirmed, that the explo-
sions are triggered by the diffusion of one or a few par-
ticles into the site which explodes. The triggering seems
to usually occur more than 105 reaction steps before the
explosion is fully developed. Running these simulations
further we usually find a series of population explosions,
separated by periods of steady state entropy. Each ex-
plosion causes a precipitous drop in the ratio of the total
local entropy to its fully equilibrated value associated
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FIG. 12: Probabilities of DALA states with a Disproportion-
ate Population Spread (DPS).

with the highly spatially heterogeneous nature of the re-
sulting state. Often, but not always, the explosions occur
at sites neighboring previously exploded sites, so that a
cluster of exploded sites develops. When the number of
exploded sites becomes very large, the entropy rises again
as the system becomes fully equilibrated both diffusively
and chemically as illustrated in figure 9.

To develop a statistical measure of the likelihood of
these ’exploding’ sites, we quantitatively characterized
a state with disproportionate population spread (DPS)
which distinguishes these states from DALA states which
are similar to DDLA states (that is spatially nearly ho-
mogeneous but out of chemical equilibrium) with results
shown in figure 11. The DPS states occur at small η and
large p with the indicated frequencies. They are expo-
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explosive systems for DALA states for p = 0.00761 and η =
10−5. In general the growth of the explosive systems had some
non-zero polymer population growth while the non-explosive
systems growth centered around zero. A similar, but less
clear, distinction was observed for other p values.

nentially growing in population while the ratio of their
global entropy to its equilibrium value remains nearly
constant as illustrated in figure 13.
It remains to determine what, if any, significance these

results may have for evaluating the probability that a set
of interacting spatially separated but diffusively coupled
chemical systems might evolve prebiotically to a recog-
nizable precursor of a biological system. Our previous
single site criterion for classifying a system as lifelike was
that a lifelike system should be dynamic and out of chem-
ical equilibrium. If we extend that definition of lifelike
to only require, in the spatially heterogeneous case, that
the system be out of global equilibrium, then the DPS
states which we have found certainly qualify as ’lifelike’.
On the other hand, looking in detail at the DPS states,
one sees that such a conclusion is intuitively somewhat
troubling: The ’exploding’ sites in DPS systems are lo-
cally near chemical equilibrium while their surroundings
are out of equilibrium. There are some hints of coop-
erativity in the sense that diffusion events may trigger
explosions, but cooperativity does not appear to be very
extensive. Qualitatively, the dynamics of these DPS sys-
tems is somewhat reminiscent of what is seen in growth
of biofilms [9] and in cancer [10] but it is unclear whether
such similarities are significant or not. The DPS states
appear to be at a kind of tipping point in which a small
perturbation of the local nonequilibrium state at each
site can trigger a sudden transition to a rapidly growing
state with nearly equilibrium entropy. Models of some
diseases, such as Alzheimer’s disease [11], with a qualita-
tively similar structure have been reported.
We will, in the future, further explore the nature of

these DPS systems, as well as the rare, but possibly more
biologically significant, DALD systems focusing particu-
lar attention on intersite correlations [4].
A technical issue which could alter features of the sta-

tistical distributions reported here is the definition of
’steady state’ we have used to select lifelike systems:

We have numerically assumed here that a system is in
steady state if its entropy has not changed significantly
for 105 reaction steps as explained in Appendix B. It
can be argued that it would be more natural to define
’steady state’ in terms of the Gillespie ’real’ time. In the
presence of ’exploding’ sites, the two measures of time
will differ significantly. The lifetime of the steady states
associated with DALA and DALD explosions is shorter
in ’real’ time, because large populations shorten ’real’
Gillespie time relative to reaction step time. We show
some results in Figure 15 which indicate that the use of
Gillespie time does reduce the probability of DALD and
DALA states. The effect for this example is a reduc-
tion of not more than about 20% in the probability and
the shape of the curves describing the dependence on η
is very similar to the one obtained using ’event time’ to
determine the existence of steady state as described in
Appendix B.

We made a few calculations in which we added dy-
namical constraint like the one used in reference [4] to
the criteria for selection of entropically steady states as
lifelike. We show a result in figure 16 which suggests that
the main effect of such dynamical constraints will be to
reduce the overall magnitude of the frequencies of oc-
curence of lifelike states without otherwise significantly
changing the parameter dependencies of those frequen-
cies. However this point merits further investigation be-
cause we have preliminary indications that the dynamical
nature of the entropically steady states changes signifi-
cantly with η.

Other issues that warrant additional exploration in-
clude the dependence of the observed phenomena on the
availability of food. In the present calculations, food at
each site was maintained externally at a fixed supply, and
this provision is one reason that the DPS sites could grow
without limit. For example we will explore a model in
which the total food supply in the entire system (but not
at every site) is held fixed. This will mean that the ex-
ploding sites must depend on their neighbors to sustain
their growth, which we would expect to have a significant
influence on these systems.
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(discretized) relation
∫ ωm
−ωm

|C(ω)dω|2
∫
∞

−∞
|C(ω)dω|2

= 1/2. Here ωc = 0.0002(2π/∆tave), is a parameter of the model and ∆tave is the average

Gillespie time step. C(ω) is the time fourier transform of C(τ ) = (1/Nst)
∑

t,l,i nl,i(t)nl,i(t+ τ ), where nl,i(t) is the number of
’polymer’ species l on site i at time t. Nst is the number of discrete time steps in the sum on t.

Appendix A: Dynamics Algorithm

For network generation the procedure described in Ap-
pendix A of [4] is used and the same network of reactions
is copied onto each site of the spatial lattice. The dynam-
ics algorithm is similar to that described in Appendix B
of the same reference, but is altered to take account of
spatial structure and diffusion. We assume that the rate
of diffusive hops per polymer is the same for all poly-
mers and in all directions and is parametrized by the
variable η, as described in more detail below. The dy-
namics routine makes use of the Gillespie algorithm [8]
which permits efficient stochastic simulation of the Mas-
ter equation 1 for the chemical dynamics on each site, as
was done in reference [4]. At the most microscopic level,
states in the system at each time step are characterized
by sets {nl,i} of polymer populations where l labels the
species and i labels the site. The algorithm proceeds as
follows:

(1) Choose a ’food set’ of initial polymer populations
on each site by randomly picking a fixed number (here
50) of monomers and dimers from the 6 available species
of those lengths. (Thus the initial distribution of food
species varies from site to site). During the simulation, if
the food population becomes less than 50 on a site, ran-
domly selected species from the six available food species
types are added to bring the number to 50.

(2) At each simulation time step, sum all the intrasite
chemical reaction rates possible in the lattice and denote

the result Asum where

Asum =
∑

sites





∑

Ligations

vl,l′,m,enlnl′ne +
∑

Scissions

vl,l′,m,enmne



 .

(A1)
Denote the hopping rate per polymer by D and the total
population of polymers N . Draw a random number r
evenly distributed between 0 and 1. If

r >
Asum

(Asum +DN)
, (A2)

then perform a diffusive hop by selecting a site and a
polymer resident on it, and moving this polymer to a
randomly selected neighboring site. Otherwise, select an
onsite reaction with a probability indicated by the master
equation, and adjust numbers {nl,i} to take account of
the associated ligation or scission reaction, as in reference
[4]. The ’real’ (Gillespie) time elapsed for the step is
computed by drawing a random number generated from
an exponential distribution with mean Asum + DN , as
described in [8]. The parameter η used in the main text
is related to D as D = η

1−η
. For the very small η values

used here, η is very close to D and may be regarded as
the fixed reaction rate of diffusion per molecule.
(3) Calculate the total number of polymers on each site

(Ni). If Ni exceeds a target NSite Max (fixed at the outset
to be 1000), then choose polymers at random within the
site and remove them until the number is less than or
equal to NSite Max.
(4) Return to (2).
As a check on the interpretation of η described in step

2, we show simulation data in which the simulated num-
ber of diffusive hops per the ’real’ (Gillespie) time as
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FIG. 17: Hopping Rate vs the Diffusion Coefficient. The
dotted curve is a linear function to guide the eye.

described above are plotted versus η/(1− η) in figure 17.
The relationship is linear and p-independent as expected.

Appendix B: Steady State Detection

Because the systems considered here reached entropic
steady state slowly on computational time scales, we
found it convenient to implement a routine that acted
’on the fly’ to check when an entropic steady state was
realized during simulation. This was done so that we
would continue to run systems which reach steady state
entropic values slowly but could end computations early
in the simulation time for states that had reached en-
tropic steady state quickly. This saved computational
resources and assured that all reported data was for
systems in entropic steady state. After 106 simulation
steps the code kept a running record of the values of
S({NL,i})/Sglobal,eq(N) every 10 steps over subsequent
105 simulation step intervals. At the end of each inter-
val, a linear least squares fit of those data was performed
[12] and a slope estimate (β) and its error (σβ) were cal-
culated. If the ratio |β|/σβ < 3, then the system was
judged to be in an entropic steady state and the simula-
tion of that realization of the model was stopped. The
data from its steady state behavior was then included in
the analysis described in the text.

Appendix C: Configurational Entropy

As in reference [4], at the most coarse grained level,
we consider the configurational entropy associated with

a state described only by by the number of polymers NL

of each length L not in the food set. In the model there
are 2L possible polymer species of length L, which could
be at any of the M sites. The number of microscopic
states associated with this coarse grained description is

Wglobal({NL}) =
∏

L

∑

∑
i NL,i=NL

M
∏

i=1

(

NL,i + 2L − 1

NL,i

)

,

(C1)
where NL,i is the number of polymers of length L at site

i, and we have used the binomial notation
(

n
k

)

= n!
k!(n−k)! .

The binomial counts the possible species configurations
of length L there could be at site i, and the product over
i and the restrictive sum (

∑

i NL,i = NL) counts how
many ways the number of polymers of length L (NL)
could be distributed over the lattice. Lastly the prod-
uct over L accounts for every polymer length. We derive
equation 3 for Wglobal by use of the negated upper index
rule for binomials [13] and a generalization of Vander-
monde’s Identity [14] which are respectively:

(

n

k

)

= (−1)k
(

k − n− 1

k

)

, (C2)

∑

∑
k
j=1 ij=m

k
∏

j=1

(

nj

ij

)

=

(∑k

j=1 nj

m

)

. (C3)

Applying these identities and manipulating the expres-
sion for Wglobal({NL}) yields expressions containing bi-
nomials with negative upper indices. These, however,
appear as ratios of the form (−n)!/(−m)! and can be
evaluated to give a real finite result as a limit of the ratio

of gamma functions (limz→0
Γ(z−n)
Γ(z−m) = m!

n! (−1)n−m, for

positive integers n,m where Γ is the gamma function.)
This results is the following form for Wglobal:

Wglobal({NL}) =
∏

L

(

NL +M2L − 1

NL

)

, (C4)

establishing equation 3. Equation 3 can also be derived
by a counting argument closely similar to the one used
in reference [4] considering the ways of distributing NL

polymers and 2LM − 1 walls (M − 1 site walls and 2L −
1 species walls at every site, see also [15]). Numerical
quantities computed from equations C1 and C4 were also
found to be equivalent.
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