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The sporadic nature of gene expression at the single cell level - long periods of inactivity punc-
tuated by bursts of mRNA/protein production - plays a critical role in diverse cellular processes.
To elucidate the cellular role of bursting in gene expression, synthetic biology approaches have been
used to design simple genetic circuits with bursty mRNA/protein production. Understanding how
such genetic circuits can be designed with the ability to control burst-related parameters requires the
development of quantitative stochastic models of gene expression. In this work, we analyze stochas-
tic models for the regulation of gene expression bursts by strongly interacting small RNAs (sRNAs).
For the parameter range considered, results based on mean-field approaches are significantly inaccu-
rate and alternative analytical approaches are needed. Using simplifying approximations, we obtain
analytical results for the corresponding steady-state distributions that are in agreement with results
from stochastic simulations. These results indicate that regulation by small RNAs, in the strong
interaction limit, can be used to effectively modulate the frequency of bursting. We explore the
consequences of such regulation for simple genetic circuits involving feedback effects and switching
between promoter states.

PACS numbers: 87.10.Mn, 02.50.r, 87.17.Aa

I. INTRODUCTION

The stochastic nature of biochemical reactions in com-
bination with small numbers of reacting molecules often
leads to large fluctuations (noise) in the process of gene
expression [1–8]. At the single-cell level, experimental
observations reveal that mRNAs are often produced in
bursts [9–11], characterized by long periods of inactivity
punctuated by significantly shorter periods of transcrip-
tional activity leading to creation of mRNAs [12]. Fur-
thermore, since mRNAs are typically short-lived relative
to proteins, the production of proteins is also expected to
occur in bursts; as indeed observed in multiple single-cell
experiments [13, 14]. Several studies have shown that
bursting in gene expression plays a critical role in di-
verse cell-fate decisions ranging from viral latency [15]
to cellular stress responses[16]. These observations have
highlighted the need for understanding molecular mech-
anisms for the control of bursting in gene expression and
for analyzing the consequences of such control in cellular
genetic circuits.

Recent work has demonstrated that synthetic biology
approaches can be used to develop simple genetic cir-
cuits that provide novel insights into the functioning of
more complex cellular circuits found in nature [5, 17, 18].
In particular, analysis of these circuits at the single-cell
level can elucidate how different sources of noise in gene
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expression contribute to observed variability at the pop-
ulation level. Furthermore, by appropriately designing
components of the synthetic genetic circuit, the sources
of noise such as bursting can be regulated and the im-
pact of this regulation on the functioning of downstream
circuits can be analyzed. A quantitative understanding
of such molecular mechanisms to control and to exploit
noise in gene expression can lead to both fundamental
insights into cellular processes and to novel applications
using synthetic genetic circuits.

Typically, synthetic biology research involving control
of gene expression has focused on its regulation by pro-
teins such as transcription factors; however in recent
years there has been growing interest in characterizing
and utilizing regulation by non-coding small RNAs (sR-
NAs). Regulation by sRNAs is known to play a key
role in diverse cellular processes [19, 20] ranging from re-
sponses to stress [21] to virulence gene expression [22–25],
whereas dysregulation of and by sRNAs is implicated in
several diseases including cancer [26, 27]. Furthermore,
it has been proposed that sRNAs play key roles in canal-
ization during development by acting to buffer noise in
gene expression [28, 29]. Approaches using synthetic bi-
ology have demonstrated the ability of sRNA based cir-
cuits to buffer protein synthesis rates [30] and to generate
thresholds in target gene expression [31, 32]. These de-
velopments have highlighted the need for development of
theoretical approaches that guide and complement exper-
imental efforts to elucidate the impact of noise regulation
by sRNAs in simple genetic circuits.

Previous work has led to the development of theo-
retical models for regulation by sRNAs. In particular,
the canonical model [33] predicted that sRNAs generate
thresholds in target gene expression as observed in recent
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experiments [31]. It should be noted though that this
analysis is based on a mean-field approach that does not
take into account bursting in gene expression. While ap-
proaches that take bursting into account have been devel-
oped, they are typically based on the linear noise approx-
imation [34], which is effectively an expansion around
mean-field results. However, it has been shown that in
the limit of infrequent transcription events and strong
mRNA-sRNA interactions, mean-field results are not ac-
curate [35]. In this limit, the role of sRNAs in regulating
noise in gene expression is not well understood and alter-
native analytical approaches are needed.

In this work, we analyze the interplay between burst-
ing in gene expression and its regulation by sRNAs in
the limit of strong interactions and infrequent bursting.
The key factors that are problematic for mean-field ap-
proaches (bursting and strong interactions) can be used
to develop simplifying assumptions that lead to new an-
alytical results in these limits. In the parameter regime
analyzed, we find that regulation by sRNAs can be used
to effectively modulate the frequency of bursting. Such
frequency modulation of protein bursts (FMPB) can po-
tentially play an important role in cellular processes[36],
as seen in the activation of Crz1 transcription factor in
yeast wherein the frequency of Crz1 bursts was shown to
be regulated by extracellular calcium concentration [37].
In combination with synthetic biology based approaches,
the results obtained can be used to gain new insights

into the potential roles as well as functional capabilities
of stochastic gene expression circuits involving sRNAs.

II. MODEL

We consider the canonical model [33] of mRNA-sRNA
interactions generalized to allow for mRNA production
in bursts. A schematic representation of the model is
shown in Fig. 1. We assume that mRNA bursts arrive at
a constant rate km and that each burst results in the pro-
duction of a geometrically distributed number of mRNAs
with mean burst size 〈mb〉, consistent with experimental
observations [9–11]. The production of sRNAs is taken to
be a Poisson process occurring with rate ks. The degra-
dation of mRNAs and sRNAs can occur in two ways:
individual degradation wherein mRNAs(sRNAs) degrade
with rate µm(µs), and mutual-degradation wherein a sin-
gle mRNA and a single sRNA jointly degrade with rate
γ. Translation of proteins from surviving mRNA occurs
with rate kp and protein degradation occurs with rate
µp. The stochastic dynamics of the system is governed
by the Master equation which describes the evolution of
the joint probability distribution P (s,m, p, t), wherein s,
m, and p denote the number of sRNAs, mRNAs and pro-
teins respectively, at time t.

∂P (s,m, p, t)

∂t
= km

m∑
n=1

Pmb(n)P (s,m− n, p, t) + µm(m+ 1)P (s,m+ 1, p, t) + µs(s+ 1)P (s+ 1,m, p, t)

+ γ(s+ 1)(m+ 1)P (s+ 1,m+ 1, p, t) + ksP (s− 1,m, p, t) + kpmP (s,m, p− 1, t) + µp(p+ 1)P (s,m, p+ 1, t)

− (km + ks + kpm+ µmm+ µss+ γms+ µpp)P (s,m, p, t), (1)

where Pmb(n) is the probability of producing n mRNA
molecules in a geometrically distributed transcriptional
burst (conditioned on the production of at least one
mRNA) and is given by

Pmb(n) = (1− qm)n−1qm, (2)

with parameter qm such that the mean burst size is

〈mb〉 =
1

qm
.

The different terms on the right hand side of Eq. (1)
correspond to either transitions from other states to the
state (s,m, p) or transition from the state (s,m, p) to
other possible states. For example, the first term cor-
responds to transition to the state (s,m, p) from other
states due to production of geometrically distributed ran-
dom number of mRNAs in a burst. In order to explore

the impact of sRNA regulation on the steady-state dis-
tribution of proteins, we need to solve Eq.(1) in the long-
time limit. However, the nonlinear term associated with
interaction parameter γ makes the solution analytically
intractable. The nonlinear term results in the equations
for lower moments getting coupled to equations for higher
moments. For example, multiplying Eq. (1) by m, s
and p and summing over all possible values results in
the rate equations for the corresponding mean values,

〈j〉 =
∑
m,s,p

jP (s,m, p, t), j = m, s, p:

∂〈m〉
∂t

= km〈mb〉 − µm〈m〉 − γ〈ms〉,
∂〈s〉
∂t

= ks − µs〈s〉 − γ〈ms〉,
∂〈p〉
∂t

= kp〈m〉 − µp〈p〉, (3)
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FIG. 1: Schematic representation of the model. Bursty syn-
thesis of mRNAs is shown by Green lines, blue hexagons rep-
resent proteins, and red circles denote sRNA.

where 〈.〉 represents the ensemble average over different
realizations of the stochastic process. The above equa-
tions show that the evolution of mean mRNA or sRNA
levels are coupled due to the nonlinear term γ〈ms〉. This
term, which appears due to sRNA-mRNA interactions,
can be interpreted as the mean rate for coupled degra-
dation of mRNAs and sRNAs. Furthermore, we can see
that these equations are not closed and correspondingly
obtaining exact expressions for even the mean steady-
state levels of proteins and mRNAs is currently an open
problem.

The correlation between mRNA and sRNA levels at
any time t is given by C = 〈ms〉 − 〈m〉〈s〉. A commonly-
used approximation to solve Eq. (3) is to use the mean-
field approach [33] which corresponds to assuming C = 0
i.e. 〈ms〉 = 〈m〉〈s〉. In the steady-state, it is straight-
forward to obtain the solution of Eq. (3) using this ap-
proximation. The mean-field solution, which is exact in
the absence of mRNA-sRNA interactions (i.e. γ = 0),
can serve as a reasonable approximation for low γ val-
ues. However, as γ increases, the interactions between
sRNAs and mRNAs are expected to lead to significant
deviations from the approximation (C = 0) used to ob-
tain mean field results. To get further insight, let us
introduce the following dimensionless quantities:

x =
〈m〉

km(〈mb〉/µm)
, y =

〈s〉
ks/µs

, z =
〈p〉

(kmkp〈mb〉)/(µmµp)
,

ε1 =
γks
µmµs

, ε2 =
γkm〈mb〉
µmµs

.

In the steady-state, using these dimensionless quantities,
Eq. (3) reduces to

x+ ε1xy = 1,

y + ε2xy = 1,

z = x. (4)
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FIG. 2: Comparison of mean-field predictions with results
from stochastic simulations. The figure shows variation of
〈ps〉/〈p̃s〉 with nsqm, where qm = 1/〈mb〉 and 〈mb〉 is the
mean burst size. 〈p̃s〉 = (kmkp〈mb〉)/(µmµp) is the unregu-
lated steady-state protein level and ns = ks/µs is the mean
sRNA level in the absence of interaction with mRNAs. Lines
are results from the mean field predictions for three different
values of µs: nsqm is varied by changing qm, and the other
parameters are fixed at km = 0.001, µm = 1, kp = 50, µp =
0.01, ks = 0.1 and γ = 10. Corresponding simulation results
are shown as points.

The above set of equations can be solved to obtain the
mean-field predictions for mean steady-state protein lev-
els. Fig. 2 compares the mean-field predictions with the
results from stochastic simulations for the variation in
(scaled) steady-state protein levels as the mean burst size
is varied. As can be seen in the figure, the mean-field
predictions for the crossover behavior, i.e. the transition
from suppression to expression in the mean protein levels,
is highly inaccurate. In the parameter range considered,
results from simulations show a sharp transition which is
not reproduced by the mean-field analysis. Furthermore,
the simulation data for different values of µs collapse onto
a single curve when plotted using the scaled variables,
another feature that is not reproduced by the mean-field
analysis. In the next section, we develop an analytical
approach based on simplifying assumptions that explains
these features emerging from stochastic simulations.

III. FREQUENCY MODULATION OF PROTEIN
BURSTS(FMPB) IN THE LIMIT OF STRONG

INTERACTIONS AND INFREQUENT
BURSTING

As noted in the previous section, in the limit of in-
frequent bursting and strong mRNA-sRNA interactions,
results from mean-field approaches are significantly in-
accurate and cannot serve as a guide for analyzing the
quantitative or even the qualitative behavior of the cor-
responding genetic circuits. Since synthetic genetic cir-
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cuits can be designed to operate in the limiting cases
considered, it is of interest to explore if qualitatively new
features arise when considering regulation of bursty gene
expression by sRNAs in these limits. As noted, an exact
solution of the master equation is intractable and there-
fore we need to consider simplifying assumptions.

In the limit that the mRNA degradation rate is much
higher than the protein degradation rate (µm � µp),
which is generally a valid assumption, the protein dy-
namics can be decoupled from mRNAs using the bursty
synthesis approximation [38? , 39]. The approximation
proceeds in two steps: 1) First obtain the protein burst
distribution; this is the distribution of proteins produced
from a single mRNA. 2) Assume that the protein burst is
produced instantaneously, i.e. each burst arrival results
in the instantaneous creation of proteins drawn from the
burst distribution. In the absence of sRNA-based regula-
tion, using this approximation leads to a master equation
governing the evolution of proteins alone [38]. Notably,
the derived equation can be solved to obtain an analyti-
cal expression for the steady-state distribution of proteins
for arbitrary protein burst distributions [39].

We now focus on the limits of infrequent transcription
and strong mRNA-sRNA interactions and make the fol-
lowing simplifying assumptions.

1) The limit of infrequent transcription implies that
the arrival rate of mRNA bursts is small compared to
the mRNA degradation rate. In this limit, mRNAs are
degraded rapidly (either by natural or coupled degrada-
tion) after being created in transcriptional burst, follow-
ing which there is typically a long time period wherein
no mRNAs are present in the cell. Furthermore, we note
that sRNAs and mRNAs can interact only during a tran-
scriptional burst, i.e. the short time-scale over which the
mRNAs are created and subsequently degraded. Since
the interaction between mRNAs and sRNAs occurs only
during a transcriptional burst, in the time interval be-
tween two consecutive mRNA transcriptional bursts, the
evolution of sRNAs follows a simple birth-death process.
In the limit of infrequent transcription, the mean time be-
tween consecutive mRNA bursts is large relative to the
relaxation time for sRNA dynamics (i.e. km � µs). Cor-
respondingly, we assume that sRNA distribution prior
to the arrival of the mRNA burst can be taken to be
the steady-state distribution of sRNAs in the absence of
mRNAs. For the model considered, this corresponds to
the Poisson distribution, ρ(s) = (nss/s!)e

−ns , with mean
sRNA level given by ns = ks/µs.

2) To explore the domain of strong mRNA-sRNA inter-
actions, we consider the limit γ/µm →∞. This assump-
tion implies that the effect of regulation by sRNAs is an
instant modification of the mRNA burst distribution (see
below).

3) Finally we assume that the sRNA transcription rate
is such that we can neglect synthesis of new sRNAs dur-
ing a mRNA burst.

Using these assumptions, we derive analytical expres-
sions for the corresponding steady-state protein distribu-

tions which provide insights into the role of sRNA-based
regulation in these limits. The results obtained are in
good agreement with results from exact stochastic sim-
ulations for the model considered and for simple genetic
circuits building on the basic model in Fig. 1.

Let us begin by analyzing how the mRNA burst dis-
tribution is modified due to interaction with sRNAs.
Based on assumption 2 noted above, mRNAs and sR-
NAs are degraded instantaneously, with only the RNA
molecules present in greater numbers surviving. If the
number of mRNAs (m) in a transcriptional burst is less
than or equal to that of sRNAs (s) at the beginning of
transcription, all mRNAs are co-degraded with sRNA,
and therefore no mRNA is left for translation. Pro-
teins are expressed only when m > s, out of m mRNAs
only the remaining m − s mRNAs proceed for transla-
tion into proteins, as if there is no regulation by sRNA.
We define Gpb(z) =

∑
n z

nPpb(n) as the generating func-
tion of the protein burst distribution (including con-
tributions from all mRNAs created in the burst) and
G′pb(z) =

∑
n z

nP ′pb(n) as the generating function of pro-
tein burst distribution from a single mRNA. Correspond-
ingly, we obtain

Gpb(z) =
∑
s,m

(
P (m ≤ s) + P (m > s)(G′pb(z))

m−s
)
. (5)

Denoting the mRNA burst distribution by Pmb(m), the
above equation can be recast as

Gpb(z) =

∞∑
i=j

∞∑
j=1

ρ(i)Pmb(j)+

∞∑
i=0

∞∑
j=1

ρ(i)Pmb(i+j)G
′ j
pb (z).

(6)
Using Eq. (2) in the above equation leads to

Gpb(z) = 1−
∞∑
i=0

(1− qm)iρ(i)

∞∑
j=1

qm(1− qm)j−1

+

∞∑
i=0

(1− qm)iρ(i)

∞∑
j=1

qm(1− qm)j−1G′ jpb (z)

= 1− e−nsqm + e−nsqm
qmG

′
pb(z)

1−G′pb(z)(1− qm)
.(7)

Note that the generating function for the protein burst
distribution without regulation (ns = 0) can be expressed
as [40]

G̃pb(z) =
qmG

′
pb(z)

1−G′pb(z)(1− qm)
, (8)

where

G′pb(z) = 1/(1 +
kp
µm

(1− z)).

Correspondingly, the protein burst distribution (arising
from all the mRNAs in the burst) can be expressed as

Gpb(z) = 1− e−nsqm + e−nsqmG̃pb(z). (9)
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FIG. 3: Exponential suppression of protein levels due to
sRNA regulation and its dependence on interaction strength
γ: Scaled mean steady-state protein levels (〈ps〉/〈p̃s〉) as a
function of nsqm is plotted, 〈p̃s〉 is the unregulated steady-
state protein level. Points are simulation results for three dif-
ferent values of γ and the line represents analytic result using
Eq. (10). Other parameters are: km = 0.001, µm = 1, kp =
50, µp = 0.01, ks = 0.1, µs = 0.01 and nsqm was varied by
changing qm.

The above result for Gpb(z) has several interesting fea-
tures. First, note that the probability that 1 or more mR-
NAs in the burst survive after the interaction with the
sRNAs is given by e−nsqm . This indicates that a key pa-
rameter controlling whether proteins are expressed dur-
ing a transcriptional burst is nsqm, i.e. the ratio ns/〈mb〉:
the probability of protein expression during a burst de-
creases exponentially with increasing ns/〈mb〉. This fea-
ture (exponential dependence on the ratio ns/〈mb〉) is
reflected in the results from exact stochastic simulations
seen in Fig. 3 and the result derived thus identifies the
underlying mechanism. Furthermore, it indicates that,
conditional on 1 or more burst mRNAs surviving after
the interaction with sRNAs, the regulated burst distri-
bution is identical to the unregulated protein burst dis-
tribution. This implies that the effect of regulation by
sRNAs (in the limit γ/µm →∞) is to simply renormalize
the rate of arrival of protein bursts, since the burst dis-
tribution (conditional on mRNA survival) is unchanged.
If km denotes the rate of arrival of protein bursts in the
unregulated case, then in the regulated case, this rate
is renormalized to kme

−nsqm and all other parameters
remain effectively unchanged.

The arguments made above can be verified by explic-
itly deriving an expression for the protein steady-state
distribution. Using previously derived results [39], we
obtain that the protein steady-state distribution for the
regulated case is given by (see Appendix A):

Gs(z) =

(
1 +

kp
qmµm

(1− z)
)− kmµp exp(−nsqm)

, (10)

which is the generating function for a negative binomial
distribution. Note that the steady-state distribution for

the unregulated case (ns = 0) is also a negative binomial
distribution; the result of sRNA regulation is a rescal-
ing of the burst frequency by the factor exp(−nsqm),
i.e. km → km exp(−nsqm). Thus, regulation by sRNAs,
in this strongly interacting limit, gives rise to frequency
modulation of protein bursts (FMPB). Further, using Eq.
(10) we obtain the steady-state expression for mean pro-
tein level as

〈ps〉 = G′s(1) = e−nsqm〈p̃s〉,
(11)

where prime (′) denotes differentiation of Gs(z) w.r.t z
at z = 1 and 〈p̃s〉 is the mean value in the absence of
regulation i.e. 〈p̃s〉 = (kmkp)/(qmµmµp). Thus, the ob-
served frequency modulation of protein bursts leads to
exponential suppression of mean protein levels with in-
creasing mean sRNA levels. Note that, while these fea-
tures were derived considering the limit γ/µm → ∞, re-
sults from simulations indicate that the limiting case is
a good approximation for interaction strengths as low as
γ/µm = 10 (Fig. 3)

While the above result focuses on the specific case of
regulation by sRNAs, the derivation clarifies that fre-
quency modulation of bursts is a general feature that
arises when we have: 1) geometric mRNA bursts and 2)
a regulatory mechanism that results in preventing pro-
tein expression from some (or all) of the burst mRNAs.
The main assumption is that the regulatory mechanism
draws from the same distribution (for inactivation of mR-
NAs) for each burst and that each burst can be treated
independently. Correspondingly, the key quantity is the
probability Ps that 1 or more burst mRNAs survive the
regulatory mechanism; for the model considered in Fig.
1 we have Ps = exp(−nsqm). For more general models,
following the steps outlined in the derivation given above
shows that the result of the regulatory mechanism is that
the burst frequency is modulated as km → kmPs. Thus
the approach developed also provides insights into how
general mechanisms for frequency modulation of bursts
can be achieved.

IV. APPLICATIONS TO SIMPLE GENETIC
CIRCUITS

In the following, we consider potential applications of
the features noted, namely, exponential suppression and
frequency modulation of protein bursts, in simple genetic
circuits involving small RNAs.
(1) Suppression of bursts due to leakage: A po-
tential application of the preceding results for sRNA-
mediated regulation is filtering noise from a transcrip-
tional signal that is composed of bursts of widely differ-
ent burst sizes. A typical situation is that response to
a signal (e.g. binding of a transcription factor) leads to
mRNA bursts with high mean burst size; however bursts
with much lower mean burst size can also occur in the
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FIG. 4: Leakage suppression due to strong sRNA-mRNA in-
teraction: In (a), kinetic scheme for the bursty production of
mRNAs from the two-states of a promoter. In (b), simulation
results for the steady-state probability distribution of proteins
for such kinetic scheme are shown for the no-regulation cased
γ = 0 (dashed line) and for γ = 10 (solid line) with other
parameters as: α = 0.003, β = 0.001, km0 = km1 = 0.01,
qm0 = 1, qm1 = 0.01, µm = 0.5, kp = 0.01, µp = 0.0005,
ks = 1 and µs = 0.1. Points correspond to the steady-state
protein distribution for the case when mRNAs are produced
only from state 1 (i.e. km0 = 0) with γ = 10 and keeping all
the other parameters same.

absence of a signal, also known as leakage [41]. If the two
mean burst sizes are widely separated, then, by appro-
priate tuning of the mean levels of sRNA regulator, the
bursts due to leakage can be exponentially suppressed,
whereas the bursts due to the signal will be minimally
affected.

To exemplify the preceding scheme for filtering bursts
due to leakage, we consider a kinetic scheme that takes
into account promoter fluctuations (Fig. 4a). As indi-
cated, the promoter has two states which are denoted by
1 and 0. The rate of promoter transition from state 0 to
state 1 is denoted by α whereas the rate from 1 to 0 is
denoted by β. Both states 0(1) generate transcriptional
bursts with rates km0(km1), which are again geometri-
cally distributed, but with different mean sizes charac-
terized by mb0(mb1). Further, let us take mb1 � mb0, i.e
state 1 produces bursts of much larger mean burst size.
In this case, the results derived indicate that by tuning
the mean sRNA levels (ns) such that mb0 � ns � mb1,
the bursts due to leakage from state 0 will be exponen-
tially suppressed, whereas the the bursts from state 1 will
be minimally affected.

To test this prediction, we carried out stochastic simu-
lations for the genetic circuit shown in Fig. 4. As can be
seen in Fig. 4b, when γ is large, the steady-state proba-
bility distribution of proteins of the model where bursts
are generated only from the state 1, i.e. km0 = 0, is in-
distinguishable from the case where both states produce
bursts with mb0 � ns � mb1. This implies that regula-
tion by sRNAs has effectively suppressed expression from
promoter state 0 (with burst size less than ns) while min-
imally impacting expression from promoter state 1 (with
burst size greater than ns).
(2) Modulation of promoter switching in a posi-
tive feedback circuit: Switching between different pro-
moter states can be a significant source of noise in gene
expression [7]. In some cases, switching rates between dif-
ferent promoter states are driven by feedback due to the
fluctuating levels of proteins expressed from the promoter
[15, 42–44]. The switching induced by such feedback
mechanisms can act to either enhance (positive feedback)
or reduce (negative feedback) overall protein production.
An important example is the well-studied genetic circuit
involved in HIV-1 viral infections, wherein Tat proteins
enhance their own production through a positive feed-
back mechanism [15]. Given the importance of bursting
and feedback in diverse systems, it is of interest to ana-
lyze the impact of adding sRNA-based regulation to such
genetic circuits.

We consider the gene expression model outlined in
Fig.5a, with two promoter states denoted 0 and 1. The
rate of switching from 0 to 1 has two contributions: first,
a spontaneous switching rate α, and second, a feedback
rate proportional to the number of proteins: α̃p. The lin-
ear dependence of the feedback term is consistent with
experimental observations for the genetic circuit in HIV-
1 viral infections [15]. The rate of switching from 1 to 0
is denoted by β. The state 0(1) produces geometrically
distributed mRNA bursts (with parameter qm0(qm1)) at
rate km0(km1). As in the model shown in Fig. 1, each
mRNA created in the burst then degrades either due to
self-degradation with rate µm or due to the interaction
with a sRNA with rate γ. mRNAs that survive the in-
teraction with sRNAs are translated with rate kp into
proteins that degrade with rate µp. In the bursty pro-
tein synthesis limit, this corresponds to the creation of
geometrically distributed protein bursts with mean burst

size 〈pb0〉 =
kp

qm0µm
(〈pb1〉 =

kp
qm1µm

).

The stochastic evolution of the system is encapsulated
by the Master equation for P (σ, s,m, p), where σ = 0, 1
denotes distinct promoter states. While the exact so-
lution of the Master equation appears to be intractable
due to the presence of nonlinear interaction terms, ap-
proximate analytical insights can be gained by applying
the results derived in combination with recently obtained
exact results for a stochastic gene expression model with
bursting and feedback [42].

Our preceding results for large γ suggest that the ef-
fect of regulation by sRNAs can be captured in the
model without sRNAs (i.e. γ = 0) by rescaling the
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FIG. 5: Effects of strong sRNA-mRNA interaction on the
effective promoter switching rate in a model with feedback
shown in (a). In (b), simulation results for the probability
distribution of proteins in the steady-state has been shown
(line) for α = 0.003, α̃ = 0.1, β = 0.001, km0 = 0.01,
km1 = 0.05, qm0 = 1, qm1 = 0.01, kp = 0.05, ks = 1,
µm = 0.5, µp = 0.005, µs = 0.1 and γ = 10. Solid circles
correspond to the effective/reduced model with γ = 0 but
with kmi scaled by the factor exp(−nsqmi), i = 0, 1. c) Vari-
ation of the ratio of effective switching rate in the presence of
sRNAs, αeff (ns), to that in the absence of sRNAs, αeff (0),
with ns for different values of qm1, 0.1 (solid), 0.05 (dashed),
0.02 (dotted). d) Variation of the ratio αeff (ns)/αeff (0) as
a function of qm1 for three different values of ns, 5 (solid),
10 (dashed), 20 (dotted). In both c) and d) other parameters
are: α = 0.003, α̃ = 0.1, β = 0.001, km0 = 0, km1 = 0.05,
kp = 0.05, µm = 0.5, µp = 0.005 and γ = 10.

rates km0 and km1 as: km0 → km0 exp(−nsqm0) and
km1 → km1 exp(−nsqm1). As shown in Fig. 5b, in
the limit of large γ, the steady-state protein distribution
matches reasonably well with the corresponding distribu-
tion for a model with γ = 0 but km0 and km1 scaled by
the exponential factors.

Let us consider the above circuit with km0 = 0. The
reduced model replaces the sRNAs with a rescaling of
the the rate km1; correspondingly the Master equation is
given by:

∂tP0,p = µp(p+ 1)P0,p+1 + βP1,p − [α+ α̃p+ µpp]P0,p,

∂tP1,p = km1 exp(−nsqm1)

p∑
n=0

g(n)P1,p−n

+ µp(p+ 1)P1,p+1 + (α+ α̃p)P0,p

− [km1 exp(−nsqm1) + β + µpp]P1,p,

(12)

where

g(n) = 〈pb〉n/(1 + 〈pb〉)n+1

with 〈pb〉 =
kp

qm1µm
is the protein burst distribution. Fol-

lowing [42], an expression for the steady-state mean pro-
tein level, 〈ps〉, and higher moments can be derived (see
Appendix B). The results obtained can thus be used to
determine the mean sRNA levels needed for adjusting the
mean protein output of the genetic circuit to a desired
level.

Besides the mean protein levels, we can also study how
sRNAs can be used to tune the mean switching rate be-
tween promoter states. In the previous work [42], we
have shown how to derive an effective model (with no
feedback) characterized by a constant rate αeff that is
a good approximation to the original model with feed-
back. The effective switching rate αeff is determined by
the condition that the mean switching rate in both the
effective and original models are identical (keeping the
other parameters fixed). Correspondingly the expression
for effective switching rate from the state 0 to 1 can be
written as [42]

αeff =
〈ps〉µpβ

km1 exp(−nsqm1)〈pb〉 − 〈ps〉µp
, (13)

Using 〈ps〉 from Eq. (B2) in this expression, we study
the effects of adjusting sRNA levels on the switching rate
from the state 0 to 1. In Fig. 5c we have shown the vari-
ation of this effective rate with ns. As can be seen, by
increasing the number of sRNAs for a given value of qm1,
this rate decreases monotonically. However, we notice
that for a given ns the rate shows non-monotonic varia-
tion with qm1 and there is a critical value of qm1 where
the switching rate is minimum (Fig.5d). Thus controlling
the mean levels of sRNAs can be used to effectively tune
different properties of the feedback circuit such as mean
protein levels and switching rates.
(3) Effects of FMPB on a simple two-state switch:
Many important cellular systems can be represented by
a simple two-state switch, with switching dynamics con-
trolled by upstream signals. A classic example is the
switching between run and tumble states in bacterial
chemotaxis [45–49], where binding of an upstream regu-
lator (CheY-P) to the flagellar motor induces a transition
in the flagellar motor to a state with clockwise rotation
(leading to tumbling) from a state with counter-clockwise
rotation (leading to smooth runs).

Regulation of switching in a two-state system due to a
fluctuating upstream regulator has been studied recently
to analyze how upstream noise affects switching statis-
tics [42, 49]. Considering an upstream noise source that
is produced in bursts, it is of interest to analyze how fre-
quency modulation of protein bursts (FMPB) by sRNAs
can be used to tune noise in switching statistics.

A schematic representation of a two-state switch driven
by an upstream regulatory protein that is created in ge-
ometric bursts is shown in Fig. 6a, with pb as the mean
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FIG. 6: Effects of burst frequency modulation due to sRNA
regulation on a simple two-state switch. In (a), schematic
figure showing a bursty input signal characterized by its mean
burst size 〈pb〉 and modulated burst frequency due to strong
sRNA interaction km → km exp(−nsqm). (b) Variance of the
switch is plotted as a function of ns for three different value
of 〈pb〉, 10 (blue), 20(red), 30 (green). Other parameters are:
α̃ = β = µp = km = 1.

burst size and km as the constant rate of arrival of bursts.
The two states of the switch are represented by 0 and 1.
Switching from state 0 to state 1 is driven by the up-
stream regulator, with rate α̃p (where p denotes protein
number), whereas state 1 switches to state 0 with rate β.

We now note that the above kinetic scheme can be
seen as a special case of the model shown in Fig. 5a
[42]. Consider the special case qm0 = qm1 = qm and
km0 = km1 = km such that both promoter states produce
geometrically distributed protein bursts of mean burst

size 〈pb〉 =
kp

qmµm
with equal rate km. In this case, pro-

tein production is independent of promoter state, thus
we have geometric protein bursts (with mean 〈pb〉) ar-
riving with constant rate km. Thus the kinetic scheme
represents a two-state switch driven by a bursty input
noise having mean size 〈pb〉 and burst arrival rate km.

Following [42] and scaling km as km→ km exp(−nsqm),
the steady-state probability that switch is in the state 0,
P0, is given as

P0 = C2F1[u+ 1, 1, u+ 2− w, 1− φ], (14)

where

C =
φβ

β + km exp(−nsqm)α̃〈pb〉
µp+α̃(1+〈pb〉)

,

2F1 is the Gaussian Hypergeometric function, and the
quantities u, w and φ are given as

u =
β − α̃km exp(−nsqm)/µp

µp + α̃
,

w =
µp + α̃(1 + 〈pb〉)(1− km exp(−nsqm)/µp)

µp + α̃(1 + 〈pb〉)
,

φ =
µp + α̃

µp + α̃+ 〈pb〉α̃
. (15)

Using Eqs. (14) and (15), we can analyze the effects of
frequency modulation of protein bursts due to variation
in mean sRNA number. Fig. 6b illustrates the variation
of noise in switching statistics, σ2 = P0P1, with mean
sRNA number ns. We observe that σ2 varies with ns
non-monotonically: In the limit ns → ∞, the upstream
protein regulator is completely suppressed; thus in the
long-time limit, the switch is localized in state 0 leading
to zero variance. In the other limit ns → 0, switching
frequency is independent of sRNA regulation: In this
limit, switch variance changes with the burst size of the
input signal and vanishes in the limit 〈pb〉 → ∞. In be-
tween these two extreme limits (ns → 0,∞), the variance
changes non-monotonically and reaches the maximum at
intermediate ns values. Thus, adjusting the mean levels
of sRNAs in the circuit can be used to effectively tune
noise in a downstream two-state switch.

V. DISCUSSION

In summary, we have analyzed simple genetic circuits
involving transcriptional bursting and post transcrip-
tional regulation by sRNAs. Under the conditions of
strong regulation and infrequent transcription, we de-
rive analytical expression for the corresponding regulated
protein burst and steady-state distributions. The results
derived indicate that sRNA-based regulation can lead to
exponential suppression of protein copy numbers by fre-
quency modulation of protein bursts. These qualitative
features can be utilized in developing strategies for sup-
pressing leakage and modulating noise in simple genetic
circuits.

While our analytical result is based on the assumption
that γ/µm goes to infinity, we find through numerical
simulations that lower γ/µm values are also well approx-
imated by this limiting case (Fig. 3). For example, for
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values as low as γ/µm = 10 the features noted using
the approximate analytical approach are also observed
in the simulation results (Figs. 4, 5 and 6). It is inter-
esting to note that the ratio γ/µm = 10 is at the lower
end of the range chosen in the previous work, which was
taken from 10 to 100 [32, 50] . For much lower values
of γ/µm, the results will change and the features noted
will not be observed. Thus strong interactions, in the
sense outlined above, are necessary to observe the fea-
tures noted and thus to engineer the corresponding syn-
thetic circuits. Recent work [51, 52] provides multiple ex-
amples of sythetic genetic circuits involving small RNA
based regulation with tunable interaction strength. For
example, in applications for metabolic engineering [53],
it has been shown that naturally occuring small RNAs
can be used to rationally design synthetic RNAs whose
repression strength (effectively the parameter γ) corre-
lates with the mRNA-sRNA binding energy which can be
tuned by changes in the target-binding sequence. Thus it
should be possible to engineer synthetic genetic circuits
with strong mRNA-sRNA interactions as noted above.

Our approach provides insights into the impact of
sRNA-based regulation in parameter regimes that have
previously been unexplored. In particular, for the param-
eter regime considered, mean-field results do not serve
as a good approximation thus highlighting the need for
alternative approaches. The analytical results obtained
in this work in limiting cases can serve as the base for
developing approximate analytical approaches that are
valid over larger regions of parameter space. Finally, as
demonstrated in this work, the results obtained can serve
as useful building blocks for the analysis of more complex
genetic circuits.
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Appendix A: Derivation of steady-state protein
distribution

Here we provide the details of deriving the steady-state
protein distribution using the regulated protein burst dis-
tribution. In the limit that mRNA degradation rate is
much higher than that of protein (the bursty synthesis
approximation), bursts of proteins can be assumed to be
produced instantaneously after the production of mR-
NAs, i.e. protein bursts can be assumed to arrive at the
rate km. This simplification allows us to decouple protein
evolution from the evolution of mRNA and sRNA. The
corresponding evolution equation for proteins can then

be written as

∂P (p, t)

∂t
= km

p∑
n=0

Ppb(n)P (p− n, t) + µp(p+ 1)P (p+ 1, t)

− (km + µpp)P (p, t), (A1)

where Ppb(n) is the probability of creating n proteins in
a translational burst. We use Eq. (A1) and define the
generating functions for protein burst distribution and
protein steady-state distribution as

Gpb(z) =

∞∑
n=0

znPpb(n), G(z, t) =

∞∑
n=0

znP (n, t), (A2)

Correspondingly, the evolution equation for the generat-
ing function reads

∂tG(z, t) = µp(1− z)∂zG(z, t) + km[Gpb(z)− 1]G(z, t),
(A3)

which, in the steady-state limit, gives

Gs(z) = exp

(
km
µp

∫ z

1

(
Gpb(y)− 1

y − 1

)
dy

)
. (A4)

Thus Gs(z) can be found if the expression for Gpb(z) is
known. Plugging in the expression for Gpb(z) from Eq.
(9) in Eq. (A4), we have

Gs(z) = exp

(
km exp(−nsqm)

µp

∫ z

1

(
G̃pb(y)− 1

y − 1

)
dy

)
.

(A5)
Using the generating function for the protein burst dis-

tribution in the absence of regulation, given by Eq. (8),
and using the generating function for protein burst from a
single mRNA, G′pb(z) = µm/(µm+kp(1−z)), the steady-
state expression for protein generating function can be
written as

Gs(z) =

(
qmµm

qmµm + kp(1− z)

) km exp(−nsqm)
µp

, (A6)

which is the generating function for a negative binomial
distribution.

Appendix B: Derivation of steady-state mean for
proteins(positive feedback)

The exact solution for the generating function corre-
sponding to Eq. (12) is given by [42]:

G(z) =

[
1

1 + 〈pb〉(1− z)

]km1 exp(−nsqm1)/µp

× 2F1[u, v|u+ v + 1− w|1− φ{1 + b(1− z)}]
2F1[u, v|u+ v + 1− w|1− φ]

,

(B1)
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where the quantities, u, v, w and φ are given by

u+ v =
α+ β − km1 exp(−nsqm1)(1 + α̃/µp)

µp + α̃
,

uv = −βkm1 exp(−nsqm1)

µp(µp + α̃)
,

w =
µp + α̃(1 + 〈pb〉)− km1 exp(−nsqm1)(1 + α̃(1 + 〈pb〉)/µp)

µp + α̃(1 + 〈pb〉)
,

φ =
µp + α̃

µp + α̃+ 〈pb〉α̃
,

and 2F1 represents the Gaussian hypergeometric func-
tion. Eq. (B1) leads to the mean protein level as

〈ps〉/〈pb〉 =
km1 exp(−nsqm1)

µp
+ φ

uv

u+ v + 1− w

× 2F1[u+ 1, v + 1|u+ v + 2− w|1− φ]

2F1[u, v, u+ v + 1− w|1− φ]
.

(B2)
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