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Abstract

A hybrid asymptotic-numerical method is presented for obtaining an asymptotic estimate for the full

probability distribution of capture times of a random walker by multiple small traps located inside a

bounded two-dimensional domain with a reflecting boundary. As motivation for this study, we calculate

the variance in the capture time of a random walker by a single interior trap and determine this quantity

to be comparable in magnitude to the mean. This implies that the mean is not necessarily reflective of

typical capture times and that the full density must be determined. To solve the underlying diffusion

equation, the method of Laplace transforms is used to obtain an elliptic problem of modified Helmholtz

type. In the limit of vanishing trap sizes, each trap is represented as a Dirac point source which permits

the solution of the transform equation to be represented as a superposition of Helmholtz Green’s functions.

Using this solution, we construct asymptotic short time solutions of the first passage time density which

captures peaks associated with rapid capture by the absorbing traps. When numerical evaluation of the

Helmholtz Green’s function is employed followed by numerical inversion of the Laplace transform, the

method reproduces the density for larger times. We demonstrate the accuracy of our solution technique

with comparison to statistics obtained from a time-dependent solution of the diffusion equation and

discrete particle simulations. In particular, we demonstrate that the method is capable of capturing the

multimodal behavior in the capture time density that arises when the traps are strategically arranged.

The hybrid method presented can be applied to scenarios involving both arbitrary domains and trap

shapes.

1 Introduction

In many biological, social and physical processes, the arrival of a single individual or particle at a reaction
site can initiate a cascade of events. When the dynamics of these particles are driven by random motions,
the distribution of arrival times is known as the first passage time density. This distribution and its moments
give crucial information on the feasibility, effectiveness and robustness of stochastic transport mechanisms
[1]. In biologically motivated first passage time problems, the number of individual particles can be very
large and the target site(s) relatively small compared to the total search domain. The so-called narrow
escape problem in two and three dimensions seeks the average time required for such a particle to reach a
target site and has been the subject of intensive study (see e.g., [2, 3] for a comprehensive review of the
associated techniques and applications). For example, the rate of escape of ions through ion channels located
on a cell membrane may yield insights into the relevant timescales over which cellular processes occur [4].
In three dimensions, the amount of time it takes for a T cell to find its antigen may be indicative of immune
response times [5]. In some applications, however, the mean of the trapping time may not yield sufficient
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information. In a random walk model of conformational transitions in proteins, it was shown under certain
scenarios that the probability of the protein residing within a certain class of states is highly dependent on
its initial state and the subsequent early time evolution [6]. While the first moment of the passage time
density yields information regarding the tail of the first passage time distribution (large times), it neglects
information on the small time distribution required to fully characterize the transitional dynamics [6].

In this work, we present a methodology for determining the full distribution of first passage times of a
diffusing particle in a two dimensional bounded spatial region Ω to reach a small absorbing set Ωε. While
diffusion accompanied by directed motion is often important in such problems, for simplicity of exposition
we consider unbiased Brownian motion. The probability p(x, t; ξ) that the particle initially at ξ ∈ Ω is free
at x ∈ Ω at time t > 0 satisfies the diffusion equation

∂p

∂t
= ∆p, t > 0, x ∈ Ω \ Ωε; ∂np = 0, t > 0 x ∈ ∂Ω; (1.1a)

p = 0, t > 0, x ∈ ∂Ωε, p(x, 0; ξ) = δ(x − ξ), x ∈ Ω , (1.1b)

in a bounded region Ω ⊂ R
d, d = 1, 2, 3 where ∂n denotes the outward facing normal derivative. The case

ε ≪ 1 in which |∂Ωε| ≪ |∂Ω| is known as the narrow escape or narrow capture problem [2, 4] and signifies
the scenario where the extent of the absorbing set is significantly less than the total search domain. In
(1.1a), we have set the diffusion coefficient to unity without loss of generality. The goal is to obtain the free
probability P (t; ξ) (often referred to as the complementary cumulative distribution of the capture time t)
and the capture time density C(t; ξ)

P (t; ξ) =

∫

Ω\Ωε
p(x, t; ξ) dx , C(t; ξ) = −dP

dt
, (1.2)

where p(x, t; ξ) solves (1.1).

Partially motivated by the large number of individual walkers in applications, the mean first passage time
(MFPT) is the commonly studied first moment of C(t; ξ). The MFPT w(x) of a particle starting from x ∈ Ω
satisfies the simpler elliptic boundary value problem of mixed Dirichlet-Neumann type (cf. [7])

∆w = −1 , x ∈ Ω \ Ωε; ∂nw = 0 , x ∈ ∂Ω , w = 0 , x ∈ ∂Ωε . (1.3a)

Equation (1.3) has been studied (cf. [2, 4, 7] and references therein) for a variety of absorbing sets such as
internal traps [8–10], boundary escape windows [11, 12] and dumbbell domains with narrow necks [2]. In
three dimensions, equation (1.3) has been studied in the spherical case for internal and boundary windows
[13–18] and non-spherical geometries with absorbing boundary windows [19, 20]. A common measure of the
capture rate is given by the global MFPT which, for a uniform distribution ρ(x) = |Ω \ Ωε|−1 of initial
walker locations, is given by

τ =

∫

Ω\Ωε
ρ(x)w(x)dx =

1

|Ω \ Ωε|

∫

Ω\Ωε
w(x)dx. (1.3b)

The quantity τ gives the broadest possible measure of the capture rate by the absorbing set ∂Ωε.

The narrow escape problem is a rare event process and as such passage times may be broadly distributed
around the MFPT. For this reason, the MFPT does not necessarily reflect typical capture times which limits
the usefulness of problem (1.3) in describing the underlying stochastic process. The goal of this paper is
to present a methodology for calculating the full passage time density in two dimensional domains with
multiple small non-overlapping internal traps. To illustrate our method, we plot in Fig. 1 the distribution
of absorption times to a single small internal target obtained by our method applied to (1.1) and compare
with the MFPT obtained from (1.3).

There are two important details which are apparent from Fig. 1. First, the distribution has a pronounced
peak at short times t. This peak is a factor of the geometry and the initial position of the walker, which
is not captured by the MFPT, and reflects the Brownian paths which are quickly absorbed by the trap.
Second, the capture time is broadly distributed about the mean and exhibits a long flat tail implying that
many Brownian paths have large excursions before eventual capture.
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Figure 1: The full distribution of capture times C(t) for a random walker in the
unit disk, starting at (0.3, 0), and absorption at a circular trap of radius ε = 0.01
centered at the origin.

To elucidate the second of these points, for the case of a single absorbing trap of radius ε centered at x0, we
calculate in §2 the variance V(x) and standard deviation σ(x) =

√

V(x) of the passage time as ε → 0. A
key component in this calculation, is knowledge of the Neumann’s Green’s function Gm(x; ξ) and its regular
part Rm(x;x0) satisfying

∆Gm =
1

|Ω| − δ(x− ξ), x ∈ Ω; ∂nGm = 0, x ∈ ∂Ω; (1.4a)

∫

Ω

Gm(x; ξ) dx = 0; Gm(x; ξ) =
−1

2π
log |x− ξ|+Rm(x; ξ). (1.4b)

In [14] it was shown for the single trap case Ωε = x0 + εΩ0, that the MFPT satisfies w(x) = w0(x; ν) +O(ε)
where

w0(x) = −|Ω|Gm(x;x0) + χ0. (1.5a)

Here χ0 = |Ω|−1
∫

Ω
w0(x)dx is the global MFPT averaged over a uniform distribution of starting locations

given by

χ0 =
|Ω|
2π

[

1

ν
+ 2πRm(x0;x0)

]

, ν =
−1

log εd0
, (1.5b)

and d0 is the capacitance of the trap, determined from the exterior problem (2.3). In §2 we calculate as
ε → 0 the variance V(x) = V0(x) +O(ε) where

V0(x) = χ2
0 − |Ω|2

(

[Gm(x;x0)]
2 − 2

|Ω|

∫

Ω

([Gm(y;x0)]
2 −Gm(y;x)Gm(y;x0)) dy

)

. (1.6a)

An inspection of (1.6a) reveals that the standard deviation σ(x) =
√

V0(x) is asymptotically equal to the
mean, up to two terms in ν as ε → 0. Moreover, the standard deviation depends on the initial location
x ∈ Ω only in the third term of its expansion. This weak dependence indicates that even walkers which
start close to the target are not necessarily captured quickly and typically undergo long excursions before
absorption. Averaging over a uniform distribution of initial locations, the global variance of the passage
times is calculated to be

1

|Ω|

∫

Ω

V0(x)dx = χ2
0 + |Ω|

∫

Ω

[Gm(x;x0)]
2dx. (1.6b)

Therefore, in the limit as ε → 0, the global standard deviation (|Ω|−1
∫

Ω
V0(x)dx)

1

2 is strictly greater than
the global MFPT indicating that the mean may not be a reliable estimator of the capture time.

For this reason, we are motivated in §3 to investigate a methodology for obtaining the full distribution of
passage times by constructing solutions to (1.1) in the limit as ε → 0. The solution to (1.1) may be expressed
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in terms of a separable solution:

p(x, t) =

∞
∑

n=0

cne
−λntφn(x), cn =

∫

Ω

φn(x)δ(x − ξ)dx = φn(ξ), (1.7)

where the Laplacian eigenfunctions φn(x) and eigenvalues λn satisfy

∆φ+ λφ = 0, x ∈ Ω; φ = 0, x ∈ ∂Ωε, ∂nφ = 0, x ∈ ∂Ω,

∫

Ω\Ωε
φ2 dx = 1. (1.8)

The ordering principle of Laplacian eigenvalues 0 < λ0 < λ1 ≤ λ2 ≤ λ3 · · · indicates that for large t, the
density behaves asymptotically as

p(x, t) ∼ c0e
−λ0(ε)tφ0(x), as t → ∞. (1.9)

Therefore the free probability is exponentially decaying with rate largely dependent on the principal eigen-
value λ0(ε). The value of λ0(ε) has been accurately estimated in the limit as ε → 0 for many narrow escape
problems [8–10, 12, 14, 21–23]. However, the expansion solution (1.7) is not informative for small values
of t where all terms in the expansion (1.7) make a contribution. Moreover, as seen in Fig. 1, the capture
time distribution has important features such as a prominent peak (or multiple peaks) which occurs at short
times and are not described by the monotonic large time approximation (1.9). Therefore, the main missing
piece in the analysis of the capture time density is determination of the short time behavior.

The problem of obtaining the full distribution of capture times has been considered for certain special regions
such as circular wedges [24, 25] and radially symmetric domains [26, 27]. In these cases, the absorbing set is
placed strategically to preserve radial symmetry, allowing for exact solutions in the forms of infinite series.
For a spherical domain with a single interior trap, [15] employed a pseudopotential method to develop a
small time correction to the large time approximation (1.9). In the present work, we develop a methodology
for obtaining the distribution in a general two dimensional region with multiple non-overlapping traps. To
accommodate the time dependent nature of (1.1), we apply the Laplace transform (cf. [7, 26]) which is
commonly used in determining short time behavior of parabolic problems. The resulting equation for the
Laplace transform u(x; s, ξ) is elliptic and of modified Helmholtz type with small perturbing holes;

∆u− su = −δ(x− ξ) , x ∈ Ω ; (1.10a)

∂nu = 0 , x ∈ ∂Ω ; u = 0 , x ∈ ∂Ωε . (1.10b)

To solve equation (1.10), we apply the method of matched asymptotic expansions in the limit of small trap
size ε → 0, and determine a solution of (1.10) in terms of the modified Helmholtz Green’s function

∆Gh − λ2Gh = −δ(x− ξ), x ∈ Ω; ∂nGh = 0, x ∈ ∂Ω ; (1.11a)

Gh(x; ξ, λ
2) ∼ −1

2π
log |x− ξ|+Rh(ξ; ξ, λ

2) as x → ξ ,

∫

Ω

Gh(x; ξ, λ
2) dx =

1

λ2
. (1.11b)

In certain limits, such as t → 0, we are able to obtain an asymptotic solution for (1.11), while in others
we utilize a finite element solver [28]. To invert the Laplace transform back to the time domain, we use
a numerical inversion technique [29, 30]. We emphasize that the hybrid technique we present in §3 - §5
requires only solutions of time-independent problems, is valid for arbitrary domain and trap geometries, and
estimates C(t) beyond all orders in ν ≡ O(−1/ log ε).

2 The variance of the first passage time

In this section, we calculate the variance V(x) = T(x)−w(x)2 and standard deviation σ(x) =
√

V(x) where
T(x) is the second moment of the distribution and satisfies the elliptic problem (cf. [5])

∆T = −2w(x), x ∈ Ω \ Ωε; ∂nT = 0, x ∈ ∂Ω, T = 0, x ∈ ∂Ωε. (2.1)
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In the limit as ε → 0, we develop a solution to (2.1) with a single trap expressed as Ωε = x0 + εΩ0. This
analysis can be extended to multiple traps (cf. [31]). The solution is expanded in the form

T(x) = T0(x; ν) + εT1(x; ν) + · · · , ν =
−1

log εd0
.

We are interested in the leading order problem for T0(x) which satisfies

∆T0 = −2w0(x), x ∈ Ω \ {x0}; ∂nT = 0, x ∈ ∂Ω. (2.2a)

The local condition on T0(x) as x → x0 is found to be

T0(x) ∼ A log |x− x0|+
A

ν
, x → x0; ν =

−1

log εd0
, (2.2b)

where A is the strength of the singularity and will be determined from a solvability condition. The logarithmic
capacitance d0 is a trap parameter determined from a local problem in the vicinity of x0 where T(x0+εy) =
vc(y) and y is the stretched variable y = (x − x0)/ε. The problem for vc(y) is

∆vc = 0, y ∈ R
2 \ Ω0; vc = 0 on Γa

0 ,
∂vc
∂n

= 0 on Γr
0; (2.3a)

vc(y) = log |y| − log d0 +
p · y
|y|2 +O

( 1

|y|2
)

, |y| → ∞, (2.3b)

The value of d0 depends on the shape of the rescaled trap Ω0 and its distribution of absorbing and reflecting
portions, Γa

0 and Γr
0, respectively. For all absorbing traps, the value of d0 can be calculated for a variety

of regular (circles, ellipses, triangles) shapes [31]. When Ω0 is the unit disk, d0 = 1. When the trap is not
uniformly absorbing, d0 has been calculated for a variety of configurations and homogenized limits [10]. The
vector p is the dipole and depends on the orientation of the trap - its influence on the narrow escape problem
was analyzed in [10]. If a Robin condition ∂nvc + κvc = 0 is applied to a circular trap ∂Ω of unit radius,
then the capacitance is d0 = e1/κ [10].

The local condition (2.2b) gives rise to a Dirac source term on the right hand side of (2.2a). Substituting
(1.5a) into (2.2a) gives

∆T0 = 2|Ω|Gm(x;x0)− 2χ0 + 2πAδ(x− x0), x ∈ Ω; ∂nT = 0, x ∈ ∂Ω. (2.4)

Integrating (2.4) over Ω and applying the divergence theorem yields the solvability condition

A =
|Ω|χ0

π
. (2.5)

To obtain a solution to (2.2a), we first decompose T0 = Tp + Th where

∆Th = −2|Ω|χ0

[

1

|Ω| − δ(x − x0)

]

, x ∈ Ω; ∂nTh = 0, x ∈ ∂Ω; (2.6a)

∆Tp = 2|Ω|Gm(x;x0), x ∈ Ω; ∂nTp = 0, x ∈ ∂Ω,

∫

Ω

Tp(x) dx = 0. (2.6b)

The solutions of these problems are given by

Th(x) = −2|Ω|χ0Gm(x;x0) + χ1, Tp(x) = −2|Ω|
∫

Ω

Gm(y;x)Gm(y;x0) dy. (2.7)

The final unknown χ1 = |Ω|−1
∫

Ω
T0 dx is fixed by matching T0 = Tp + Th to the local condition (2.2b) as

x → x0 which yields that
|Ω|χ0

νπ
= Tp(x0)− 2|Ω|χ0Rm(x0;x0) + χ1.
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Rearranging for χ1 and recalling the definition of χ0 in (1.5b) gives

χ1 = 2χ2
0 − Tp(x0). (2.8)

The leading order variance V0(x) = T0(x)− w0(x)
2 can now be calculated as

V0(x) =
[

Tp(x) − 2|Ω|χ0Gm(x;x0) + 2χ2
0 − Tp(x0)

]

− [−|Ω|Gm(x;x0) + χ0]
2

= χ2
0 −

(

|Ω|2[Gm(x;x0)]
2 + Tp(x0)− Tp(x)

)

= χ2
0 − |Ω|2

(

[Gm(x;x0)]
2 − 2

|Ω|

∫

Ω

([Gm(y;x0)]
2 −Gm(y;x)Gm(y;x0)) dy

)

. (2.9)

Recalling that χ0 is the global MFPT (1.5b) and σ ∼ σ0 =
√
V0, we obtain the behaviors

V0(x) =
|Ω|2
4π2ν2

[

1 + 4πνRm(x0;x0)
]

+O(1), as ε → 0, (2.10a)

σ0(x) =
|Ω|
2π

[ 1

ν
+ 2πRm(x0;x0)

]

+O(ν), as ε → 0. (2.10b)

There are two important implications of this result. First, the MFPT and standard deviation of mean are
asymptotically equal up to two terms as ε → 0. Therefore, the MFPT may not necessarily be a reliable
measure since the distribution of passages times around the mean is relatively broad. This is the principal
motivation for developing (cf. §3) a methodology for obtaining the full capture time density.

The second implication from (2.10b) is that as ε → 0, the standard deviation σ(x) largely depends on the
trap location x0 and is weakly dependent on the starting location x. From (1.5a), we see that if x is close to
x0, then since Gm(x;x0) > 0, the mean capture time is less than the global MFPT χ0. However, in (2.10b),
the standard deviation is unchanged, up to two orders, as x approaches x0. The interpretation is that even
if the Brownian walker starts close to the trap, there are still many random paths which are not captured
quickly and undergo large excursions in Ω before eventual absorption. While they may be rare, the duration
of these excursions may be asymptotically long and are the source of the O(ν−1) mean capture time. This
leads to a large disparity between the mean and the mode of the capture time, the latter of which may often
(depending on the specific application) be a more informative measure of first passage processes.

We also remark that the asymptotic expressions for the global MFPT and the standard deviation σ0, given
in (1.5b) and (2.10b), respectively, are both minimized when the trap location x0 minimizes Rm(x0;x0). For
a uniform distribution of initial locations, the global variance of the first passage time can be calculated as

1

|Ω|

∫

Ω

V0(x)dx = σ2
0(x) = χ2

0 + |Ω|
∫

Ω

[Gm(x;x0)]
2dx, (2.11)

indicating that the global standard deviation is strictly larger than the global MFPT. The global coefficient
of variation cV is an important measure of variability in the distribution defined as the ratio of the global
standard deviation (2.11) to the global MFPT (1.5b). We calculate that

cV =
σ0(x)

χ0
=

√

1 +
|Ω|
χ2
0

∫

Ω

[Gm(x;x0)]2dx > 1

This further reinforces the notion that the MFPT can be an unreliable estimator of the capture time.

As a confirmation of (2.9) and its two-term approximation (2.10), we compare against the exactly solvable
situation of a circular trap of radius ε centered at the origin of the unit disk Ω = {x ∈ R

2 | ε < |x| < 1}.
The exact solutions of (1.3) and (2.1) in terms of the radial variable r = |x| are given by

w(r) =
−1

4

[

r2 − ε2 + 2 log
r

ε

]

, (2.12a)

T(r) =
1

32

[

r4 + 8(r2 − ε2)− 4r2ε2 + 3ε4 − 12 log
r

ε
− 8(r2 − ε2) log

r

ε
− 16 log ε log

r

ε

]

. (2.12b)
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As ε → 0, we obtain the leading order solutions

w0(r) =
1

2

[

1

ν
+ log r − r2

2

]

+O(ε2), (2.13a)

T0(r) =
1

32

[

16

ν2
− 4

ν

(

3 + 2r2 − 4 log r
)

+ r4 + 8r2 − 4(3 + 2r2) log r

]

+O(ε2 log ε), (2.13b)

V0(r) =
1

4

[

1

ν2
− 3

2ν
+

(

r2 − r4

8
− 3

2
log r − log2 r

)]

+O(ε2 log ε). (2.13c)

To compare with the asymptotic solution, we use the explicit expression for the Neumann’s Green’s function
for the unit disk (cf. [9])

Gm(x; ξ) =
1

2π

(

− log |x− ξ| − log

∣

∣

∣

∣

x|ξ| − ξ

|ξ|

∣

∣

∣

∣

+
1

2

(

|x|2 + |ξ|2
)

− 3

4

)

, (2.14a)

Rm(ξ; ξ) =
1

2π

(

− log

∣

∣

∣

∣

ξ|ξ| − ξ

|ξ|

∣

∣

∣

∣

+ |ξ|2 − 3

4

)

. (2.14b)

Setting x = (r, 0), we have that 2πRm(0,0) = −3/4 and 2πGm(x,0) = − log r + r2/2 − 3/4 so that (1.5)
and (2.13a) are in agreement. By direct calculation,

∫

Ω
[Gm(x;x0)]

2dx = 7/192π, so that (2.11) yields

1

|Ω|

∫

Ω

V0(x) dx =
1

4

[

1

ν2
− 3

2ν
+

17

24

]

. (2.15)

From the exactly solvable case, we calculate using (2.13c) that

1

|Ω|

∫

Ω

V0(x) dx =
1

π

∫ 2π

θ=0

dθ

∫ 1

r=ε
V0(r) rdr =

1

4

[

1

ν2
− 3

2ν
+

17

24

]

+O(ε2 log ε). (2.16)

in complete agreement with (2.15).

3 Determination of the full capture time distribution

In the analysis below, we develop a methodology for obtaining the full distribution of capture times in
general two dimensional domain with small traps. There have been many recent treatments focussed solely
on determination of the MFPT in the well-known narrow escape problem in two and three dimensions (see,
e.g., [12, 14, 16, 18, 32]). The mean first passage time (MFPT) w(x) and the second moment of the FPT
T(x) starting from x can be obtained from the capture time density

w(x) =

∫ ∞

0

tC(t;x) dt , T(x) =

∫ ∞

0

t2C(t;x) dt . (3.1)

To calculate P and C, we start by introducing the Laplace transform u(x, s;x0) of (1.1) defined by

u(x, s;x0) = L[p](s) =
∫ ∞

0

e−stp(x, t;x0) dt . (3.2)

From (1.1), the equation satisfied by u(x, s;x0) is then

∆u− su = −δ(x− x0) , x ∈ Ω ; (3.3a)

∂nu = 0 , x ∈ ∂Ω ; u = 0 , x ∈ ∂Ωε . (3.3b)

The free probability density P (t) then satisfies

L[P ](s) = U(x0, s) , L[C](s) = −sU(x0, s) + P (0,x0) , (3.4a)

7



where U(x0, s) is given by

U(x0, s) =

∫

Ω\Ωε
u(x, s;x0) dx . (3.4b)

Hence, the Laplace transform of the capture time density satisfies an elliptic PDE (3.3) of modified Helmholtz
type with mostly reflecting boundaries and small Dirichlet portions representing absorbing traps. In the next
section, we develop solutions to (3.3) in the limit as ε → 0 and utilize a numerical inverse Laplace transform
to obtain the full capture time density.

3.1 Solution in two dimensions with interior traps

In this section we outline a hybrid asymptotic-numerical method, based on matched asymptotic expansions,
for computing the solution of (3.3) in two dimensions with N non-overlapping internal traps of size O(ε).
These traps occupy the regions Ωεj

= xj + εΩj with trap centers xj ∈ Ω for j = 1, . . . , N .

As is common in the asymptotic analysis of two dimensional problems with small domains removed [9, 10,
12, 23], each trap may be replaced as ε → 0 by a logarithmic singularity of prescribed strength Aj(s) with
an associated regular part

u(x) ∼ Aj(s)νj log |x− xj |+Aj(s) + · · · x → xj , j = 1, . . . , N ; νj ≡
−1

log εdj
. (3.5)

The parameter dj is the logarithmic capacitance of the j-th trap and is determined from (2.3). In terms of
the modified Helmholtz Green’s function Gh(x; ξ, λ

2) satisfying (1.11), the solution of (3.3) with specified
singularity behavior (3.5) is

u(x;x0, s) = Gh(x;x0, s)− 2π

N
∑

j=1

AjνjGh(x;xj , s) . (3.6)

A system of equations for the trap strengths Aj , which indicate the flux over each trap, is obtained by
matching (3.6) to the singularity behavior (3.5) as x → xk for each k = 1, . . . , N . This generates the system
of linear equations

Ak = Gk,0 − 2π



AkνkRk,k +

N
∑

j 6=k

AjνjGk,j



 , k = 1, . . .N ;

{

Rk,k = Rh(xk;xk, s)

Gj,k = Gh(xj ;xk, s)
, (3.7)

which can be concisely represented in matrix form as

[I + 2π G V ]A = g0, (3.8a)

where we have defined

A = [A1, . . . , AN ]T

g0 = [G1,0, . . .GN,0]
T

, Gi,j =

{

Ri,i if i = j

Gi,j if i 6= j
, Vi,j =

{

νi if i = j

0 if i 6= j
. (3.8b)

With (1.11b) and (3.6) along with U(x, s) defined in (3.4), we have that in the limit as ε → 0, the free
probability P (t) satisfies

L[P ](s) = U(x0, s) =
1

s



1− 2π

N
∑

j=1

νjAj(s)



 . (3.9a)

The capture time density C(t;x0) defined in (1.2) then satisfies

L[C](s) = −sL[P ](s) + P (0;x0) = 2π

N
∑

j=1

νjAj(s) , (3.9b)
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where we have used that P (0;x0) = 1. In (3.9b), the dependence of the capture rate C(t) on the initial
location of the walker x0 and the trap centers {x1, . . . ,xN} is encoded in the strengths Ak satisfying the
linear system (3.8). Using this matched asymptotic method, the increase in complexity introduced by each
additional trap is simply accounted for by an extra dimension in the linear system (3.8a). The associated
error, following the analysis of [33], can be shown to be smaller than maxj ν

m
j for any integer m.

The key to obtaining P (t;x0) and C(t;x0) lies in being able to accurately compute the modified Helmholtz
Green’s function Gh(x; ξ;λ) in (1.11). When Ω is the unit square, Gh may be expressed analytically in terms
of an infinite series using the method of images [34]. When Ω is the unit circle, Gh may be found in terms of
an infinite Fourier series. Efficient numerical solution of the modified Helmholtz equation is a problem with
a rich history in acoustics and many well developed solution methodologies exist based on finite difference,
finite element [35], integral function [36, 37], and spectral [38, 39] techniques.

An important step in numerical or analytical consideration of (1.11) is a separation of the regular and singular
parts of Gh

Gh(x; ξ, λ
2) = V (x; ξ, λ2) + R̃(x; ξ, λ2) , (3.10)

where V (x; ξ, λ2) is the free-space Green’s function. In spatial dimension d = 2,

∆V − λ2V = −δ(x− ξ) , V → 0 as |x| → ∞ ; (3.11a)

V (x; ξ, λ2) ≡ 1

2π
K0 (λ|x− ξ|) , (3.11b)

where K0(z) is the modified Bessel function of the second kind. For |z| = O(1), the small and large argument
asymptotics of K0(λz) are

K0(λz) ∼ − logλ− log z + log 2− γe +O(λ2 logλ) , λ → 0+ , (3.12a)

K0(λz) ∼
√

π

2λz
e−λz

(

1− 1

8

1

λz
+

9

128

1

λ2z2
+O

(

1

λ3z3

))

, λ → ∞ , (3.12b)

where γe ≈ 0.5772 is Euler’s gamma constant. With (3.10) in (1.11), the regular problem for R̃(x; ξ, λ2) is

∆R̃− λ2R̃ = 0 , x ∈ Ω ; ∂nR̃ = −∂nV (x; ξ, λ2) , x ∈ ∂Ω . (3.13)

For general λ2 and Ω, (3.13) can be solved numerically using a finite element method. When λ2 is large, an
asymptotic solution of (3.13) will be developed (cf. §4) to describe the short time behavior of capture time
distribution. Once R̃ is known, then (3.10) is used to calculate

Gj,k =
1

2π
K0 (λ|xj − xk|) + R̃(xj ;xk, λ

2) , j 6= k , (3.14a)

for Gj,k in (3.7). For the self-interaction term Rk,k in (3.7), we use the local behavior of Gh near ξ (1.11b)
and the small argument asymptotic form of K0 in (3.12a) together with (3.10) to find

Rk,k = R̃(xk;xk, λ
2)− 1

2π
(logλ− log 2 + γe) . (3.14b)

We remark that this asymptotic formulation in terms of Laplace transforms and Green’s functions replaces
a time-dependent problem (1.1), having a singular initial condition, and sharp boundary layers on a non
simply connected domain, with a time-independent and smooth problem (3.13) posed on a hole free domain
coupled with an inverse Laplace transform operation. The difficulty in this formulation arises when s = λ2

in (3.13) is large, or equivalently, when t in (1.2) and (1.2) is small. In this case, the boundary data in (3.13)
becomes exponentially small in λ according to the large argument asymptotics of V in (3.12b). The solution
R̃ then becomes obscured by the error associated with the numerical solver. An asymptotic method is thus
needed to estimate Gh in the large λ2 limit.

Within this small time limit, the decomposition (3.10) suggests two different regimes of the free probability
density. The first regime is captured by the free-space Green’s function V (x;x0, λ

2), and sees only the
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exponentially few particles whose paths go directly from x0 to ∂Ωε. The second regime, which requires the
boundary contribution R̃(x;x0, λ

2), accounts for particles leaving whose paths have been influenced by ∂Ω.
In the next section, we compute a two-term asymptotic expansion of the solution to (3.13) for s = λ2 ≫ 1,
allowing for an accurate estimate of P (t) and C(t) for small time regimes. We also show that this estimate for
small t, together with the numerical solution of (3.13) for s = λ2 and t both O(1), can produce a uniformly
valid estimate of P (t) and C(t) for all t. With the exception of one example in which Ω is an ellipse, for
simplicity, we demonstrate this method for the case where Ω is the unit disk.

Example 3.1 In this example we verify the hybrid asymptotic method against a closed form separable solu-
tion of (1.1) on the unit disk. Let Ω be the unit disk {|x| ≤ 1} with a single circular trap of radius ε = 0.01
centered at the origin and the walker initially at x0 = (0.3, 0). The schematic and result are shown in Fig. 2.
In Fig. 2(b), the exact distribution from the separable solution is shown in solid. The small time estimate
obtained from the hybrid method is shown in dashed (see §4).

-1 -0.5 0 0.5 1
x

-1

-0.5

0

0.5

1

y

(a) Example 3.1 schematic

0 0.05 0.1 0.15 0.2 0.25 0.3
t

0

0.5

1

1.5

2

2.5

3

C(t)

(b) C(t)

Figure 2: Schematic and result for Example 3.1. In (a), we show the schematic
with one trap of radius ε = 0.01 centered at the origin (open circle), while the
initial starting location for the particle is marked with a solid dot at x0 = (0.3, 0).
In (b), we show the exact capture time distribution computed from an eigenfunc-
tion solution of (1.1) (solid). A small time estimate obtained from the hybrid
method is shown in dashed. Very close agreement is observed when t is small.

4 Asymptotic estimate for 0 < t ≪ 1

We first analyze the time interval over which the particles that leave the domain through ∂Ωε are dominated
by those whose paths from x0 to the closest point on ∂Ω are much shorter than those whose paths first hit
∂Ω before reaching any part of ∂Ωε. That is, we approximate (1.1) with the same problem on R

2. In the
Laplace domain, we analyze (3.7) for s = λ2 ≫ 1 in (1.11a) assuming that the boundary contribution R̃ in
(3.14a) is exponentially small in comparison to V . We thus have for λ2 ≫ 1,

Gj,k ∼ 1

2π
K0 (λ|xj − xk|) , j 6= k ; λ2 ≫ 1 . (4.1)

We verify this assumption below when we estimate R̃ using a boundary integral method. We also discard
the exponentially small R̃ term in (3.14b) so that

Rk,k ∼ − 1

2π
(logλ− log 2 + γe) . (4.2)
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From (4.1), (4.2) and the large argument asymptotics of K0(λz) in (3.12b), we observe that the off-diagonal
elements of the Green’s interaction matrix G are exponentially small in comparison to the diagonal elements.
To leading order, we thus have

Ak =
Gk,0

1 + 2πνkRk,k
, λ2 ≫ 1 , (4.3)

where Rk,k is given asymptotically by (4.2). To simplify the right-hand side of (4.3), we denote M as the
number of traps whose centers xj satisfy |x0 − xj | = ℓ, where ℓ is the distance from the starting location x0

to the center(s) of the nearest trap(s)

ℓ ≡ min
j

|x0 − xj | ; Gℓ ≡
1

2π
K0 (λℓ) . (4.4)

Then for all j for which |x0−xj | > ℓ, we have that Gj,0 is exponentially smaller than Gℓ, where Gℓ is defined
in (4.4). Finally, assuming the traps are identical so that νj = ν for each j = 1, . . . , N and using (4.1 - 4.4)
in (3.9a), we obtain the large s (small time) asymptotics for L[P ](s)

U(x0, s) =
1

s
− Mν

1− ν
(

1
2 log s− log 2 + γe

)

K0(
√
sℓ)

s
. (4.5)

To compute P (t), we perform a numerical inverse Laplace transform of U(x0, s) on (4.5), which depends only
on the distance ℓ from x0 to the nearest trap(s), and the number of nearest traps M . It is independent of
the shape of the domain and also the trap locations. The range of validity of (4.5), however, may shrink for
configurations in which the boundary plays a significant role along the paths of particles that first reach ∂Ωε.
Typical scenarios include when x0 is close to the boundary, the trap nearest x0 is close to the boundary, or
if x0 and the nearest trap are separated by a bottleneck. In all of these cases, a significant portion of the
particles that first reach ∂Ωε have interacted with the boundary. In these cases, the infinite space problem
is a poor approximation to (1.1).

Example 4.1 Here we consider the case where Ω is a unit disk with initial location x0 = (0.2, 0) and five
circular traps of radius ε = 0.01 centered at xj = x0 + rj(cos θj , sin θj) where

r1,2,3 = 0.4 , (θ1, θ2, θ3) =
(π

6
,
π

2
, π

)

, (r4, r5) = (0.6, 0.8) , (θ4, θ5) =

(

3π

2
,
5π

4

)

. (4.6)

The schematic of this configuration is shown in Fig. 3(a), where the starting location x0 is marked by a
solid dot, while the nearest (farther) traps are indicated by heavy (light) solid circles. In this case, we have
M = 3 and ℓ = 0.4. The asymptotic result obtained from (4.5) is plotted in heavy dashed in Fig. 4. The
numerical result obtained from solving (1.1) with Ω being the unit disk and ∂Ωε given by the trap locations
above is plotted in heavy solid. Excellent agreement is observed.

Example 4.2 Here we consider the case where Ω the square [−1, 1]2. The initial walker location is x0 =
(0.6, 0) while same-sized traps are located at xj = x0 + rj(cos θj , sin θj), where r1,2,3 = 0.4, (θ1, θ2, θ3) =
(π/2, 3π/4, 3π/2), (r4, r5) = (0.7, 1) and (θ4, θ5) = (π, 5π/4).

This configuration is shown in Fig. 3(b). As in Example 4.1, we have M = 3 and ℓ = 0.4. The numerical
result, given by (1.1) with Ω and ∂Ωε as specified in Example 4.2, is plotted in heavy dotted in Fig. 4. As
discussed above, the shape and size of the domain have a very small effect on the capture time distribution
in the small time interval considered. As such, the boundary-free estimate given by (4.5) is valid for both
the circular and square domains.

We remark, however, that for the same M and ℓ, configurations for which the boundary effects are strong
at small t (e.g., when the initial location x0 is close to ∂Ω), the time interval over which the boundary-free
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Figure 3: Schematics of configurations for Examples 4.1 and 4.2. In each figure,
the starting locations x0 for the random walk is marked by a solid dot, while the
nearest (farther) traps are indicated by heavy (light) solid circles. In both cases,
there are M = 3 nearest traps at a distance ℓ = 0.4 from x0. The traps have been
enlarged for clarity.
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(a) P (t) for t ≪ 1
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(b) C(t) for t ≪ 1

Figure 4: Results for Examples 4.1 and 4.2. In (a), we show P (t) for M = 3,
ℓ = 0.4 and ε = 0.01 as numerically computed on the unit disk (solid) and square
of side length 2 (dotted). The asymptotic estimate obtained from numerically
inverting (4.5), is plotted in dashed. The three lines are almost indistinguishable.
Details given in the text. In (b), we show the corresponding plot for C(t). As
expected, the shape and size of the domain has little effect over the small time
interval considered so that (4.5) provides a good estimate for both the circular
and square domains.
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estimate (4.5) is valid becomes much smaller. To capture boundary effects, thereby extending the range of
validity of the asymptotic estimate for small time, we require an accurate estimate of R̃ for large s = λ2.

To do so, we employ a higher order hybrid numerical-asymptotic variation of the approach of [34]. The
method is valid for a general domain with a smooth boundary. Our aim is to obtain an estimate of R̃(xj ;xk, s)
for Gj,k in (3.14a) in the limit of large s = λ2, which accounts for particles that reflect off the boundary

before reaching the j-th trap. We do not require the self-interaction term R̃(xk;xk, s), as this term is small
in comparison to the asymptotically large log s term in (3.14b). We contrast our approach of asymptotically
calculating the Helmholtz Green’s function for large s with that of [27], where the short time behavior of
C(t) is obtained by extracting the large s asymptotics of an exact solution for L[C](s).

We begin by setting ξ = x0 in (3.13) then multiply by V (x;xj , s) and integrate over Ω. Applying Green’s
identity and using (3.11a) yields that

R̃(xj ;x0) =

∫

∂Ω

V (x′;xj)∂nR̃(x′;x0)− R̃(x′;x0)∂nV (x′;xj) dx
′ , (4.7)

where we have dropped the s dependence in the notation. All terms in (4.7) are known, with ∂nR̃(x′;x0)
specified by the boundary condition in (3.13), except for R̃(x′;x0). It thus remains to estimate R̃. From
(4.7), we observe that R̃(xj ;x0) ∼ O(e−

√
s (d1+d2)), where d1 is the distance from x0 to the boundary, and

d2 is the distance from xj to the boundary. Therefore, if the shortest path from x0 to xj is shorter than

d1 + d2, we may discard R̃ in (3.10) in the short time estimates of P (t) and C(t). This was the basis for the
boundary-free estimate (4.5).

To estimate R̃, we observe that in the outer region away from the boundary, R̃ ∼ 0 to all orders in λ. For
s large, it therefore suffices to estimate R̃ in an O(λ−1) boundary layer near ∂Ω. For a general domain, in
terms of a local orthogonal coordinate system near the boundary where η̂ = λ−1η denotes the distance from
x to the boundary and ξ the arc length along ∂Ω, (3.13) transforms to the following inner problem for R̃

λ2∂ηηR̃− λ
κ

1 − κ/λ
∂ηR̃+

1

1− κη/λ
∂ξ

(

1

1− κη/λ
∂ξR̃

)

− λ2R̃ = 0 . (4.8)

In (4.8), κ = κ(ξ) is the curvature of ∂Ω. When Ω is the unit disk, (4.8) simplifies to the Laplacian in polar
coordinates

λ2∂ηηR̃− λ
1

1− η/λ
∂ηR̃+

1

(1− η/λ)2
∂ξξR̃− λ2R̃ = 0 . (4.9)

While we demonstrate the method on (4.9) mainly for the unit disk, the same technique may be used to
estimate R̃ for (4.8) on an arbitrary domain (see (4.22) and Example 4.8). To begin, we first expand (4.9)
for large λ and use ∂n = −λ∂η in the boundary condition of (3.13) to obtain

λ2∂ηηR̃− λ

(

1 +
η

λ
+

η2

λ2

)

∂ηR̃+

(

1 + 2
η

λ
+ 3

η2

λ2

)

∂ξξR̃− λ2R̃+O(λ−3) = 0 ; (4.10a)

∂ηR̃ |η=0 =
e−λ|r|

2
√

2πλ|r|

[

−
〈

r

|r| , n̂
〉

− 3

8λ

〈

r

|r|2 , n̂
〉

+O(λ−2)

]

, (4.10b)

where n̂ denotes the outward unit normal on ∂Ω, r = x′ − x0, and 〈·, ·〉 denotes the dot product. In (4.10b),
we have used the large argument asymptotic forms for K0(z) and K1(z), while x′ is parameterized by the
arc length ξ and restricted to the boundary. According to (4.10), we expand R̃ as

R̃ ∼ R̃0 +
1

λ
R̃1 + · · · . (4.11)

With (4.11) in (4.10b) and matching orders of λ, we obtain

∂ηR̃0 |η=0 = −
〈

r

|r| , n̂
〉

e−λ|r|

2
√

2πλ|r|
, (4.12a)
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∂ηR̃1 |η=0 = −3

8

〈

r

|r|2 , n̂
〉

e−λ|r|

2
√

2πλ|r|
. (4.12b)

For R̃0, we account for the O(λ) variation of the boundary data by making an ansatz of the form

R̃0 = f0(η, ξ)e
−λ|r| ; f0(η, ξ) = c0(ξ)S0(η, ξ) . (4.13a)

Comparing (4.13a) with (4.12a), we set

c0(ξ) = −
〈

r

|r| , n̂
〉

1

2
√

2πλ|r|
; ∂ηS0 |η=0 = 1 . (4.13b)

Substituting (4.13a) into (4.10), canceling the common exponential prefactors and collecting O(λ2) terms,
we obtain the ODE for S0(η)

∂ηηS0 − φ(ξ)2S0 = 0 , ∂ηS0 |η=0 = 1 , S0 → 0 as η → ∞ , (4.14a)

where we have defined

φ(ξ) ≡
√

1− |r|2ξ ; |r|ξ < 1 . (4.14b)

The limiting condition in (4.14a) is required for matching to the outer solution R̃ ∼ 0. Note that the |r|2ξ
term in (4.14a) arises from the ∂ξξ term in (4.10a), which becomes O(λ2) due to the fast variation of the
boundary data in (4.10b). The solution of (4.14a) is

S0(η, ξ) = B0(ξ)e
−φη ; B0(ξ) = − 1

φ(ξ)
. (4.15)

We therefore have that the solution for R̃0 near the boundary is given by (4.13a) with c0(ξ) and S0(η, ξ)
defined in (4.13b) and (4.15), respectively. The leading order behavior of R̃(x′;x0) on the boundary in (4.7)
is then given by R̃(x′,x0) ∼ c0(ξ)B0(ξ). For R̃1, we make the ansatz

R̃1 = f1(η, ξ)e
−λ|r| ; f1(η, ξ) = c1(ξ)S1(η, ξ) , (4.16a)

and set

c1(ξ) = −3

8

〈

r

|r|2 , n̂
〉

1

2
√

2πλ|r|
; ∂ηS1 |η=0 = 1 . (4.16b)

Substituting (4.13a) and (4.16a) into (4.10) and collecting O(λ) terms, we obtain for S1

∂ηηS1 − φ(ξ)2S1 =
c0
c1

[a1 + b1η]S0 , ∂ηS1 |η=0 = 1 , S1 → 0 as η → ∞ , (4.17a)

where

a1 = −φ+ 2|r|ξ
c′0
c0

− 2|r|ξ
φ′

φ
+ |r|ξξ , b1 = −2|r|2ξ − 2|r|ξφ′ . (4.17b)

We solve the ODE (4.17a) for S1 to obtain

S1(η, ξ) = B1(ξ)e
−φη +

c0η

4φ3c1
[2φa1 + b1 + φb1η] e

−φη ; B1(ξ) =
1

φ

[

c0 (2φa1 + b1)

4φ3c1
− 1

]

, (4.18)

where a1 and b1 are defined in (4.17b). We conclude that a two-term expansion for R̃(x′;x0) accurate to
O(λ−1) ∼ O(s−1/2) on ∂Ω in (4.7) is given by

R̃(x′;x0) ∼ c0(ξ)B0(ξ) +
1

λ
c1(ξ)B1(ξ) , (4.19)

where B0 and B1 are given in (4.15) and (4.18), respectively. While the integral in (4.7) may be evaluated
asymptotically using Laplace’s method, we evaluate it numerically in order to preserve the O(λ−1) accuracy.
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We now compare estimates for P (t) and C(t) on the unit disk with one trap obtained from using the one-
and two-term expansions for R̃(x′;x0) on the boundary. For N = 1 in (3.7) and s ≫ 1, A1 simplifies to

A1(s) =
G1,0

1 + 2πνR1,1
, (4.20a)

where

G1,0 =
1

2π
K0

(√
s |x0 − x1|

)

+ R̃(x1;x0, s) , (4.20b)

and

R1,1 ∼ − 1

2π

(

1

2
log s− log 2 + γ

)

. (4.20c)

In (4.20b), R̃(x1;x0, s) is obtained from (4.7) using either a one- or two-term expansion for R̃(x′;x0) obtained
above. In (4.20c), we have dropped the exponentially small self-interaction term R̃(x1;x1, s). The free
probability P (t) and capture time distribution C(t) are then given by (3.9). We illustrate the theory in the
following example.

Example 4.3 In this example, we consider a single trap with radius ε = 0.01 and center x1 = r1(cos θ1, sin θ1)
with r1 = 0.6 and θ1 = 3π/4. The Brownian particle starts at x0 = (0.7, 0). Results shown in Fig. 5.

The numerical result is shown in heavy solid in Fig. 5. For such a configuration, and for time extending
beyond the initial flux of particles that travel straight from x0 to the trap, the boundary is expected to
significantly impact the particles that get captured. This is evidenced by the inability of the boundary-free
approximation (dotted) to predict the behavior of P (t) and C(t) beyond a small initial time interval. The
one-term approximation (dash-dotted) slightly extends the range of validity of the estimate. The time at
which the boundary-free and one-term estimates begin to diverge may be regarded as the approximate time
at which particles that have interacted with the boundary first begin to become trapped. In contrast to the
previous two estimates, the two-term approximation (dashed) accurately predicts C(t) to almost t ∼ O(1).
In fact, it is able to predict up to and beyond the mode of C(t), the most common capture time.

Example 4.4 Here we demonstrate the method on the multi-trap scenario of Fig. 4. Again, we specify the
starting location x0 = (0.2, 0) and trap locations xj = x0 + rj(cos θj , sin θj), where rj and θj are given in
(4.6). Results in Fig. 6.

For example 4.4 we solve the full system (3.8a) for {A1(s), . . . , A5(s)}, with Gj,k and Rk,k given by (3.14a)

and (3.14b), respectively. In both (3.14a) and (3.14b), R̃ is given in terms of the integral (4.7) with its
value on the boundary given by (4.19). Using (3.9), we apply a numerical inverse transform to compute
P (t) and C(t). The asymptotic result is shown in Fig. 6 (dashed) and is compared to that obtained from
numerically solving (1.1) (solid), and from the boundary-free approximation (dotted) obtained from solving
the system (3.8a) using (4.1) for Gi,j and (3.14b) with R̃ = 0 for Rk,k. We observe excellent agreement
between the two-term asymptotic estimate and the numerical result. In fact, both the two-term estimate
and the boundary-free approximation almost exactly capture the mode of C(t). This may be attributed to
the proximity of x0 to the nearest traps, and consequently, the limited contribution from the boundary. We
remark, however, that the accuracy of the two-term asymptotic estimate persists even to only moderately
small values of t, well beyond the range that the boundary-free approximation can capture.

Example 4.5 Here we illustrate that the two-term estimate is able to capture the strong boundary effects of
when the starting location x0 is near ∂Ω. With the starting location at x0 = (0.92, 0), we set the locations of
the five circular traps of radius ε = 0.01 at xj = x0 + rj(cos θj , sin θj) where

r1,2,3 = 0.4 , (θ1, θ2, θ3) = (3π/4, π, 5π/4) , (r4, r5) = (0.6, 0.8) , (θ4, θ5) = (7π/6, 5π/6) . (4.21)

Results in Fig. 7.

15



-1 -0.5 0 0.5 1
x

-1

-0.5

0

0.5

1

y

(a) Example 4.3 schematic
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Figure 5: Schematic and results for Example 4.3. In (a), we show the schematic
with one trap of radius ε = 0.01 centered at x1 = r1(cos θ1, sin θ1) with r1 = 0.6
and θ1 = 3π/4 (open circle). The initial walker location (solid dot) is x0 = (0.7, 0).
In (b), we show the numerically computed capture time density (solid) along with
the boundary-free approximation (dotted), one-term (dash-dotted), and two-term
estimates (dashed). The two-term estimate is almost indistinguishable from the
numerical solution of (1.1). Note that the two-term estimate is able to accurately
predict the location of the mode of C(t).
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Figure 6: Results for Example 4.4. In (a), we show the free probability density
P (t) for a particle on a unit disk starting a random walk from x0 = (0.2, 0). The
locations of the five circular traps of radius ε = 0.01 are given by (4.6). The
full numerical result is shown in solid, the two-term asymptotic result in dashed,
and boundary-free approximation in dotted. In (b), we show the corresponding
plots for C(t). While both the boundary-free and two-term estimates are able to
capture the mode of C(t), the agreement of the two-term estimate persists well
past the mode and into the tails of P (t) and C(t).
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In Fig. 7, we observe that the two-term estimate (dashed) more closely predicts P (t) and C(t) over a
much longer time interval than does the boundary-free approximation (dotted). Compared to Fig. 6, the
boundary-free approximation is an especially poor predictor at moderate values of t due to the presence of
strong boundary effects. This implies that over the time interval in which the boundary-free approximation
diverges from the numerical and two-term results in Fig. 7, a significant proportion of absorbed particles had
first interacted with the boundary. As a result, the boundary-free approximation over-estimates the survival
probability, as it does not account for the “funneling” by the boundary of particles into the traps. Conversely,
the two-term estimate predicts P (t) and C(t) for a longer time interval, and also reasonably predicts the
mode of C(t) (the time and the frequency). However, compared to Fig. 6, the interval of agreement is
noticeably smaller. The reason for this discrepancy is that the expansion in the boundary condition (4.10b)
requires that

√
s |x′ − x0| ≫ 1. For x′ ∈ ∂Ω near x0, where the contribution to the integral (4.7) is greatest,

the requirement for large s satisfying
√
s |x′ − x0| ≫ 1 limits the range of validity to very small t. However,

we note that a full numerical solution of (3.13) in this case is less likely to be distorted by numerical error,
since the maximum contribution of the boundary data is no longer exponentially small when

√
s |x′ − x0|

falls outside the asymptotic regime. As such, it is still possible to combine the finite element method with
the asymptotic solution to obtain a uniform estimate of P (t) and C(t).
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Figure 7: Schematic and results for Example 4.5. In (a), we show the schematic
with x0 = (0.92, 0) (solid dot) along with the locations of the five circular traps
of radius ε = 0.01 given by (4.21) (open circles). In (b) we show the full nu-
merical result for C(t) (solid), the two-term asymptotic estimate (dashed), and
the boundary-free approximation (dotted). While the two-term estimate better
predicts the full result over a longer time interval than does the boundary-free
approximation, the interval of agreement is smaller than that seen in Fig. 6 due
to the proximity of x0 to the boundary.

In the next two examples, we demonstrate that the large s (small time) estimate for Gh given by (3.10)
with (4.19) is capable of capturing C(t) when it is bimodal. In such distributions, the first peak in C(t) is
due to the first wave of particles being caught by a trap near the starting location x0. The second peak is
due to the next wave of particles being caught by the second absorbing set located opposite the first trap
and at distance farther from x0. One such configuration that produces a bimodal distribution is shown in
Fig. 8(a), where the starting location is indicated by the solid dot while the open circles represent equal
sized traps. Critically, the second absorbing set must be larger than the first trap, casting a “wider net” to
accommodate the increased dispersal of particles. One way to achieve this effect with a smaller number of
traps is by replacing the traps of the second absorbing set with fewer larger traps (Fig. 10(a)).

Example 4.6 In this example, we set the starting location at x0 = (0, 0), with the nearest trap centered at
x1 = (0.3, 0). The five traps composing the second absorbing set are centered on the ring of radius rc = 0.71
at angles 3π/4, 7π/8, π, 9π/8, and 5π/4. All traps share a common radius of εc = 0.01. This configuration
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is shown in Fig. 8(a), while the bimodal distribution it produces is shown in Fig. 8(b).
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Figure 8: Schematic and results for Example 4.6. In (a), we show the starting
location x0 at the origin (solid dot) surrounded by six traps of equal size that
form two absorbing sets. The first set consists of the nearest trap centered at
(r1, 0). The second set is composed of the union of the five traps centered on a
ring rc > r1. In (b), we show the resulting bimodal distribution for C(t). The
first peak corresponds to paths straight from x0 to (r1, 0). The second peak
corresponds to direct paths from x0 to the second absorbing set. The second
absorbing set needs to be larger due to the greater dispersal of paths on the ring
r = rc versus r = r1.

In Fig. 9, we show snapshots of p(x, t) near the two times corresponding to the peaks of C(t) in Fig. 8(b).
The plots were generated from numerical solution of (1.1) with the initial location x0 and absorbing set ∂Ωε
as specified in Example 4.6. The first peak in Fig. 8(b) occurs when a significant portion of the distribution
first reaches the first trap (Fig. 9(a)). As the front traveling toward positive x-values spreads past the first
trap, the frequency of particles exiting declines until the front on the opposite side spreads to the second
absorbing set composed of the five traps in the second and third quadrants (Fig. 9(b)). This leads to an
increase in the rate of particles exiting the domain, generating the second peak in Fig. 8(b). This is followed
by a monotonic decay of C(t) as the particle distribution becomes more diffuse and uniform.

Example 4.7 In this example, we set the starting location at x0 = (0, 0), with the nearest trap of radius
ε1 = 0.005 centered at x1 = (0.3, 0). The three larger traps of common radius εc = 5ε1 composing the second
absorbing set are centered on the ring of radius rc = 0.75 at angles 2π/3, π, and 4π/3. This configuration is
shown in Fig. 10(a), while the bimodal distribution it produces is shown in Fig. 10(b).

In the final example, we demonstrate the efficacy of the two-term estimate for the case in which Ω is an
ellipse. While the leading order term is independent of curvature, the second order analysis leading to (4.17b)
must altered to account for the non-constant curvature, yielding in place of (4.17b),

a1 = −φκ+ 2|r|ξ
c′0
c0

− 2|r|ξ
φ′

φ
+ |r|ξξ , b1 = −2κ|r|2ξ − 2|r|ξφ′ . (4.22)

For an ellipse parameterized by

x = rA cos t , y = rB sin t ; t ∈ [0, 2π) , (4.23)
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(a) p(x, t) at t = 0.02. (b) p(x, t) at t = 0.05.

Figure 9: Snapshots of solution p(x, t) of (1.1) at (a) t = 0.02 and (b) t = 0.05
for Example 4.6. The times of the two snapshots approximately correspond to
the times of the two peaks in C(t) in Fig. 8(b). The first peak occurs as the
initial distribution reaches the nearest trap, while the second peak occurs later
time when the distribution spreads to the second set of five absorbing traps.
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Figure 10: Schematic and results for Example 4.7. In (a), we show the starting
location x0 at the origin (solid dot) surrounded by two absorbing sets. The first
set consists of the nearest trap centered at (r1, 0). The second set is composed
of the union of the three traps centered on a ring rc > r1. In (b), we show the
resulting bimodal distribution for C(t). As in Example 4.6, the “wider net” cast
by the second absorbing set accommodates the increased dispersal of paths by
the time they have reached the ring r = rc.
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with rA > rB , the curvature κ(ξ) is defined implicitly in terms of the arc length ξ by

ξ(t) = rA

∫ t

0

√

1− k2 cos2 t dt , κ(t) =
rArB

(

r2B cos2 t+ r2A sin2 t
)3/2

; k ≡

√

1−
(

rB
rA

)2

; rA > rB .

(4.24)
The rest of the analysis remains unchanged.

Example 4.8 In this example, we let Ω be an ellipse parameterized by (4.23) with rA = 1 and rB = 1/2.
We place one circular trap of radius ε = 0.01 centered at x1 = (0, 0.25) while setting the starting location at
x0 = (0.7, 0). The schematic is shown in Fig. 11(a).

In Fig. 11(b), the numerical result for the capture time density C(t) is shown in heavy solid, while the two-
term estimate, using the modified coefficients (4.22), is shown in heavy dashed. To illustrate the boundary
effect of the ellipse, we show in light solid the two-term estimate for the same trap and starting locations
but with Ω replaced by the unit disk (light solid in Fig. 11(a)). The difference clearly suggests that the
portion of the boundary closest to the trap helps funnel particles toward the trap, allowing a greater portion
of particles to the captured in early time. This effect is absent in the case of the unit circle on which the
trap lies too far from the boundary. The funneling effect of the elliptical boundary is well-captured by the
two-term estimate for the ellipse.
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Figure 11: Schematic and results for Example 4.8. In (a), we show the starting
location x0 = (0.7, 0) (solid dot) and a circular trap of radius ε = 0.01 centered at
x1 = (0, 1/4). The elliptical (circular) domain is outlined in heavy (light) solid. In
(b), we show the resulting distribution for C(t), with the numerical result shown
in heavy solid and the two-term estimate for the ellipse shown in heavy dashed.
In light solid is the two-term estimate for the same trap and starting locations,
but with the ellipse replaced by the unit disk.

In these examples, we have demonstrated the value of the two-term estimate in not only capturing boundary
effects, but in predicting P (t) and C(t) to almost t ∼ O(1) in some cases. We have also shown that it is
able to capture the mode of the full capture time distribution, and, in cases where there are two distinct
absorbing sets, the bimodal behavior of C(t) in the early time evolution. We have also demonstrated its
efficacy on a non radially symmetric domain.

20



5 Estimating passage time density at large times

In the previous sections, we have focused on determination of the passage time density at short times where
the starting location and geometry strongly influence the capture rate. At larger times, the free probability
decays exponentially according to (1.9), where λ0(ε) is the principal eigenvalue of the Laplacian (1.8). The
quantity λ0(ε) and its associated eigenfunction has been calculated (cf. [8–10, 12, 14, 21–23]) as ε → 0 and
can be determined numerically by boundary integral equation methods (cf. [37]).

0 0.2 0.4 0.6 0.8 1
t

0

0.5

1

1.5

2

2.5

3

C(t)

(a) Example 3.1

0 2 4 6 8 10
t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C(t)

(b) Example 4.3

0 1 2 3 4 5
t

0

0.5

1

1.5

2

2.5

3

C(t)

(c) Example 4.6

0 1 2 3 4 5
t

0

0.5

1

1.5

2

2.5

C(t)

(d) Example 4.7

Figure 12: The full distribution of passage times for the configurations of Exam-
ples 3.1, 4.3, 4.6 and 4.7 over large times. Comparison given for full finite element
simulations (solid line) of (1.1), the hybrid-asymptotic method (dashed line) and
discrete particle simulations (solid dots). At this scale, the hybrid result is very
difficult to distinguish from the exact numerical result.

Here we demonstrate the ability of the hybrid-asymptotic method to obtain the full capture time distribution
C(t) over larger ranges of t. In contrast to §4, where Gh(x;xj ; s) and its regular part Rh were evaluated
by an asymptotic analysis of (3.13) valid only in the limit s → ∞, we use here a numerical finite element
evaluation of (3.13) that is valid for the entire relevant range of s. In Fig. 12 we display the agreement
between full finite element simulations of (1.1), the hybrid-asymptotic method of §3 and discrete particle
simulations (cf. Appendix A) with very good agreement between the three methods.
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6 Discussion

We have presented and demonstrated a hybrid asymptotic-numerical method for estimating the full capture
time distribution C(t) of the two-dimensional narrow capture problem with internal traps. The motivation
for this work is a calculation of the variance of the MFPT (cf. §2) which is found to be asymptotically equal
to the MFPT. This implies that the MFPT is not necessarily a reliable estimate of typical capture times
therefore requiring a method for obtaining the full distribution. The method developed relies on accurate
determination of a Helmholtz Green’s function Gh and in particular its regular part Rh. For t ≪ 1, we
calculate a two-term boundary layer asymptotic solution for Rh and show that it can predict C(t) for over
moderately small times. When compared to a boundary-free approximation, the two-term estimate clearly
shows the effect of the boundary funneling particles toward the trap(s), and also the timescale over which
this effect becomes dominant. In addition, it is able to capture the bimodal nature of C(t) in cases when the
traps are arranged into two distinct absorbing sets. Finally, we have shown that the method also works on
domains that do not exhibit radial symmetry. We remark that in this small t regime, modulo the numerical
inversion of the Laplace transform, our method for computing C(t) requires only the asymptotic expansion
of a certain Green’s function.

For t ∼ O(1), the hybrid method can be employed by using numerical evaluation of Gh and Rh. We remark
that the method is accurate enough to capture some of the critical small time properties of C(t), including
when C(t) is bimodal. We emphasize that we are able to accurately estimate statistics of a time-dependent
stochastic processes in terms of a single time-independent Green’s function. Furthermore, the estimates that
we obtain are accurate beyond all orders of ν, where ν ∼ O(−1/ log ε) and ε is the typical trap radius.

An interesting problem would be to extend the techniques presented here to a three-dimensional geometry
with multiple absorbing traps [15]. The boundary layer solution in the t ≪ 1 regime would be a far more
involved calculation. For t ∼ O(1), the Green’s function solver would need to be not only accurate enough
to resolve the O(ε) scale of the traps, but fast enough to be called repeatedly by the numerical Laplace
inversion routine.

Another open problem would be to compute the capture time density in cases in which the traps are non-
static in time. Examples include scenarios in which the traps are mobile (e.g., [40, 41]), or undergo stochastic
switching between absorbing and non-absorbing states ([42]). In Fig. 13(a), we show a simple motion in which
one small trap rotates concentric with the unit disk while the starting location of the particles x0 is set close
by. The resulting capture time density features multiple modes corresponding to the capture of particles
on each successive sweep of the trap through x0. As the particles disperse, the peaks in C(t) become less
localized in time. Multimodal distributions are also expected to arise in the aforementioned case of one
stochastically switching trap, with the peaks occurring at times during which the trap is in the absorbing
state. In such scenarios with multiple modes, the MFPT, or global MFPT, is even less informative than in
the case of static traps. As such, it would be useful to develop techniques for obtaining full capture time
distributions in cases when traps do not remain static in time.

Acknowledgments

A.E.L. and R.T.S. acknowledge support from NSF grant DMS-1516753. J.C.T. was partially supported by
a PIMS CRG Postdoctoral Fellowship. The authors gratefully acknowledge the insightful contributions of
Andrew Bernoff, Theodore Kolokolnikov, and Michael J. Ward. A.E.L acknowledges the assistance of the
Notre Dame Center for Research Computing (CRC).

A Particle Simulations

The particle simulations of Fig. 12 involved 2 million discrete Brownian paths. When particles encountered
the outer boundary, they were reflected back into the domain at an angle equal to their incidence angle
with respect to the normal vector at the boundary contact point. An adaptive time step was used based on
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Figure 13: In (a), we show a schematic of a counterclockwise rotating trap of
radius ε = 1 × 10−5 starting at x0 = (0.5, 0), while the starting location of the
particles is at (0.5 cos(0.5), 0.5 sin(0.5)). In (b), we show the capture time density
C(t). The peaks correspond to the capture of particles on each successive sweep
of the trap through x0.

shortest distance to an absorbing set which allows for high accuracy close to absorption while accelerating
the sampling of long excursions. Simulations were run in parallel using facilities at the Notre Dame Center
for Research Computing (CRC).
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