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Abstract

We propose a new topological characterization of RNA secondary structures with pseudoknots
based on two topological invariants. Starting from the classic arc-representation of RNA secondary
structures, we consider a model that couples both I) the topological genus of the graph and II) the
number of crossing arcs of the corresponding primitive graph. We add a term proportional to these
topological invariants to the standard free energy of the RNA molecule, thus obtaining a novel free
energy parametrization which takes into account the abundance of topologies of RNA pseudoknots
observed in RNA databases.
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1 Introduction

The prediction of possible foldings of RNA
molecules is still a major open problem of molec-
ular biology1;2. It is of utmost importance,
since the three-dimensional structure of any folded
biopolymer mostly determines its biological func-
tion by providing the adequate geometry for bio-
chemical reactions to occur. In the last thirty
years, the role of RNA has been upgraded from be-
ing a relatively minor player in the central dogma
of Watson and Crick to being one of the central
players in molecular biology1. It has been recog-
nized that in addition to being a carrier of genetic
information, some RNA may also have enzymatic
roles, and may play a central part in the regula-
tion of biological networks1. In spite of consid-
erable effort, the accurate prediction of the three-
dimensional structure of RNA from its primary se-
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quence has resisted so far the most advanced com-
putational methods, in particular for long RNA
sequences. In such cases, drastic approximations
are necessary. A typical simplifying assumption is
that the RNA secondary structure (i.e. the com-
plete list of paired nucleotides) already provides
sufficient information on the active sites of the
RNA molecules, by allowing the identification of
loops and other motifs such as pseudoknots, where
the biochemistry takes place3. The energetic land-
scape of an RNA molecule is mostly dominated by
Crick-Watson base pairings (A,U), (G,C), and the
additional wobble pair (G,U). Non-canonical base
pairs and tertiary interactions have been recog-
nized to further stabilize the structure4 of RNA,
nonetheless we will not include them in the present
work. Several deterministic and stochastic meth-
ods have been proposed for the prediction of sec-
ondary structures of RNA molecules5;6;7;8. De-
spite great progress, their overall success is lim-
ited, in particular for long RNA molecules. Part
of the difficulty lies in the prediction of RNA pseu-
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doknots, which has been identified as an NP -
complete problem9.

2 Statistical physics of RNA
pseudoknots

We now summarize some standard notations to
represent all base-pairings in a RNA molecule.
The backbone of an RNA molecule can be rep-
resented by an oriented straight line (from the 5′

to the 3′ end), on which the nucleotides appear
in the order given by the RNA primary sequence.
A pairing between two bases is depicted by an arc
joining the two bases in the upper half-plane above
the backbone line (see Fig. 1). A graph without
crossing pairing lines is called a planar graph. If
a graph contains lines that cross, then it is said
to contain a pseudoknot. If one assigns a suitable

Figure 1: In the arc-diagram representation of an
RNA, crossing arcs indicate the presence of a pseu-
doknot.

pairing energy (called stacking energy) to adjacent
base pairs, then it is possible to compute the par-
tition function of all planar graphs exactly, by us-
ing standard recursion equations10;11. However, if
one allows for the occurrence of pseudoknots then
those recursive algorithms face an overwhelming
increase in polynomial complexity. Several alter-
native algorithms have been proposed to predict
pseudoknotted structures12;13;14;15;16.

We have proposed a topological classification of
pseudoknots in terms of their genus15, followed
by two algorithms for the prediction of such pseu-
doknots16;17. The genus of an RNA graph can
be defined in the following way18: join the 5′-end
with the 3′-end by bending the backbone line in
the lower-half plane to make a circle, so that all
pairing lines exist on the outside of the circle. The
actual size of such a circle is of course irrelevant,
and it is therefore topologically equivalent to a

puncture on a surface. The genus of the graph is
the minimal number of handles one has to carve
in a punctured sphere, so that the graph can be
drawn on it without any crossing. A planar graph
by definition can be drawn on a sphere without
any crossing arc, and so it is of genus g = 0 (the
sphere has no handles). A H-pseudoknot (i.e. the
“ABAB” pseudoknot with two helices A and B)
can be drawn without crossing on a torus, which
is a sphere with one handle and therefore with
genus g = 1 (see Fig. 2).

Figure 2: The arc-diagam representation of an
“ABAB” H-pseudoknot, its double-line represen-
tation, and its embedding on a torus on which the
arc-diagram can be drawn without crossings. This
corresponds to a topological genus g = 1.

A practical diagrammatic way to compute the
genus of a graph is by using the so-called double-
line representation, where base-pairs are drawn us-
ing oriented double lines (see Fig. 2). In such
a representation, oriented loops appear on the
graph. The genus can be shown to be equal to
g = (p − l)/2 where p is the number of pairings
of the graph (i.e. the number of arcs) and l is
the number of closed loops. The genus allows to
organize pseudoknots and secondary structures of
RNA systematically in equivalence classes, each
class corresponding to a value of the genus g 19;15.
It is a topological invariant which depends only
on the connectivity of the RNA base-pairs. More-
over, it has the property of being additive: if a
structure comprises two consecutive pseudoknots
with genus g1 and g2, the genus of the whole RNA
sequence is g = g1 + g2. However, it is known
experimentally that pseudoknots are fairly rare
in RNA molecules19. Furthermore, they usually
impose some mechanical constraint on the sugar-
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phosphate backbone of the molecule. We have
thus proposed16;17 to add an energetic penalty
proportional to the genus, to the standard fold-
ing energy (which includes stacking energies, loop
penalties, etc.). Within such a framework, the
partition function of the system is

Z =
∑

all graphs

e−β[E(graph)+µgg(graph)] (1)

where β = 1/kBT is the inverse temperature, kB
is the Boltzmann constant, E is the free energy
(which phenomenologically includes the configu-
rational entropy at fixed genus) and g is the topo-
logical genus. The parameter µg is a phenomeno-
logical parameter, used to penalize graphs with
high genus. Planar graphs, i.e. graphs without
pseudoknots are obtained by taking µg to infin-
ity18;20.

We have developed two algorithms to sam-
ple the partition function in eq. (1) and predict
the secondary structures of RNAs with pseudo-
knots16;17. In16, we first make a library of possi-
ble paired RNA segments from the sequence. We
then enumerate all the possible assemblies of these
fragments and compute the corresponding free en-
ergy. The minimal free energy state can be com-
puted, but the method is limited to fairly small
sizes (L < 150 where L is the number of nucle-
obases). In17, we start from the same library of
building blocks, but we assemble them using a
Monte Carlo algorithm (multiple Markov chains).
This last method allows to handle RNAs of sizes
up to 1000 nucleobases.

Although methods based on eq. (1) are promis-
ing, they do not predict correctly the abundance of
various structures with identical genus and com-
parable energy. That is mostly due to the fact that
typical energy functions do not explicitly discrim-
inate between structures with identical genus. For
example, following ref.19, there are four primitive
graphs of genus g = 1. We define a primitive graph
as a graph which is both irreducible (i.e. cannot be
disconnected by cutting the backbone somewhere)
and non-nested (i.e. cannot be disconnected by
cutting twice the backbone somewhere), and in
which all equivalent parallel pairing arcs (i.e. a
sheaf of parallel arcs) are collapsed into a single
renormalized arc. Later in this paper, we give an

alternative definition, but completely equivalent.
In Fig. 3, we sketch all four primitive graphs with
genus g = 1 (which have been obtained first in
ref.21 by steepest descent methods).

With obvious notations, the 4 pseudoknots can
be labeled as ABAB, ABACBC, ABCABC, AB-
CADBCD. As it was shown in ref.19, the abun-
dance of ABAB, either in the databases PDB
or in PseudoBase, is much larger than that of
ABACBC. The ABCABC pseudoknot is quite
rare while the ABCADBCD is absent from the
databases. This variation in abundance of the
various genus 1 primitive pseudoknots is hardly
understandable if the energetic penalty is only de-
pendent on the genus. In fact, while it would be
straightforward to create a sequence that has min-
imum energy for the ABACBC configuration, by
simply inverting the inner“AC”into“CA”it can be
rendered a ABCABC pseudoknot with similar en-
ergy and similar genus, but which is far more rare
in nature. To account for such a variation within

Figure 3: There are four type of primitive pseudo-
knots with genus g = 1.

a given genus, it is thus necessary to supplement
the free energy by an additional term which would
further discriminate between the structures. If we
look at the four graphs of fig. 3, we see that they
differ by the number of crossings (i.e. crossing
arcs) of the effective pairing arches. The ABAB
graph has 1 crossing, ABACBC has 2 crossings,
ABCABC has 3 crossings and ABCADBCD has 5
crossings. It turns out that their abundance de-
creases as a function of the number of crossings.

3 Chemical potential for RNA
crossing arcs

As the number of crossings of a primitive graph
is an additive quantity, it is natural to include
an energetic penalty proportional to this number.
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We therefore introduce the renormalized crossing
number in the following way:

1. Given a generic graph D, let D = D1+D2+. . .
be its decomposition in irreducible or nested
parts Di.

2. For each graph Di we consider its primitive
version D′i (i.e. all stacked arcs are collapsed
into a single renormalized arc).

3. The renormalized crossing number Nc of D is
defined as the sum of the crossing number of
each D′i.

Such a definition allows to generalize the free en-
ergy for a RNA graph:

E1 = E(graph)+µgg(graph)+µcNc(graph) , (2)

and
Z =

∑
all graphs

e−βE1 , (3)

where Nc(graph) denotes the renormalized cross-
ing number of a given graph, and µc controls
the associated energetic penalty. As was shown
in ref.16, a typical value for the genus penalty is
βµg = 1.5.

The crossing penalty can be estimated by trying
to fit the abundance of the various types of genus
1 pseudoknots. Currently, there are 398 pseudo-
knots in the Pseudobase database22. In particular
there are 355 ABAB graphs, 7 ABACBC graphs, 1
ABCABC graph, and no ABCADBCD graphs (for
a total of 363 pseudoknots with genus 1). Such an
“exponential” decay can be roughly described by
using an approximate value of βµc ≈ 2.5. Such
an estimate represents an empirical average over
several RNA sequences, and therefore it neglects
individual RNA sequence biases within a given iso-
genus population. This provides a convenient way
to account for the under-represented abundance
of the ABCABC pseudoknot and the absence of
the ABCADBCD pseudoknot, both of genus 1. It
is worth emphasizing here that the relative abun-
dance of different pseudoknot classes, can be de-
scribed by introducing a single linear term in the

In our approach,the effect due to the length of the he-
lices is included only via the energy function, and it is not

free energy, with a the corresponding phenomeno-
logical parameter µc. Furthermore, in Pseudobase
there are also 35 ABCDCADB graphs with genus
2. The latter represent a slightly biased sample
since they all are of the HDV-like ribozyme type
(see the diagram on the second column, third row
of Figure 4). A more systematic fit of the genus
and number crossing penalties will be presented in
a forthcoming study.

An important remark is in order at this point:
the genus and the crossing number do not uniquely
specify an RNA graph. Indeed, it is easy to see
that except for g = 1 there may exist several
graphs with same genus and crossing number. In
Figure 4 we display 8 graphs with genus g = 2 and
crossing number Nc = 3. Note that the introduc-

Figure 4: There are 8 primitive pseudoknots with
genus g = 2 and crossing number Nc = 3.

tion of a crossing penalty µc requires to recompute
the value of the genus penalty µg. A more precise
determination of both penalties will be performed
in a forthcoming study, by optimizing them in or-
der to improve the success rate of the prediction
algorithms.

We conclude this Section with a remark on the
link between the crossing number and the topolog-
ical genus. References24 and25 provide an upper
bound and lower bound, respectively, for the cross-
ing number of any graph with L vertices, maxi-
mum degree d, and genus g:

αdLg ≤ Nc ≤ dLcg , (4)

introduced explicitly here. For instance, the asymmetries
in the stem and loop lengths for most ABAB-pseudoknots
are well explained by a single-parameter thermodynamic
model presented in23.
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where c and α are constants, with c > 1 and α > 0.
In the RNA case one has d = 3. Moreover, in26

we showed that an RNA molecule with genus g
need to contain at least L = 4g nucleobases, i.e.
L/4 ≥ g. Therefore, one has:

12αg2 ≤ Nc ≤ 3LcL/4 . (5)

The upper bound in eq. (5) shows that large Nc

values require a large L, i.e. long RNA primitive
diagrams. On the other hand, the lower bound
shows that small Nc values (i.e. fewer crossings)
are inevitably linked with small values of g. As
suggested in19, a possible reason for the empirical
bias towards pseudoknots with low genus is that
evolutionary pressures have led to complex pseu-
doknots built from many small primitive pseudo-
knots with low genii (i.e. longer structures are
simply built out of simpler structures). It is in
this spirit that we introduced a chemical potential
µc for the crossing number (which is an additive
quantity) to the free energy eq. (2).

4 Implementation and Algo-
rithms

In this section we describe some algorithms to a)
extract the primitive graph from any RNA dia-
gram, b) to compute its genus and c) its renor-
malized crossing number. For practical software
implementations it is convenient to represent the
pairing of a generic RNA diagram by using a for-
malism based on permutations. Given an RNA
sequence with L bases, each base can be identi-
fied by an integer number i = 1, . . . , L, from the
5′ end to the 3′ end. A specific pairing (i, j) is
denoted by a permutation π with π(i) = j. Ob-
viously, pairings are symmetric and therefore also
π(j) = i holds true. Unpaired bases are repre-
sented by “fixed points” π(i) = i. With such con-
ventions, the permutation is an involution, that is
π(π(i)) = i for all i = 1, . . . , L.

4.1 Irreducible diagrams

To decompose any RNA graph in its irreducible
components, is sufficient to verify recursively
whether it can be disconnected by cutting the

Figure 5: A reducible diagram can be decomposed
in two disconnected components by cutting the
backbone once (dotted line).

backbone at any one point (see fig. 5). In particu-
lar, we may use an electrostatic analogy where the
pairings and the backbone are regarded as elec-
trostatic field lines. We assign a positive charge
q = +1 to every base where a pairing begins, (i.e.
with π(i) > i), a negative charge q = −1 to every
base where a pairing ends, (i.e. with π(i) < i),
and no charge, q = 0, to every free base (i.e. with
π(i) = i):

qi = sign (π(i)− i) , i = 1, . . . , L , (6)

where sign is the sign function (equal to 0 for
vanishing argument). When the cumulative sum
ck =

∑k
i=1 qi is zero, then all pairings that started

before the k-th base also must have ended before
the k-th base. In fact, the RNA segment up to
the base k (included) is charge neutral, and thus
is loosely bound to the rest of the molecule (i.e.
there are no unbalanced pairings to the left of k).
By cutting the backbone just on the right of the
k-th base, the molecule disconnects into two sepa-
rate components. This procedure can be repeated
all the way to the 3’ end of the RNA molecule (up
to i = L), and every time that the cumulative sum
ck is zero, the graph can be disconnected by cut-
ting the backbone at the base k. The pseudocode
implementing such procedure is in Algorithm 1.

4.2 Nested diagrams

The next essential tool is the identification of all
nested components in the diagram. A diagram is
said to contain a nested component if such a com-
ponent can be removed by cutting the backbone at
two points. The concept of “nestedness” is closely
related to the concept of irreducibility. This can
be illustrated by introducing the cyclic (right)
shift-permutation σ = (2, 3, 4, . . . , L, 1). Under
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Algorithm 1 Decompose a diagram into irre-
ducible components

Require: π (a permutation involution)
1: L=length(π)
2: StartsAt=1;c=0
3: for i=1 to L do
4: c=c+sign(π(i)-i)
5: if c is 0 then
6: Print “irreducible from ” StartsAt “to” i
7: StartsAt=i+1;
8: end if
9: end for

such shift permutation, every site i is mapped onto
its right-neighbor i + 1. Moreover, the permuta-
tion is cyclic in the sense that the last base i = L
is mapped onto the first one i = 1. By apply-
ing the shift permutation σ a sufficient number
of times, any nested component of the diagram
can be translated to the right until its rightmost
base touches i = L. Such a diagram is reducible
evidently. Therefore, one can identify all nested
components of a diagram by simply identifying all
the irreducible parts of σk · π for all k = 1, . . . , L.
Such a procedure is implemented in Algorithm 2.

Algorithm 2 To identify all irreducible and
nested components

Require: π (a permutation involution)
1: L=length(π)
2: σ = (2, 3 . . . , L, 1) (the cyclic shift permuta-

tion)
3: for i=1 to L do
4: find (and output) all irreducible compo-

nents of π (use Algorithm 1)
5: π = σ · π;
6: end for

We note that all free bases are by definition also
nested components, since it is possible to discon-
nect any free base i by simply cutting the back-
bone at i−1 and i+1. Therefore, when considering
diagrams that do not have any nested component,
one can as well consider diagrams where all free
bases are removed.

The possibility of identifying all nested com-
ponents in a RNA diagram, opens the way to a

procedure that we defined as “backbone renormal-
ization” in18. It consists of replacing each nested
component by a new type of backbone segment,
called zg, where g is the genus of the nested com-
ponent that has been replaced. To that objective,
we briefly review18 how to compute the genus of
any diagram (nested or not, irreducible or not).

4.3 The genus

The explicit evaluation of the formula g = (p−l)/2
can be performed efficiently by using the formal-
ism of permutations. In this case, the number of
pairings, which is simply half the number of paired
bases, is given by

p =
1

2

L∑
i=1

(1− δiπ(i)) (7)

where δ is the Kronecker delta function. The total
number of loops can be obtained by counting the
number of cycles c of the permutation σ · π where
σ is the cyclic shift-permutation27. One can easily
verify that c = l+1, that is, among all cycles there
is also a loop which contains the cyclic link from
i = L to i = 1. We have:

g =
p− c+ 1

2
. (8)

The pseudocode to compute the genus of a per-
mutation involution π is in Algorithm 3.

Algorithm 3 Compute the genus of the diagram
π
Require: π (a permutation involution)

1: L=length(π)
2: σ = (2, 3 . . . , L, 1) (the cyclic shift permuta-

tion)
3: τ = σ · π
4: c = number of cycles of τ
5: p = (L− number of fixed points of(π) )/2;
6: genus=(p− c+ 1)/2

It is straightforward to verify also that the genus
is an additive quantity both in the nested compo-
nents and in the irreducible parts. More precisely,
if the (reducible) diagram D = D1 ∪ D2 is the
sum of two irreducible components D1,D2, then
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g(D) = g(D1) + g(D2). Analogously, if the dia-
gram D has a nested component D1, then again
g(D) = g(D1) + g(D2), where D2 is the comple-
ment of D1 in D.

4.4 Primitive diagrams

The final requirement to characterize primitive di-
agrams is to collapse parallel pairing lines in the
graph into a single one. We say that two lines
(or arcs) are equivalent if they don’t cross, and if
they intersect exactly the same pairing lines (see
Fig. 6). A simple way to translate it into an algo-

Figure 6: Arc renormalization: any sheaf of par-
allel arcs can be mapped into a single arc

rithm is to define a primitive diagram as an irre-
ducible, not nested diagram, with no stacked pair-
ings. Any stacked pairing in π corresponds to a
cycle of length two for the composite permutation
σ̄ ·π, where σ̄ = {2, 3, 4, . . . , L, L} is the non-cyclic
(right) shift permutation. Therefore, a primitive
diagram is represented by a permutation involu-
tion π which is irreducible, not nested and such
that σ̄ ·π does not contain any cycle of length two.
A simple algorithm to “renormalize” nested arcs
in a generic diagram, and to adsorb any nested
planar diagram into renormalized backbones (of
planar type only) is listed in Algorithm 4.

4.5 The renormalized crossing number

We conclude this section by providing an algo-
rithm to compute the crossing number and the
renormalized crossing number of a generic dia-
gram. The crossing number is the lowest num-
ber of crossing points among arcs in the diagram.
Like the genus, the crossing number is also an ad-
ditive quantity with respect to nestedness and re-
ducibility. In simple words, the crossing number of
any reducible (or nested) diagram D = D1 ∪D2 is
Nc(D) = Nc(D1) + Nc(D2). However, as we have
discussed previously the crossing number is not
invariant under arc-renormalization: for instance,

Algorithm 4 Primitive diagram

Require: π (a permutation involution)
1: flag=1
2: while flag=1 do
3: flag=0; L=length(π)
4: σ = (2, 3 . . . , L, L) (not-cyclic shift permu-

tation)
5: for i=1 to L do
6: if σ(π(σ(π(i)))) = i then {if there is a

2-cycle, then replace one of the two arcs
with free bases.}

7: π(π(i)) = π(i); π(i) = i
8: end if
9: end for

10: counter=1 {Relabel the sequence, while
skipping all fixed points}

11: for j=1 to L do
12: if π(j) = j then
13: label(j)=0
14: else
15: label(j)=counter; counter++
16: end if
17: end for
18: for j=1 to L do
19: if π(j) is not equal to j then
20: πnew(label(j))=label(π(j))
21: flag=1
22: end if
23: end for
24: π = πnew
25: end while
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the crossing number of the diagrams in Fig. 6 is
NC = 6 for the graph on the left and NC = 1
for graph on the right. Algorithm 5 parses the
RNA permutation involution π and for each arc
(π(i) > i), first it counts the number of intersect-
ing arcs between i and π(i), and then removes it.
While Algorithm 5 works for any graph, includ-
ing primitive ones, in our thermodynamic model
eq. (3) only the renormalized crossing number of
a graph is necessary. As explained in the intro-
duction, the rationale is that RNA databases do
not show a preference for short vs. long helices
for same-genus pseudoknots, in addition to the
enthalpic contribution. Algorithm 6 outlines the
pseudocode for computing the renormalized cross-
ing number.

Algorithm 5 Compute the crossing number of π

Require: π (a permutation involution)
1: L=length(π)
2: CrossingNumber=0
3: for i = 1 to L do
4: if π(i) > i then {rising arc}
5: a=i
6: b=π(i)
7: for j = a + 1 to b − 1 do {for each base

inside the arc}
8: if π(j)>b then
9: CrossingNumber++

10: end if
11: end for
12: π(π(i)) = i
13: π(i) = i
14: end if
15: end for

By using these algorithms to compute the genus
and the crossing number of a graph, it is possible
to perform a Monte Carlo sampling of graphs of
the system analogous to ref.17, using the energy of
eq. (3). The full implementation of the algorithm
and the fitting of the genus and crossing number
penalties will require additional work which will
be presented in a forthcoming paper.

Algorithm 6 Compute the renormalized crossing
number Nc of π

Require: π (a permutation involution)
1: Use Algorithm A2 to find all m irreducible and

nested components Di of π.
2: Nc=0
3: for i = 1 to m do
4: Use Algorithm A4 to compute the primitive

diagram D′i of Di.
5: Use Algorithm A5 to compute the crossing

number nc of D′i.
6: Nc = Nc + c
7: end for

5 Conclusions

In addition to a topological chemical potential
coupled to the genus, we propose to add a term
proportional to the renormalized crossing number
of a RNA graph to the energy function of pseudo-
knotted RNAs. Such a procedure requires the sys-
tematic evaluation of the primitive diagram of any
RNA secondary structure, with or without pseu-
doknots. In turn, that can be expressed naturally
with the formalism used in matrix quantum field
theory to renormalize Feynman diagrams. We dis-
cussed two levels of renormalization: the backbone
and the arc renormalization, leaving the vertex
renormalization to a future paper. The latter is
helpful not only to collapse the RNA diagram into
simpler ones, but can be used for building new di-
agrams with higher topological complexity from
simpler ones. We are currently implementing the
Monte Carlo algorithm with the modified energy
function to predict RNA structures. In order to
do so, it is necessary compute the change in the
genus and in the renormalized crossing number of
a graph upon addition or removal of a helical frag-
ment (equivalent to a single pairing in the primi-
tive graph). The incremental change of the genus
was described in ref.16, and the change of crossing
number will be discussed in a forthcoming paper.
However, as already pointed out in ref.17, all these
algorithms based on topology do not take into ac-
count the geometry of the molecule, and in partic-
ular, many of its predictions are plagued by steric
clashes. The next challenge will be to include the
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steric constraints at each step of the Monte Carlo
procedure.
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