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ABSTRACT 

Peptide aggregation frequently involves sequences with strong homophilic binding character, i.e., 

sequences that self-assemble with like species in a crowded cellular environment, in the face of a 

multitude of other peptides or proteins as potential heterophilic binding partners. What kinds of sequences 

display a strong tendency towards homophilic binding and self-assembly, and what are the origins of this 

behavior?  Here, we consider how sequence-specificity in oligomerization processes plays out in a simple 

2D lattice statistical-thermodynamic peptide model that permits exhaustive examination of the entire 

sequence and configurational landscapes. We find that sequences with strong self-specificities have either 

alternating hydrophobic and hydrophilic residues or short patches of hydrophobic residues, both which 

minimize intramolecular hydrophobic interactions in part due to the constraints of the 2D lattice. We also 

find that these specificities are highly sensitive to entropic and free energetic features of the unbound 

conformational state, such that direct binding interaction energies alone do not capture the complete 

behavior.  These results suggest that the ability of particular peptide sequences to self-assemble and 

aggregate in a many-protein environment reflects a precise balance of direct binding interactions and 

behavior in the unbound (monomeric) state.   
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I. INTRODUCTION 

 It is well-known that many short protein sequences can partially unfold and subsequently 

transition from soluble forms to amyloid fibrils [1], which are linked with a variety of serious human 

health disorders, including Alzheimer’s disease, Parkinson’s disease, and type II diabetes [2].  A 

particularly striking question is how these peptides manifest pronounced self-affinity, binding 

preferentially to their identical copies to form fibrils in a complex cellular environment with thousands of 

types of proteins in close vicinity  [3]. For example, Krebs et. al. [4] showed that fibril growth is 

accelerated only when the seeding fibrils have a high degree of sequence similarity, and this is consistent 

with the fact that fibrils in each amyloid disease are typically composed of a single, dominant type of 

protein.  Recently, this intrinsic sequence specificity was also used to create antibodies that are able to 

detect amyloid fibrils [5,6]. Specifically, antibodies grafted with known amyloidogenic sequences could 

successfully bind to small amyloidogenic oligomers and fibrils in vitro using their sequence-specific 

homophilic interactions.   

 While peptide aggregation propensities generally increase with hydrophobicity and indeed many 

predictive aggregation tools place a high weight on net sequence hydrophobicity [7], the mere presence of 

significant hydrophobic interactions does not explain the homophilic specificity of amyloid-forming 

peptides that induces their self-binding property.  Indeed, there have been many efforts to predict or 

design amyloidogenic sequences [8–10], but a basic physical understanding of the emergence of 

homophilic specificity remains incomplete. Trovato et al. [11] used knowledge-based potentials to 

examine the most favorable binding register between two copies of the same (amyloidogenic) peptide, 

and discovered that in-register parallel alignment is nearly always preferred – which provides initial 

insight into the homophilicity problem.  However, a much broader consideration of binding partners 

across sequence space can address many outstanding key questions, such as: which amino acid sequences 

promote high homophilic binding?  What features of those sequences bear out homophilic specificity? 
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Can an examination of homophilicity contribute to a deeper understanding of well-known aggregation-

prone sequences and sequence motifs?  

 Here, we examine the issue of homophilicity in a simple lattice protein model that offers a first 

approximation to the main driving forces present in polypeptides. Specifically, we consider the venerable 

HP two-dimensional lattice heteropolymer model, which involves only two types of residues, H 

(hydrophobic) and P (hydrophilic). A negative H-H contact energy mimics hydrophobic interactions, 

which are the main driving force for folding and for shaping the conformational ensemble  [12].  For 

modest chain lengths, the model permits exploration of the full conformational and sequence spaces  [13], 

while still capturing folding behavior and the possibility of a unique native conformation for some 

sequences [14].  Moreover, a binary sequence model contains some essential features of peptide self-

assembly; for example, it was found experimentally that binary patterning of hydrophobic and hydrophilic 

residues contributed greatly to the design of aggregating peptide sequences [15–17].  The use of this 

particular model enables exact numerical calculation of thermodynamic quantities (e.g. free energies of 

folding and binding) and importantly, exhaustive examination of the entire sequence and binding spaces. 

The binding landscape of a given peptide then compares the binding equilibrium constant (or free energy) 

with itself to that with all other sequences, and thus bears out the relative degree of self-binding affinity 

and specificity.  While certainly the model lacks many details that govern real protein self-assembly, it 

nonetheless gives rise to complex behavior from a set of well-defined and simple set of interaction rules – 

and thus provides a first understanding of how basic molecular driving forces translate to the binding 

landscape.  

  We explore the nature of the binding landscape in this model by characterizing the binding 

affinities between every possible pair of amino acid sequences of a given length.  To do so, we compute 

free energies of both the bound and monomeric states using numerical partition function sums. We find 

that the binding affinity between two peptides is strongly influenced by the unfolding free energies (i.e., 

the free energy associated with each peptide adopting a linear binding pose) in addition to the direct 
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binding interactions.  Further, we find that the unfolding free energy can be understood in terms of simple 

sequence patterns rather than sequence composition (i.e., fraction of hydrophobic residues). Sequences 

with the highest self-binding affinity that simultaneously maintain strong self-specificity are the 

alternating P/H sequence and those with hydrophobic residues that are clustered rather than distributed 

throughout the sequence.  Both cases effect a low unfolding free energy cost, and are influenced by the 

geometric constraints of the 2D lattice.  

II. METHODS 

 

Figure 1. Illustration of peptide binding scenarios on a two dimensional square lattice: (a) peptide binding to peptide, 

(b) peptide binding to linear peptide (i.e., fibrillar peptide partner), and (c) linear peptide binding to linear peptide 

(i.e., binding of two fibrillar peptides). H and P circles represent hydrophobic and hydrophilic amino acid residues, 

respectively. In (a) and (b), peptides initially exist in an ensemble of partially folded states promoted by 

intramolecular H-H interactions (H-H contacts); upon binding in a linear arrangement, intermolecular H-H (H-H 

contacts) interactions promote affinity.  

 

 In the 2D lattice model, a peptide is a linear chain of N amino acids, and chain conformations are 

self-avoiding walks in a square lattice [13]. Interactions among residues are pairwise only between 

nearest neighbors. Energies are expressed in dimensionless units, with a favorable contact energy of -1 for 

H-H contacts; all other contacts (H-P and P-P) do not contribute energetics.  We also include a sequence-

independent hydrogen bonding interaction for intermolecular peptide association, described below.  
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Temperatures are expressed as dimensionless, such that kB=1. When the peptide is in the monomeric state, 

it generally experiences a diverse set of conformations sampled according to Boltzmann populations, 

although some sequences will exhibit folding behavior and populate a particular conformation with high 

probability.  Nonetheless, here we term the monomeric ensemble the “folded” state, even if it is a diverse 

conformational collection, because peptides must then “unfold” to a linear conformation to bind.  

We model the binding of two peptides as a two-step process: the peptides first “unfold” to a linear binding 

pose, followed by co-alignment in either a parallel or anti-parallel fashion (Fig. 1 (a)). The binding 

affinity in this process is the free energy change from the folded state to the bound state, and therefore, is 

defined as the difference between the bound free energy and the sum of the two folding free energies of 

the two peptides.  We restrict our study to linear and fully in-register binding cases. In reality, binding can 

occur between partially folded peptides or proteins [1], which occurs when the peptide length is large and 

the cost of unfolding is very high. We do not model such events because for very short sequences, we 

expect any partially folded binding pose to have significantly reduced affinity owing to the reduction in 

direct intermolecular interactions. We ignore off-register linear binding for the same reason.  

 We enumerate the full conformational space of the peptides and numerically compute the free 

energy of the monomeric or “folded” state, given by the partition sum, 

foldܣ ൌ െܶ ln ∑ ݁ିாi/்௜        (1) 

where the index ݅ proceeds over all conformations, Ei is the energy of conformation i, and T is the 

temperature.  All terms in (1) and subsequent equations are dimensionless.  For calibration, the average 

folding energy over all sequences approaches 1% of its minimum when T =0.1 and 1% of its maximum 

when T=10, as shown in Figure 2. The temperature at which the average reaches its midpoint value is 

T=0.53.  We choose T=0.3 for our examination of binding, which gives a broad range of folding behavior 

over all of sequence space. 

 



6 
 

 

Figure 2. Average folding energy of all sequences with N=6, 8, 10, and 14 with respect to temperature. An effective 
folding temperature for the entire sequence ensemble, fܶold, is determined from the midpoint of the folding energy 
using  ۧܧۦ௙௢௟ௗ൫ ௙ܶ௢௟ௗ൯ ൌ ௙௢௟ௗሺܶۧܧۦൣ  ՜ 0ሻ ൅ ۧܧۦ௙௢௟ௗሺܶ ՜  ∞ሻ൧ 2⁄ . 

 

 The free energy of the bound state involves contributions from direct peptide-peptide 

hydrophobic interactions in both parallel and antiparallel poses. In addition to the H-H contact potential, 

we include a sequence-independent hydrogen bonding energy to capture differences in the number of 

hydrogen bonds that can be formed in the folded and bound states. Indeed, it has been suggested that 

while hydrophobic interactions remain a dominant driving force, hydrogen bonds may play more 

important roles in amyloid proteins than for soluble proteins  [18].  We approximate hydrogen bonding 

energies with a term proportional to the peptide length N and temperature T. The expression for the bound 

free energy is  

boundܣ ൌ  െܶ lnൣ݁ିሺா parallelାாಹಳሻ/் ൅ ݁ିሺாantiparallelାாHBሻ/்൧   (2) 

where Eparallel and Eantiparallel give the hydrophobic contact energies in the parallel and antiparallel poses, 

and where EHB is given by 
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HBܧ ൌ െ0.3 ܰ       (3) 

Note that the hydrogen bonding term is trivially factored out of the logarithm such that Abound is shifted 

directly by it. 

 With these formalities, the binding affinity of a sequence S to another sequence S’ can be defined 

as the following free energy difference, per the path shown in Fig. 1: 

Affinityሺܵ, ܵ ′ሻ ൌ ,boundሺܵܣ ܵ′ሻ െ foldሺܵሻܣ െ  foldሺܵ′ሻ     (4)ܣ

Note that a lower (more negative) value of affinity indicates a stronger binding interaction.  The self-

binding affinity, which reflects the homophilic preference of a sequence S, follows as 

Affinityselfሺܵሻ ൌ ,boundሺܵܣ ܵሻ െ  foldሺܵሻ     (5)ܣ2

 We explore the entire sequence space, the set of all possible N-length sequences of H and P 

residues, which contains 2N possible sequences in principle. However, we only consider symmetrically 

unique sequences because the N and C peptide termini are not distinguishable in the lattice model. Then, 

for example, the number of (P/H)12 sequences is 2080 for N=12.  Many natural peptide binders interact 

with their partners through a core composed of 5 to 15 residues  [19] and therefore we examine lengths 

within this range. However, there are very few qualitative differences for our results towards the upper 

end of the range, and so we focus on N=12 as a representative case study. 
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Figure 3. Illustrative energy level diagrams for the bound free energy, folded free energy, and binding affinity of 

two selected sequences that have (a) good and (b) poor specificity.   Here we consider a low temperature (T=0.1) 

that makes the levels easier to distinguish visually. Each line represents a potential binding partner S’ for target 

sequence S. In case (a), the specificity is positive and defined as the gap between the self-binding and next highest 

affinities.  In case (b), the specific is negative and defined as the gap between the self-binding and lowest affinity. 

 We compute the folding free energies for all 2080 sequences for N=12, and the corresponding 

bound-state free energies and then affinities for all 2,162,160 sequence pairs. Figure 3 shows 

representative energy level diagrams for these quantities in which the “levels” span the full space of 

amino acid sequences for a potential binding partner S’ interacting with target sequence S.  For each 

target, one of the sequences S’ has the lowest binding affinity to it. If this sequence is the same as S, then 
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the sequence is highly homophilic (Fig. 3 (a)). In other words, S binds well to itself and this specificity 

can be measured as the gap between the self-binding affinity and the next lowest binding affinity. If ܵ ് ܵԢ then the case is non-homophilic, and the specificity is defined as the binding affinity gap between 

the self-binding affinity and the lowest binding affinity (Fig. 3 (b)). Therefore, the sign of the specificity 

indicates whether or not a peptide has high homophilic binding stability (positive if this is the case), and 

the degree of specificity is quantified by binding affinity gap [20,21].  Note that the affinity levels may be 

degenerate – more than one sequence may lie at each level.  For sequences where the lowest affinity level 

is degenerate, we consider their specificity level to be zero. 

To make these statements precise, the specificity is defined as 

Specificityሺܵሻ ൌ Affinity൫ܵ, ܵ ′൯ െ Affinityselfሺܵሻ                       

                           ൌ ሾܣboundሺܵ, ܵᇱሻ െ ,boundሺܵܣ ܵሻሿ െ ሾܣfoldሺܵᇱሻ െ  foldሺܵሻሿ         (6)ܣ

where  

ܵᇱ ൌ ൜the sequence with the next lowest affinity if  Affinityୱୣ୪୤ is the lowestthe sequence with the lowest affinity otherwise        (7) 

 This approach to characterizing specificity can be extended to the case of fibril-growth by 

monomeric addition, in which a peptide binds to a conformationally rigid fibril (Fig. 1 (b)). Indeed most 

peptides do not induce conformational changes in large partners upon binding, so as to minimize the 

entropic cost of binding [19]. In this case, the affinities can be written as 

Affinityሺܵ, ܵ ′ሻ ൌ ,boundሺܵܣ ܵ′ሻ െ  foldሺܵ′ሻ     (8)ܣ

Affinityselfሺܵሻ ൌ ,boundሺܵܣ ܵሻ െ  foldሺܵሻ     (9)ܣ

Specificity ൌ ሾܣboundሺܵ, ܵᇱሻ െ ,boundሺܵܣ ܵሻሿ െ ሾܣfoldሺܵᇱሻ െ  foldሺܵሻሿ                         (10)ܣ
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Lastly, when two fibrils bind to each other or when no conformational changes happen upon binding (Fig. 

1 (c)), the binding affinity is simply equal to the bound-state free energy because there is no unfolding 

cost, and specificity is then related to differences between bound-state free energies.  The relations are 

Affinityሺܵ, ܵ ′ሻ ൌ ,boundሺܵܣ ܵ′ሻ      (11) 

Affinityselfሺܵሻ ൌ ,boundሺܵܣ ܵሻ     (12) 

Specificity ൌ ,boundሺܵܣ ܵᇱሻ െ ,boundሺܵܣ ܵሻ                                             (13) 

III. RESULTS 

A. What determines favorable peptide self-binding? 

 

Figure 4. Self-binding and folding free energies of all 2080 (P/H)12 sequences. The red line represents the point at 

which Abound = 2 Afold or where Affinityself = 0 as seen in Eq. 5. 

 A peptide’s self-binding affinity includes both the free energy of the self-bound state and its 

unfolding free energy (Eq. 5). We first examine the relative contributions of these two and, in turn, the 

sequence characteristics that strongly manipulate self-binding affinity.  Figure 4 shows self-bound and 

folding free energies of all 2080 (P/H)12 sequences. A line given by the relation ܣbound ൌ  foldܣ 2
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demarcates the sequences for which the self-binding affinity is zero; on its left, sequences have good self-

binding affinity (Affinityself ൏ 0) while the opposite is true for sequences to the right (Affinityself ൒ 0). 

Unsurprisingly, the self-bound energy increases with the number of H residues in the sequence since HH 

contacts give the only favorable intermolecular interaction, aside from the sequence-independent 

hydrogen bonding term. The relationship is not strictly proportional, however, since both the antiparallel 

and parallel poses contribute to the free energy (Eq. 2).  That being said, parallel binding is usually more 

preferable and dominates the bound free energy because each H residue aligns with its partner in the other 

peptide, achieving the maximum HH contacts. Therefore, the degeneracy in ܣfold values for a sequence of 

a particular value of ܣbound is largely due to sequence patterning for the same hydrophobic composition.  

 On the other hand, the folding free energy bears only weak proportionality to the number of H 

residues (ܰு).  Sequences with the same number of H residues (same sequence composition) can exhibit 

a fairly large range of folding free energies. It is easy to see that composition alone (i.e., the variable NH) 

cannot be fully explanatory by noting that H sites separated by an odd number of residues can never form 

a contact on the 2D lattice. This is a particular feature of the model that places constraints on residue-

residue interactions. If all H residues fall on odd- or even-numbered residues such that no HH contacts are 

possible in any conformation, the folding free energy is always the maximum value, ܣfold ൌ െܶ lnΩ 

where Ω  gives the number of distinct conformations, regardless of the number of H residues. Those 

sequences cluster in the top-right corner of Fig. 4 with ܣfold ൌ  െ2.89. Note that if NH = 7, there must be 

at least one HH contact in any folded conformation.  In contrast, the lowest folding free energy is ܣfold ൌ  െ7.16 for ܰு ൌ 12.  Therefore, it is clear that sequences to the left of the red line in Figure 4 – 

those that are good self-binders – are peptides that minimize the stability of their folded monomeric states 

for a given number of H residues (represented roughly by the x-axis).   In other words, good self-binders 

tend to have less favorable folding free energy, and hence pay a lower cost of unfolding upon 

dimerization.  Chiti and Dobson described a similar effect in the aggregation of globular proteins, noting 

that the unfolding free energy cost is often anti-correlated with aggregation propensity  [22]. 
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 The folding free energy thus plays a significant role in self-affinity, and we find that it is well-

estimated by the number of hydrophobic residue pairs ( HܰH pairs) in a sequence.  A “HH pair” is defined 

as two H residues in a sequence that can form a HH contact in at least one conformation; in other words, 

the pair is separated by an even number of intervening residues.  The sequences HPPH, HPPPPH, and 

HPPPPPPH have HH pairs, while HPH, HPPPH, and HPPPPPH do not due to lattice-geometric 

constraints. One H residue can be a part of more than one HH pair; for example, there are two HH pairs in 

a sequence HPPHPH ( HܰHpairs ൌ 2), although it is also possible that not all HH contacts may be formed 

simultaneously in any one conformation. The number of HH pairs is useful because it correlates well with 

the number of possible HH contacts in folded states, and therefore to the folding free energy of a 

sequence. Table 1 illustrates the relationship between folding free energies and the number of HH pairs 

for a family of sequences with the same number of H residues, and Figure 5 illustrates how HܰHpairs is 

calculated. The first sequence, with alternating P and H residues, cannot form any HH contacts due to the 

2D lattice and its folding free energy is the highest among all the sequences. On the other hand, the last 

sequence has a repeat HPPH pattern that gives a total of seven HH pairs and particularly low (stable) 

folding free energy. 

 

Table 1. Sequences with the same number of H residues ( Hܰ) have folding free energies that vary widely but that 

are well-tracked by the number of HH pairs ( HܰHpairs ). 
Sequences NH NHH୮ୟ୧୰ୱ A୤୭୪ୢ Aୠ୭୳୬ୢ Affinityୱୣ୪୤

PHPHPHPHPHPH 6 0 -2.89 -9.60 -3.83 

PHPHPHPPPHHH 6 3 -3.35 -9.60 -2.89 

PPPPPPHHHHHH 6 4 -4.16 -9.60 -1.28 

HPPHHPPHHPPH 6 7 -5.40 -9.60 1.20 
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Figure 5. Illustration of the number of HH pairs. Each line shows a HH contact possible in at least one configuration 
on the 2D lattice; these are pairs of H residues separated by an even number of amino acids.   

 

 

Figure 6. Folding free energies compared to the number of hydrophobic residues and the number of HH pairs, for 

all 2080 (P/H)12 sequences. 

 

 Fig. 6 shows that in general the folding free energy is more strongly related to the number of HH 

pairs in a sequence than the raw number of H residues. At NH=6, for example, peptides with the same 

PHPHPHPHPHPH    

PHPHPHPPPHHH    

PPPPPPHHHHHH    

HPPHHPPHHPPH    
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sequence composition can have folding free energies that vary as large as 8.5kBT. On the other hand, the 

maximum variation in the folding free energy for peptides with identical numbers of HH pairs is only 

3.9kBT.  Therefore, it is not simply the composition, in terms of hydrophobic residues, that determines 

self-binding propensity, but also the sequence pattern manifested in the distribution of H residues that 

gives rise to HH pairs.   This behavior originates in the unfolding free energy and in particular means that 

the positions of P residues are important even though they do not interact.  

 Although this “HH pair” approach cannot be used to quantitatively estimate folding free energies 

in real peptides or proteins, the physical implication is that the locations of the hydrophilic residues in a 

sequence can be a significant factor that contributes to unfolding free energy and hence self-binding 

affinity. In other words, a slight mutational change that introduces, deletes, or substitutes a hydrophilic 

residue may lead to large changes in the folding free energy because this can modulate the possible 

interactions between hydrophobic amino acid pairs.  This sensitivity is pronounced in peptides because, 

unlike globular proteins, they often have a diverse conformational ensemble. Here, of course, the 2D 

lattice model has a unique odd-even effect whereby residues separated by an odd number of amino acids 

can never make a contact.  While this particular behavior is obviously distinct from real proteins, it does 

emphasize the role that backbone and geometric constraints can have in determining possible 

intramolecular hydrophobic contacts, which in turn significantly impact unfolding free energies. 
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B. The impact of unfolding free energies on binding landscapes 

 

Figure 7. The relationship of the self-binding affinity to the number of H residues (NH), shown for three scenarios: 

(a) peptide-peptide binding, (b) peptide addition to a fibril, and (c) association of two fibril ends (see Fig. 1).  Points 

represent every (P/H)12 sequence.  Panel (a) illustrates that binding between two monomeric peptides is strongly 

influenced by factors other than sequence composition (i.e., NH), in contrast to binding events involving fibrils. 

 Purely energetic pictures of peptide binding emphasize the direct interactions between the peptide 

and its partner, rather than a full thermodynamic treatment that includes entropies and unbound-state free 

energies. When is that picture a reasonable representation of the true binding affinities? More specifically, 

when is the self-binding affinity well-described by the number of H residues of a sequence? Figure 7 

examines the correlation of self-binding affinities with NH for the three distinct scenarios illustrated in 

Figure 1: (a) dimerization of two peptide monomers, which requires both of their unfolding; binding of a 
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monomer to a linear peptide already in a fibril, involving unfolding of only one peptide; and binding of 

two linear peptides each in fibrils, with no unfolding events. As Fig. 7(a) shows, the self-binding affinities 

of peptide-peptide binding are strongly influenced by factors other than NH, an effect that originates in the 

unfolding free energies.  On the other hand, the self-binding affinities for both peptide-fibril (Fig. 7 (b)) 

and fibril-fibril binding (Fig. 7 (c)) show a strong proportionality to sequence composition. Thus, it seems 

reasonable to approximate the binding affinity using sequence composition and direct interaction 

energetics when at least one partner undergoes minimal conformational change upon binding. 

 Despite the simplicity of the lattice model, these results highlight features of peptide-peptide 

binding that distinguish them from recognition processes involving structured partners; they also 

emphasize the additional complexity of amyloid assembly over structured protein assembly.  Namely, the 

short length, backbone flexibility, and hence diverse conformational ensemble of peptides in their 

monomeric state give rise to significant conformational changes upon association that have a profound 

effect on the sequence-dependence of the binding affinity.    
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Figure 8. Binding landscapes for the (H/P)12 model for the three binding scenarios of Fig. 7.  Binding affinities are 

shown in the left column and bound-state free energies in the right; the former accounts for the unfolding free 

energies of the peptides, whereas the latter includes only the bound-state partition sum in Eq. 2. Each row/column 

represents a given sequence, and colors then indicate strength of interaction (lower and more favorable free energies 

in darker gray).  Sequences are sorted by their self-binding affinities (the diagonal lines), so that the most favorable 

interactions occur in the top left corners and the diagonal in the left panels lightens in color from top-left to bottom-

right.  The sequence orders are identical among adjacent plots in each row: (a) and (b), (c) and (d), and (e) and (f). 

After sorting, only the first 400 sequences are shown. 

 

 The unfolding free energy for peptide-peptide binding dramatically affects not only self-binding 

affinity, but the entire binding landscape. Figure 8 illustrates the landscape in a “contact-map” format, 

where each column/row represents a unique sequence and pixel colors give free energies for the 

corresponding column-row sequence pair.  Fig. 8(a) shows the landscape for the net affinities in peptide-
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peptide binding, including the unfolding free energies, while 8(b) shows only the contribution from the 

bound state and direct interactions.  The two landscapes show marked differences, reflecting the critical 

importance of the unfolding term.  On the other hand, the same landscapes for peptide-fibril binding are 

rather similar, as shown in Figs. 8(c) and 8(d), and are identical by definition in the fibril-fibril binding 

case, as in Figs. 8(e) and 8(f). To summarize, Fig. 8 shows that sequence effects in peptide-peptide 

dimerization in this simple model are governed by qualitatively distinct thermodynamic driving forces 

than oligomer and fibril growth processes. Interestingly, Figs. 8(e) and 8(f) reveal broad areas in the 

landscape that manifest both homo- and heterophilic binding, particularly as is evident in the dark areas in 

the top left corners. This loss of specificity and increased binding affinity is suggestive of the finding that 

amyloid-like fibrils can sequester numerous metastable proteins in cells [23]. 

 

C. Unfolding free energies generate binding specificity 

 To examine truly homophilic binding sequences, it is essential to examine binding specificities in 

addition to affinities. If a sequence’s self-binding affinity is negative and specificity is positive (good 

affinity and good specificity), the former must be the lowest, most favorable affinity among all possible 

binding partners; we consider such sequences to be intrinsic homophilic binders. Figure 9 gives a 

graphical representation of sequence clustering in the space of affinity and specificity, showing that there 

is a wide range of behavior. A few representative sequences are highlighted with letter codes to show how 

their behavior varies, over the three binding scenarios; their thermodynamic properties are detailed in 

Table 2.  
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Figure 9. The relationship between self-binding specificities and self-binding affinities of all (P/H)12 sequences, for 

the three binding scenarios of Fig. 1. The y-axis is inverted to present sequences in (a) with both good affinity and 

good specificity in the third quadrant. Percentages indicate the fraction of sequences in each quadrant. 

 

 Figure 9(a) shows for peptide-peptide binding the emergence of families of sequences that appear 

to fall along common lines in the affinity-specificity space with a slope of 0.5. These lines cluster related 
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sequences with a similar bound-state free energy and a common partner sequence S’ that defines the 

specificity value (Eq. 7).  The variation along these lines is governed primarily by differences in folding 

free energies within the family, which doubly impact the self-binding affinities and singly the specificity 

through Eq. 6 – explaining the observed slope and overall positive correlation in Fig. 9(a).  On the other 

hand, self-affinities for peptide-fibril binding are less influenced by folding free energies and the 

unfolding penalty for binding becomes weaker such that affinities are lower all around, reflected by the 

global leftward shift in Fig. 9(b).  In this case, the free energies of the bound state dominate and most 

sequences thus have negative self-binding affinities, but interestingly the fraction of sequences with 

positive specificities remains unchanged.  Finally, the case of fibril-fibril binding in Fig. 9(c) shows 

notably less diverse behavior because folding free energies do not contribute and there are only a few 

bound-state energy levels (Fig. 3).  In this case, the only sequence that has a large positive specificity 

(point D) is trivially the poly-H sequence, which has the uniquely lowest bound free energy (largest 

number of H residues) among all sequences. 

 

Table 2. Properties of selected sequences shown in Fig. 9. 

 
Sequence Abound Afold 

(a) peptide-peptide (b) peptide-fibril (c) fibril-fibril 

Affinityself Specificity Affinityself Specificity Affinityself Specificity

A PHPHPHPHPHPH -9.60 -2.89 -3.83 0.80 -6.71 0.80 -9.60 -0.01

B PHHHHHHHHHHP -13.60 -5.71 -2.18 0.34 -7.89 0.34 -13.6 -0.21

C PHHHHHHHHHHH -14.61 -6.38 -1.85 0.34 -8.23 0.34 -14.6 0.01

D HHHHHHHHHHHH -15.60 -7.16 -1.28 0.01 -8.44 0.01 -15.6 0.79

E HPPHHPPHHPPH -9.60 -5.40 1.21 -0.33 -4.20 -0.33 -9.60 -0.21

F PPPPPPPPPPPP -3.60 -2.89 2.17 0.00 -0.71 0.00 -3.60 0.00

G PPPHPHPHPHPH -8.60 -2.89 -2.83 0.00 -5.71 0.00 -8.60 -0.21
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 Table 2 illustrates the thermodynamic properties that govern the representative sequences shown 

in Fig. 9. The alternating P/H sequence has the lowest self-binding affinity and is unique because the 

bound-state free energy is moderate with six H sites, but the unfolding free energy cost is very small since 

it can never form HH contacts – a consequence of the 2D lattice constraints.  (Fig. 6 underscores that 

sequences with up to six hydrophobic residues can still achieve small unfolding free energies.)  By 

comparison, alternating polar and hydrophobic sequence patterns in real peptides are thought to emerge 

instead due to the orientation and co-location of hydrophobic side chains on one side of the beta sheet 

geometry, an effect that is absent in the lattice model.  Thus the special behavior of the alternating P/H 

sequence in the model is influenced quantitatively by the 2D lattice.  Nonetheless, the model still 

emphasizes the role of the monomeric state in achieving affinity, and the potential for backbone 

configurational constraints to influence this state’s free-energetic stability.  Real peptides experience a 

distinct set of backbone geometric constraints, but these will likely still influence the kinds of 

intramolecular contacts and hence sequence patterns that will lower the unfolding free energy cost. 

 We find other patterns of hydrophobic amino acids that give rise to unique self-binding properties.  

Sequence B has both good self-binding affinity and specificity, and involves a hydrophobic core flanked 

by hydrophilic ends, a pattern observed in amyloidogenic sequences  [24,25]. In contrast, the all-H 

sequence (D) naturally has good self-binding affinity, but almost no specificity because many other 

sequences bind with similar affinities. Its binding affinities also suffer from a particularly large unfolding 

free energy cost.  A sequence that can form alpha-helical conformation on a 2D lattice (E) also has a high 

unfolding free energy and thus has a poor self-binding affinity and a poor specificity. The last sequence 

highlighted (G) is distinct from the alternating H/P sequence (A) through a single H→P mutation; 

surprisingly, the addition of a single hydrophilic residue completely eliminates the specificity of this 

sequence because it now binds to A with equivalent affinity as to itself.   

 In the case of peptide-fibril binding (Fig. 9 (b)), the bound-state free energy becomes the 

important contributor to self-binding affinity; sequences with large numbers of hydrophobic residues shift 
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to the left side of the plot relative to their positions in Fig. 9 (a). Here, the sequence with all hydrophobic 

residues (D) has the lowest self-binding affinity, although its specificity remains as bad as in Fig 9 (a). In 

the case of fibril-fibril binding (Fig 9 (c)), the sequence with all hydrophobic residues (D) still has the 

lowest self-binding affinity and this sequence is the only one with positive specificity due to its 

exceptionally low self-binding free energy. 

 

D. Homophilic sequences are enriched in clustered hydrophobic residues  

 To understand the representative sequence characteristics of each quadrant of Fig 9 (a), we use a 

string parsing technique that computes the frequency of words (strings of characters of a given length) 

within a sequence  [26,27]. For example, the sequence HPPPH has three two-words, HP (25% frequency), 

PP (50%), and PH (25%).  We find that the frequency of HHH words, f(HHH), shows clear differences 

between each quadrant, as shown in Table 3. Namely, the HHH pattern is enriched by a factor of 50% for 

sequences with both good self-binding affinities and specificities, it reduced for the other three cases. This 

is related to the fact that there are slightly more H residues for the former sequences, as shown in Table 4.  

 

Table 3. Frequencies of three letter words of sequences in each quadrant of Fig 9 (a) 

self affinity self specificity f(PPP) f(PPH) f(PHP) f(PHH) f(HPP) f(HPH) f(HHP) f(HHH)

good good 0.12 0.13 0.08 0.17 0.09 0.10 0.12 0.18 

good poor 0.12 0.14 0.17 0.12 0.11 0.15 0.09 0.09 

poor good 0.08 0.17 0.15 0.15 0.14 0.15 0.11 0.05 

poor poor 0.16 0.18 0.17 0.10 0.14 0.13 0.08 0.04 
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Table 4. Average properties of sequences in each quadrant from Fig.9 (a) 

self affinity self specificity NP NH Abind Afold Affinityself Specificity NHHpairs 

good good 5.61 6.39 -6.39 -4.49 -1.02 0.15 6.67 

good poor 6.25 5.75 -5.75 -4.31 -0.73 -0.07 5.64 

poor good 6.08 5.92 -5.92 -4.88 0.24 0.07 7.13 

poor poor 6.82 5.18 -5.18 -4.61 0.43 -0.12 5.87 

 

 

Figure 10. Frequency of triple consecutive hydrophobic residues in a sequence, f(HHH), with respect to the number 

of hydrophobic residues, NH. Sequences with both good affinity and specificity for the peptide-peptide scenario (as 

defined in Fig 9a) are shown as red circles, while all other sequences are shown as blue circles. The area of each 

circle is proportional to the number of sequences at each point. 

 

 Figure 10 shows f(HHH) as a function of  NH for sequences with good peptide-peptide self-

binding affinities and good specificities (red), compared to that of all other sequences (blue). Both groups 

span various NH and f(HHH) values, and show that sequences with larger number of H residues have a 

higher frequency of HHH words.  However, it is clear that sequences with both good affinity and 
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specificity maximize the frequency of HHH words for a given sequence composition.  In other words, 

clustering of H residues into hydrophobic patches (like sequences B and C in Fig. 9) minimizes the 

number of HH pairs and hence the unfolding free energy penalty; this improves binding affinity all 

around but the effect is doubly pronounced for the self-binding affinity and hence it raises specificity is 

high as well.  This observation is consistent with a ‘hydrophobic patch’ or ‘hydrophobic hot spot’ model 

of aggregation in amyloidogenic peptides; indeed, frequencies of consecutive hydrophobic residues are 

lower in soluble proteins [28]. Here, our results suggest a slightly distinct interpretation in terms of the 

role that the unbound state and hence unfolding free energy plays. 

E. Homophilic binding of peptides with charged ends 

 A natural question is the role that charged amino acids play in the self-binding picture, since it is 

thought that such moieties contribute strongly to fibril formation in many amyloidogenic peptides  [29,30], 

and several recent theoretical efforts have sought to understand the role of sequence charge patterning on 

the properties of intrinsically disordered peptides  [31,32]. Here, we examine sequences with charged 

amino acids at the termini, rather than at any arbitrary location, in order to mitigate the significantly 

increased sequence space.  Naturally, uncapped peptides possess oppositely-charged termini at neutral pH, 

and the modulation of their charged states is known to significantly affect their fibrillization even though 

the change in their net charge is small [24,33].   

 In addition to H and P monomer types, we introduce C (cationic, positively charged) and A 

(anionic, negatively charged) amino acids. Table 5 gives the interaction matrix between all type pairs; we 

take the simplest approach and introduce interactions only for AA, CC, and AC contacts, which have the 

same magnitude as HH energetics. To compare with the results above using N=12, we compute self-

binding affinities and specificities of sequences with 10 central P/H residues and P/H/C/A residues at the 

ends, for peptide-peptide binding only. 
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Table 5. Contact energy matrix between P (hydrophilic), H (hydrophobic), C (cationic), and A (anionic) residues.  

All energies are dimensionless. 

 P H C A 

P 0 0 0 0 

H 0 -1 0 0 

C 0 0 +1 -1 

A 0 0 -1 +1 

 

 

 

Figure 11. Self-binding affinity and specificity in peptide-peptide binding for the sequence space (A/C/H/P)-

(H/P)10-(A/C/P/H), that is, for a modified HP model in which there are four different types of end residues.  

Percentages indicate the fraction of the sequence space falling within each quadrant. 
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Figure 12. Self-binding affinity and specificity plots for sequences with distinct termini chemistry and an odd length 

(N=13). 

 

 Figure 11 illustrates the behavior of the affinity-specificity landscape for all (A/C/H/P)-(H/P)10-

(A/C/P/H) peptides in response to the chemistry at the ends of the chains. Notably, the ranges of affinities 

in panels (a)-(f) show variations. When both ends are hydrophobic (c), the self-binding affinity shifts 

slightly to right (weaker affinity) compared to the case in which the termini are completely polar (a) or 

involve both H and P (b).  This occurs because the two terminal hydrophobic residues in a sequence 

where N is even can always form an HH contact (for example, in a hairpin-like configuration) and thus 

such sequences are likely biased towards a higher unfolding cost. In case of odd sequence length (N=13), 

contact between the termini is impossible and the shift becomes negligible, as shown in Figure 12.  
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 The addition of terminal charge generally weakens self-binding affinity. Both cases involving a 

single charged residue at one end (panel d) and two like-charged residues at the termini (e) weaken 

binding affinity due to charge-charge repulsions that occur in at least one of the orientations (parallel or 

anti-parallel) of the binding pose.  Interestingly, the presence of oppositely charged residues at the termini 

reduces the self-binding affinity the most (f), even with the possibility to form stabilizing salt-bridge-type 

interactions in the anti-parallel binding pose.  The reason is that the same interactions significantly 

destabilize the parallel pose, which is always the more favorable alignment because the sequences align 

so as to maximize the number of interpeptide HH contacts.  

 In contrast, the specificities are less affected by the chemistry at the termini. In all cases (panels 

a-f), the alternating P/H sequence still has amongst the highest hemophilic specificity.  These conclusions 

persist for peptides with both odd and even numbers of residues.  

 

IV. DISCUSSIONS AND CONCLUSIONS  

This work addresses the question: what do the binding landscapes of short peptides look like, across all of 

sequence space for a given length, in a simple lattice model that allows exhaustive exploration of it?  The 

binding landscape compares the intrinsic binding affinities of all sequences with all other sequences, and 

in turn, includes information that describes the intrinsic homophilic specificities of these interactions, i.e., 

the extent to which a peptide will preferentially bind to itself in the face of many other potential partners 

differing in sequence.  We find several emergent features in the model binding landscapes that, while not 

quantitatively representative of real peptides, nevertheless suggest ways in by which complexity can arise 

due to quite general features of peptide molecular physics.   

 For example, we find that the sequence with alternating hydrophobic and hydrophilic residues has 

the best self-binding affinity and specificity in this model because it limits potential hydrophobic-

hydrophobic contacts in the monomeric state, which create a high unfolding free energy cost upon 
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binding.  This particular motif is known to favor the formation of beta-sheet secondary structures in real 

proteins for distinct reasons  [15,34], but interestingly, patterns of alternating hydrophobic and 

hydrophilic residues occur less frequently in natural proteins than would be expected based on typical 

amino acid compositions  [35].  The inability to form stabilizing contacts of hydrophobic residue pairs 

that are close to each other in sequence is key in the model.  The 2D lattice constraints magnify these 

effects, and indeed residues separated by odd numbers of amino acids can never form a contact, no matter 

how distant in sequence.  However, real proteins still see constraints on interactions of sequence-close 

animo acids, due to the geometry of permissible backbone arrangements.  Thus one still expects 

limitations on favorable local amino acid interactions, which may play out in qualitatively similar ways.    

 We also find that sequences with clustered hydrophobic residues have both good binding 

affinities and specificities, using a word frequency analysis on the subset of sequences with such 

properties. Statistical studies of natural protein sequences by King and coworkers  [28,36] have also 

revealed that groups of three or more hydrophobic residues occur less frequently than would be expected 

assuming neutral selection, suggesting that clusters of hydrophobic residues have been selected against 

during protein evolution.  

 Lastly, we find that a dimerization process involving binding between two free peptides manifests 

significant differences from the oligomer/fibril growth processes or protein-protein binding processes. 

The cost, in terms of free energy, for “unfolding” the peptides from an intrinsic, potentially diverse 

conformational ensemble in the monomeric state to a structured binding pose has profound effects on the 

entire sequence binding landscape for peptide dimerization.  Indeed, while a sequence’s hydrophobicity 

dictates the direct binding interactions, it has a less predictable effect on the thermodynamics of the 

unbound conformational ensemble, such that it correlates poorly with the overall free energy of the 

binding process.   The importance of peptide unfolding in fibrillation was also highlighted by Uversky 

and Fink  [1], who noted that most amyloidogenic proteins need to overcome considerable conformational 

rearrangement for fibrillization occur. They suggested that amyloidogenic intermediates have mostly pre-
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molten globule conformations, which reduces entropic costs upon assembly. Furthermore, Rauscher et 

al.  [37] found that amyloidogenic sequences generally lack glycine residues, which are conformationally 

plastic such that they increase unfolding costs. 

 In this study, we examined all sequences irrespective of concentration because sequence motifs 

with high homophilicity are likely to be intrinsically down-regulated in the cellular environment due to 

high aggregation propensity, or otherwise evolutionarily disfavored. Indeed, Tarataglia et al. detected a 

strong anti-correlation between human protein expression levels and measured aggregation rates  [38]. 

However, the model presented here could be readily extended to address concentration effects. A simple 

binding between two sequence S and S’ follows,  

ܵ ൅ ܵᇱ ՜ ܵܵԢ.      (14) 

The binding affinity gives the standard free energy of reaction and association constant: 

ܭ ൌ expሾെ∆ܩ°ሿ ൌ ሾௌௌᇱሿሾௌሿሾௌᇲሿ     (15) 

where the brackets as usual indicate species concentrations.  Using the notation introduced earlier, we 

have 

Affinity ሺܵ, ܵᇱሻ ൌ °ܩ∆  ൌ  െܶ ln  ሾܵܵᇱሿ ൅ ܶ lnሾܵሿ ൅ ܶ lnሾܵԢሿ.   (16) 

Thus we can define an effective binding affinity that incorporates concentration as 

Affinityୣ୤୤ሺܵ, ܵᇱሻ ൌ  െܶ ln  ሾܵܵᇱሿ ൌ Affinityሺܵ, ܵᇱሻ െ ܶ lnሾܵሿ െ ܶ lnሾܵԢሿ.   (17) 

Using the definition introduced in Eq. 6, the specificity becomes proportional to the log of the S to S’ 

concentration ratio: 

Specificityୣ୤୤ሺܵሻ ൌ Affinityሺܵ, ܵᇱሻ െ  Affinityୱୣ୪୤ሺܵሻ ൅ ܶ ln ሾௌሿሾௌᇱሿ.   (18) 
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In particular, if the concentration of S is greater than any other species, then its effective homophilicity is 

enhanced.  Unsurprisingly, then, a prominent population of one sequence has the potential to induce 

homophilic binding. A more realistic analysis would seek to estimate in vivo concentrations on the basis 

of sequence, and thus in turn, the effective binding landscape.  For example, one might estimate protein 

hydrophobicity from sequence using the Eisenberg hydrophobicity consensus scale [39], and correlate 

this with observed sequence expression rates 

 Furthermore, here we studied sequences made of predominately two types of residues 

(hydrophobic and polar) and considered mainly attractive inter-reside interactions. However, if there are 

more diverse interactions, as in real proteins and peptides with 20 amino acids, it may be easier to 

generate specificity due to the increased means for tuning the binding energy with respect to the unfolding 

free energy. For example in Drosophila melanogaster, the down syndrome cell-adhesion molecule 

(Dscam) proteins, which function as molecular tags to regulate neuronal connectivity in the fly brain, 

have 38016 isoforms with 19008 extracellular domains that act as surface receptors [40,41]. Each isoform 

shows highly exclusive isoform-specific homophilic binding; 95% of all isoforms exclusively bind to 

another copy of the identical isoform. The molecular mechanism that underlies the homophilic-binding 

specificity is still unknown. A consideration of the binding landscapes in highly sequence diverse 

peptides, using simple models like the one investigated here, may provide an approach towards 

understanding homophilic binding in this and related problems. 
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