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Learning and memory are acquired through long-lasting changes in synapses. In the simplest
models, such synaptic potentiation typically leads to runaway excitation, but in reality there must
exist processes that robustly preserve overall stability of the neural system dynamics. How is this
accomplished? Various approaches to this basic question have been considered. Here we propose a
particularly compelling and natural mechanism for preserving stability of learning neural systems.
This mechanism is based on the global processes by which metabolic resources are distributed to
the neurons by glial cells. Specifically, we introduce and study a model comprised of two interacting
networks: a model neural network interconnected by synapses which undergo spike-timing dependent
plasticity (STDP); and a model glial network interconnected by gap junctions which diffusively
transport metabolic resources among the glia and, ultimately, to neural synapses where they are
consumed. Our main result is that the biophysical constraints imposed by diffusive transport of
metabolic resources through the glial network can prevent runaway growth of synaptic strength,
both during ongoing activity and during learning. Our findings suggest a previously unappreciated
role for glial transport of metabolites in the feedback control stabilization of neural network dynamics
during learning.

I. INTRODUCTION

Glial brain cells play important and diverse roles reg-
ulating the dynamics and structure of neural networks
[1, 2], including learning-related changes in synapses
[3, 4]. In this paper we focus on one of the most impor-
tant functions thought to be served by the glial network
– the transport and distribution of metabolic resources
among the neural synapses [5]. This hypothesis origi-
nated from early anatomical studies which showed that
the glia form a bridge between the neural synapses and
the brain vasculature [6] (Fig 1a). More recently, exper-
iments have directly demonstrated that glia, astrocytes
more specifically, deliver metabolic resources to synapses
depending on how active the synapses are [7]. En route
to the synapses, these resources diffuse through an ex-
tensive network of astrocytes [5]. The biophysical prop-
erties of such diffusive transport of resources may have
a fundamental influence on the dynamics of the activ-
ity of the neural network that consumes the resources
[8–11]. For example, a highly active synapse may con-
sume all of its local resources, thus forcing it to become
less active until more resources arrive, and may drain
resources away from less active synapses, thus shaping
functional differences among synapses. Here, in order to
study these possibilities, we introduce a computational
model incorporating both a neural network and a glial
network. Our model neurons interact via synapses whose
efficacy evolves according to activity-dependent learning
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FIG. 1: (Color online) Glial-neuronal interactions: a) Car-
toon based on existing experiments, illustrating how glia serve
to distribute metabolic resources from the bloodstream to
neural synapses. Red arrows indicate paths of metabolite
transport. b) A simplified directed graph representation of
our two-layer network model. Black arrows indicate neu-
ral synaptic interactions. Arrow thickness indicates synaptic
strength which evolves according to STDP. Red arrows which
terminate on black arrows represent the resource supply to
the corresponding synapse.

rules, namely spike timing dependent plasticity (STDP)
[12, 13]. Under many circumstances, modeling of STDP
can result in unstable growth of synaptic efficacy and
typically requires additional types of learning rules to
prevent such runaway growth (see discussion in the Con-
clusion section and Refs. [13, 14]). The main finding
of our work is that diffusive transport of resources via
the glial network can serve to prevent runaway synaptic
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growth due to STDP, thereby maintaining stable neural
network dynamics. We show that this phenomenon re-
quires resource transport among the glia; locally confined
production and consumption of resources result in unsta-
ble neural network dynamics. The known roles played by
the glia in synaptic plasticity are diverse and numerous
[15], but, to our knowledge, our work is the first to show
that metabolic resource distribution can play such a sta-
bilizing role.

More broadly, there are many examples of dynamical
processes on networks in which the macroscopic network
dynamics undergoes a phase transition as the strength of
interactions between the network nodes is increased, in-
cluding synchronization [16, 17], boolean models of gene
regulation networks [18, 19], and functional brain net-
works [20, 21]. In some important cases, it has been
argued that it is desirable for the system to operate at
the onset of the phase transition: for Boolean gene reg-
ulatory networks, it has been proposed that operating
at the “edge of chaos” provides the network with enough
flexibility to have a number of different, useful attractors,
but without being too sensitive to perturbations [18]; for
neuronal networks, it has been hypothesized that operat-
ing at critical point where the strengths of inhibitory and
excitatory synapses are balanced provides various bene-
fits for information processing and storage, both in neu-
ronal network models [22] and in coarser models based
on synchronization of neuronal rhythms [23]; for wire-
less networks, it has been suggested that operating just
past a phase transition in connectivity can minimize costs
while achieving operational requirements [24]. A natu-
ral question is how these networks can robustly main-
tain operation at the critical point without centralized
control, while at the same time experiencing functional
state changes, as well as changes of inputs and exter-
nal environment. This long-standing question has been
the subject of much interest, and various mechanisms
designed so that the system’s parameters self-tune to op-
erate at the critical point have been proposed [25, 26].
In some cases, however, there might be constraints in
the dynamics of the network that either result in a net
drift of the system away from the critical point, or pre-
vent fluctuations due to noise or finite size effects from
being controlled. In this paper we introduce a mecha-
nism based on the transport of a resource through a sec-
ondary network which results in the stabilization of the
primary network’s dynamics at the critical point. In the
broad context of network science, this mechanism illus-
trates one benefit of the dynamical interaction between
different networks [27], namely providing a novel avenue
for organized criticality.

II. MODEL

As shown in Fig 1b, our model consists of a two-layered
network whose first layer is a weighted and directed neu-
ral network and whose second layer is an unweighted

undirected glial network.
The neural network is composed of N excitable nodes

that represent neurons, labeled n = 1, 2, . . . , N , and M
directed edges, labeled η = 1, 2, . . . ,M on which synapses
are located. The state stn of neuron n at a discrete
time step t is represented either as stn = 0 (quiescent)
or stn = 1 (active). We define W t as the N × N ad-
jacency matrix whose entry W t

nm denotes the weight of
the synapse on the edge from neuron m to neuron n at
time t. Any presynaptic neuron m can be either exci-
tatory (εm = 1) or inhibitory (εm = −1). Thus, if we
let wtnm = |W t

nm| denote the absolute value of synapse
strength, then W t

nm = εmw
t
nm.

At each time step t (where t = 0, 1, 2, . . . ), the state of
neuron n is updated probabilistically based on the sum
of its synaptic input from active presynaptic neurons in
the previous time step,

st+1
n =

 1 with probability σ

(
N∑
m=1

W t
nms

t
m

)
,

0 otherwise .

(1)

As in Ref. [28], the model transfer function probability
σ is piecewise linear; σ(x) = 0 for x ≤ 0, σ(x) = x for
0 < x < 1, and σ(x) = 1 for x ≥ 1.

The second layer of our model, the unweighted and
undirected glial network, consists of T glial cells labeled
i = 1, 2, . . . , T . Each glial cell i holds an amount of re-
source Rti at time step t. While in this paper we do
not focus on a particular resource, we note that various
metabolites are transported diffusively among the glial
cells such as glucose and lactate [5]. Resources diffuse
between the glial cells that are connected to each other.
We define a T × T symmetric glial adjacency matrix U
such that entry Uij = 1 if glial cell j is connected to glial
cell i and Uij = 0 otherwise. Each glial cell serves a set
of synapses by supplying resource to them. Hence we de-
fine a T ×M matrix G with entries Giη = 1 if glial cell i
serves synapse η and Giη = 0 otherwise. Consistent with
recent experimental studies [29], we assume that all the
incoming synapses of each neuron (i.e., its dendrites) are
served by a single glial cell and that this glial cell serves
no other neurons. So, given a synapse η, there is a unique
glial cell i(η) such that Gi(η)η = 1.

Learning : Let η denote the synapse that connects
presynaptic neuron m to postsynaptic neuron n, i.e., the
synapse η that corresponds to the neural network edge
m→ n. We assume that the absolute strength of synapse
η, i.e., wnm, depends on its past learning history as deter-
mined from the STDP learning rule via an auxiliary vari-
able, ŵtnm, and on the amount of resource Rtη at synapse
η,

wtnm = f
(
Rtη, ŵ

t
nm

)
, (2)

where ∂f(x, y)/∂x ≥ 0, ∂f(x, y)/∂y ≥ 0, and ŵtnm
evolves according to the STDP learning rule:

ŵt+1
nm = ŵtnm exp

[εm
τ

(
st−1m stn − stmst−1n

)]
. (3)
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Moreover, we implement synaptic strength limitation, by
requiring f not to exceed a maximum value w̄, f ≤ w̄.
For excitatory synapses (εm = +1), causal firing corre-
sponds to firing of the presynaptic neuron m on the pre-
vious time step t−1 (i.e., st−1m = 1), followed by the firing
of the postsynaptic neuron n on the current time step t
(i.e., stn = 1). Thus for causal excitations ŵt+1

nm > ŵtnm
and the excitatory synapse is reinforced. Similarly, for
anticausal excitations excitatory synapses are weakened,
ŵt+1
nm < ŵtnm. The corresponding analogous conditions

hold for inhibitory neurons (εm = −1). The constant τ
sets the learning timescale.

Resource-transport dynamics: Resource diffuses be-
tween glia through their connection network (character-
ized by the adjacency matrix U) and between glia and
the synapses they serve (via the glial-neural connection
network characterized by the adjacency matrix G). Our
model for the evolution of the amount of resource Rti at
glial cell i and the amount of resource Rtη at synapse η is

Rt+1
i = Rti + C1 +DG

T∑
j=1

Uij
(
Rtj −Rti

)
+DS

M∑
η=1

Giη
(
Rtη −Rti

)
, (4)

Rt+1
η = Rtη +DS

(
Rti(η) −R

t
η

)
− C2s

t
m(η) , (5)

where DG is the rate of diffusion between glial cells, and
DS is the rate of diffusion between glia and synapses.
Moreover, we enforce Rη ≥ 0, i.e., if (5) yields Rt+1

η < 0,
then we replace it by 0. The first term on the right hand
side of (4), Rti, is the amount of resource in glial cell
i at time t. The parameter C1 denotes the amount of
resource added to each glial cell at each time step (e.g.,
supplied by capillary blood vessels). For simplicity, we
assume each glial cell has the same C1. The last two
terms are the amount of resource transported to glial cell
i, respectively, from its neighboring glial cells and from
the synapses that it serves.

In (5), the first term denotes the amount of resource
at synapse η at time t. The term proportional to DS

denotes the amount of resource gained (if Rti(η) > Rtη) or

lost (if Rti(η) < Rtη) from glial cell i(η) that serves synapse

η. If the presynaptic neuron m(η) fires at time step t
(stm(η) = 1), then all outgoing synapses for neuron m(η),

including η, consume some resource, thus decreasing the
resource at each synapse by an amount C2 (where C2 is
a model parameter).

III. NUMERICAL EXPERIMENTS AND
RESULTS

In this section, we present results of numerical experi-
ments on our model. For simplicity we assume that both

the neural network and the glial network have an Erdös-
Renyi (ER) network structure. We build the N × N
directed weighted ER neural network adjacency matrix
W by creating a link from node m to node n (i.e., set-
ting Wnm 6= 0) with probability p and setting Wnm = 0
otherwise. This gives the mean number of incoming and
outgoing synapses per neuron, kN = Np, and the ex-
pected total number of synapses M = NkN . To specify
the initial state of each synapse, at t = 0 we set R0

η = 1

and take the initial value of each ŵ0
nm to be an indepen-

dent draw from a uniform distribution over [0, 1]. We
then rescale all entries in W by a constant to obtain a
desired largest eigenvalue of W , as discussed below.

The glial network, represented by the matrix U hav-
ing T nodes that represent glial cells, is taken to be an
undirected and unweighted ER network. If the glial cell
j is connected to the glial cell i, then Uij = Uji = 1; and
Uij = 0 otherwise. If the probability of forming a link is
q, then the mean degree of a glial cell is kG = Tq. Re-
cent evidence suggests that the number of glial cells are
roughly equal to the number of neurons [30], and hence
in our experiments we set T = N . The initial resource for
each glial cell is taken to be R0

i = 1. Although the glial
network is known to modulate the physical structure of
the neuronal connectome [2], for simplicity, we assume
that the matrix entries in U and W are independent of
each other.

In all our experiments we take the function f in (2) to
be f(x, y) = xy for xy < w̄ and f(x, y) = w̄ for xy ≥ w̄.
We set N = 1000 and p = 0.05 and randomly draw
an ER directed random graph for the neural network.
We make another draw for the undirected glial network
with T = N = 1000 and q = p = 0.05. This gives us
kN = kG = 50. For all our numerical experiments we
take DG and DS to be the same, DG = DS = D; we also
set the fraction of inhibitory nodes to be 0.2 [31] and use
the following additional parameter choices

C1 = 0.0188, C2 = 0.001,

D = 0.005 , w̄ = 0.14.

We chose these parameter values somewhat arbitrarily
but, as shown later, our results are fairly robust to the
choice of these values.

In the following, we report the three main findings from
our model. First, we show that network dynamics are
stable, avoiding saturation or extinction of neural activ-
ity. Second, we show that resource transport among the
glia is essential to maintain this stability. Third, we ver-
ify that the neural network can learn, i.e., external input
results in long-lasting synaptic changes.

Experiment 1 : To quantitatively assess the stability
of the network dynamics we study λ, the largest eigen-
value of the matrix W . Previous studies on purely excita-
tory networks [32] and networks having inhibitory nodes
[28, 33] show that λ determines the nature of the net-
work’s dynamics: λ < 1 corresponds to a hypoexcitable,
or subcritical, state where activity dies out; λ = 1 cor-
responds to the stable, critical state where activity is
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FIG. 2: (Color online) Resource-transport dynamics stabilizes network activity (Experiment 1): (a) Time series of λt (largest
eignenvalue of W t) reveal rapid convergence to stable network dynamics (λ ≈ 1), independent of initial conditions. Three
different initial conditions were tested: hyperexcitable (blue, λ0 = 1.5), stable (black, λ0 = 1), and hypoexcitable (red,
λ0 = 0.5). The inset is an expanded view of the first 5000 time steps. (b) After a longer transient the total resource R also
stabilizes to a steady value. (c) Similarly, in all three cases, the average activity S reaches a statistical steady state with large
fluctuations.

balanced, neither growing nor decaying on average; and
λ > 1 corresponds to a hyperexcitable, supercritical state
where the activity grows until nearly all neurons are fir-
ing at every time step. Moreover, it has been shown
experimentally [22] that criticality (λ near 1) provides
neural networks with potential benefits for information
processing. In this first experiment we choose different
initial conditions for λ (obtained by rescaling the initial
W ), i.e., at t = 0 we start in the critical, subcritical and
supercritical states respectively, λ0 = {1, 0.5, 1.5}. Fig-
ure 2a shows a plot of λ as a function of time, t. In
all three cases we find that after a brief transient, the
network dynamics become stable, i.e., λ fluctuates near
1 after sufficient time has passed. Also, starting at the
critical state does not result in any instabilities over time.
Fig. 2b shows the total resource R held in all glia and
synapses as a function of time t, where R is given by

Rt =

T∑
i=1

Rti +

M∑
η=1

Rtη . (6)

In all three cases R reaches a steady state value. Fig. 2c
shows that the average activity,

S =
1

N

N∑
n=1

stn , (7)

is initially below the activity for the critical case for
λ0 = 0.5 and above the activity for the critical case for
λ0 = 1.5, indicative of the subcritical and supercritical
regimes. Starting in these regimes, over time, the dynam-
ics of S becomes statistically similar to the dynamics of
S for the critical initial state of λ0 = 1. Thus our model
naturally leads to a network that operates in a stable
critical (λ near 1) regime. This can be understood on
the basis that high activity rapidly consumes resources
at the synapses, thus reducing their weights, and leading

to decrease in λ; while with low activity, synapses con-
sume resource at a low rate, allowing buildup of resource
with time and consequent increase of synaptic weights,
essentially a feedback control stabilization process. An
indication of the potential information handling benefits
of criticality [22, 34] can be seen in Fig. 2c at early time,
t . 300, where we observe that in both the subcriti-
cal (red triangles) and supercritical (blue squares) states
there is relatively little time variation, corresponding to
relatively little potential for information content; while,
in contrast, in the critical case (black circles), the signal
varies over a larger range (0.3 . S . 0.7).
Experiment 2 : STDP and resource distribution dy-

namics are both active during the stabilization demon-
strated in Figure 2a. Next, we pose the question: Is the
diffusion of resources via the glial network important for
stable cortical dynamics? Or can we still get stability if
we switch off transport among the glia (i.e., set DG = 0)?
To address this question, for t = 1, 2, . . . , T1 = 80000, we
let the system reach a steady state with the glial network
operative as in Fig. 2, using (4), and define an equivalent
time averaged resource supply rate Ci for each glial cell
i,

Ci =

〈
DG

T∑
j=1

Uij
(
Rtj −Rti

)〉
T1,T2

+ C1 . (8)

In the above equation 〈〉T1,T2
represents the time average

over the interval t = (T1, T2). We switch off transport
among the glia at t = T2 by setting DG = 0, and replace
(4) by

Rt+1
i = Rti +DS

M∑
η=1

Giη
(
Rtη −Rti

)
+ Ci . (9)

Thus the average rate of total nonsynapse resource sup-
ply to each glial cell is preserved after the glial diffusion
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FIG. 3: (Color online) Turning off diffusion results in runaway growth (Experiment 2): (a) The maximum eigenvalue λ versus
t, and (b) the total resource R versus t. The data plotted in black are ‘baseline’ results obtained using our model as described
in the Model section of the paper. For the data plotted in red (labelled ‘instability’), the initial evolution is the same as for the
baseline data up until t = 100000 (marked in the figure by a vertical arrow), at which time the diffusion of resources between
the glial cells is turned off, as described in the text.

is turned off. Replacing (4) by (9) after t = T2 = 100000,
we run the dynamics for a total of 160000 time steps.

For initial condition λ0 = 1, Fig. 3 shows the results
for two runs– one in which we use the dynamics described
by Eq. (4) (baseline) and the other in which we switch
off the glial network and run the dynamics as described
above (instability). Fig. 3b shows that after the glial
network is switched off, Rt increases as resource starts to
accumulate at some synapses and gets used up at others.
Such increases and decreases in Rη change the weights of
the matrix W resulting in an increase in λ as shown in
Fig. 3a. Thus the dynamical nature of the diffusion is a
crucial process for stabilizing the neural network learning
dynamics.

Experiment 3 : In the next experiment we demonstrate
that the neural network can learn and memorize while
maintaining λ close to the stable value of 1. To do this
we divide the neurons into two equally sized groups, G1

and G2, consisting of 500 neurons each. This results in
four groups of synapses: synapses that connect neurons
within G1, synapses from G1 to G2, synapses from G2 to
G1 and synapses that connect neurons within G2.

We run the dynamics for a total of 160000 time steps
such that we have three distinct phases: pre-learning
(1 ≤ t ≤ 80000), learning (80000 < t ≤ 100000) and
post-learning (t > 100000). In the pre-learning phase,
the dynamics are as described in the previous section.
The total resource R reaches a steady-state value and
the eigenvalue λ fluctuates near 1 (see Figs. 4b, 4c). In
the learning phase, for neurons in group Gν (ν = 1 or 2)
we modify (1) by introducing a time-dependent external

stimulus, ζ
(ν)
t ,

st+1
n =

 1 with prob. σ

(
N∑
m=1

W t
nms

t
m + ζ

(ν)
t

)
,

0 otherwise .

(10)

where ν is the group to which neuron n belongs, and,

letting ζ = 0.15, the learning protocol defining ζ
(ν)
t is

as shown in Fig. 4a. That is, starting at the beginning
of the learning phase (t = T1 = 80000), we stimulate
neurons only in G1; then, in the next time step, we stim-
ulate neurons only in G2; then, in the next two time
steps, no stimulus is applied to either group; and this
four step sequence is successively repeated until the end
of the learning phase (t = T2 = 100000), past which no
stimuli are applied. As expected, sequential firing of G1

neurons followed by G2 neurons results in strengthen-
ing of excitatory synapses from G1 to G2 and weaken-
ing of excitatory synapses from G2 to G1. We plot the
mean synaptic strength for the four groups of synapses
in Figs. 4d. Importantly, these learning-related changes
in strengths of the four groups of synapses are preserved
in the post-learning phase (after time step 100000), thus
confirming that the neural network remembered what it
learned.

Finally, Fig. 4c shows that during the learning phase
there is a corresponding decrease in total resource R.
The increased resource consumption and the consequent
decrease in R can be attributed to the increase in neu-
ronal firing rates owing to the external stimulus. As the
stimulus is removed in the post-learning phase, the plots
in Figs. 4b, 4c show that the resource R is replenished
and λ resets to 1 with fluctuations. Hence, in the post-
learning phase we have balanced cortical state, and the
neural network remembers what it learned. Thus, al-
though the glial transport stabilizes a unique attracting
macrostate with λ ∼= 1, it, nevertheless, still potentially
allows for distinct microstates representing stored infor-
mation.

Robustness: We find that the qualitative results we
obtain in our numerical experiments are fairly robust to
parameter variations over a 25% range in C1 and C2 and
even larger ranges for D and w̄. One indication of this is
shown in Fig. 5 where we plot the time averaged largest
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FIG. 4: (Color online) The STDP network learns and remembers (Experiment 3): We divide the neurons into two equally sized
groups, G1 and G2, consisting of 500 neurons each. This results in four groups of synapses: synapses within the first group
(Within G1), synapses that convey signals from neurons in G1 to neurons in G2 (G1 to G2), synapses that convey signals from
neurons in G2 to neurons in G1 (G2 to G1) and synapses within the second group (Within G2). Panel (a) depicts the learning
protocol (see text). Panels (b) and (c) show λ and R versus t. The learning regime spans t = [80000, 100000] (delimited
by the vertical arrows). Panel (b) shows that λ becomes subcritical during learning [35], but then quickly evolves back to
the critical state λ ∼= 1. Panel (d) shows the mean synaptic strength for the four groups of synapses for excitatory synapses
during learning. In accord with the STDP learning rule, the mean synaptic strength increases for G1 to G2 synapses. In the
post-learning regime, spanning t = [80000, 160000], panel (d) shows that the model remembers what it learned.
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FIG. 5: (Color online) Robustness of dynamics to parameter
change: Time average of the largest eigenvalue, 〈λ〉t, as a

function of C1/Ĉ1, C2/Ĉ2 and D/D̂ where Ĉ1, Ĉ2 and D̂ are
the parameter values used for Fig.2-4. All three curves show
that our model is fairly robust to parameter changes, e.g., a
25% change in C1 or C2 yields a change in 〈λ〉t of about 0.3%

eigenvalue 〈λ〉t of W as each parameter C1, C2 and D
normalized to their values used in Figs. 2-4 is changed,

while keeping the others fixed. We note that 〈λ〉t changes
only by roughly 0.3% when C1 or C2 changes by 25%.

IV. CONCLUSIONS

The brain makes up only 2% of human body weight,
but is responsible for 20% of energy consumption. A sig-
nificant amount of the human body’s energy consump-
tion occurs at synapses in the brain [36]. This energy
is consumed by the biophysical mechanisms underlying
transsynaptic signaling and in learning-related long-term
changes in synapses [3, 4]. Metabolic resources maintain-
ing this high rate of energy consumption are delivered by
a network of glial cells, which transport these resources
from the bloodstream to the synapses. Since these re-
sources are key to the functioning of synapses, it is nat-
ural to ask if the structure and function of this resource
transport network plays a role in controlling the activ-
ity of the neuronal network in a beneficial way [37–39].
In this paper we have shown, using a two-layered net-
work model comprised of glial cells and neurons, that
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the dynamics of metabolic resource transport across the
network of glial cells can stabilize learning dynamics in
neuronal networks. Specifically, our three numerical ex-
periments showed that (i) the balance between supply
and consumption of resources naturally leads to a regime
in which excitation and inhibition are balanced, even if
in the initial state they are not, (ii) in the absence of
diffusion of resources across the glial cell network, the
balanced state becomes unstable, and (iii) the glial regu-
lated neuronal network can learn and subsequently return
to the balanced state retaining the learned pattern. Fur-
thermore, these findings are robust to parameter changes.

It is well known that without homeostatic regulatory
mechanisms that control synaptic strengths, Hebbian
plasticity rules lead to runaway growth in synaptic effi-
cacy and to excessive neural activity [13, 40, 41]. Various
regulatory mechanisms preventing this instability have
been proposed theoretically [14, 40, 42–46] and found ex-
perimentally [47–50]. Synaptic scaling [47, 48, 51] op-
erates on a timescale of hours to days [49] by reducing
all the afferent synapses to a given neuron by the same
amount so that relative differences in synaptic strengths
are preserved. Mechanisms collectively known as homeo-
static intrinsic plasticity modify the intrinsic excitabil-
ity properties of a neuron depending on its firing ac-
tivity [52] by up- or down-regulating the expression of
membrane ion channels. Another class of models con-
siders plasticity rules whose parameters depend on neu-
ronal activity (metaplasticity) [43]. In addition, stand-
alone STDP models that result in stable critical dynam-
ics have been proposed [42, 50]. The belief has been ex-
pressed that these diverse mechanisms operate together,
complementing each other, to keep neural dynamics in
a balanced regime (e.g., [41]). However, it has been
pointed out recently that, consistent with our experi-
ment 3, a homeostatic mechanism that operates on faster
timescales might also be necessary [53]. In this paper,
we hypothesize that the regulatory mechanism imposed
by metabolic resource distribution via the glial network
could play this role. For related work on the influence of
the glial network on neurons see, e.g., Refs. [54–56]. We

note that regulation of network activity by depletion of
metabolic resources was proposed recently by Delattre et
al. [14]. Ref. [14] considers a modification of the STDP
rule that depends on a global metabolic resource that is
depleted by the globally averaged network activity, and
finds that it results in stable neural activity. In contrast
to globally-based resource regulation, we consider here a
spatially distributed resource transportation network in
which resource diffusion through the glial cell network
plays the key role in stabilizing the neural dynamics at
the balanced state (λ near 1 in our model). In the limit
of infinitely fast diffusion, the resource at every glial cell
would become the same, and our model would reduce to
one similar to that of Ref. [14]. However, local resource
depletion and transport through the network of glia is
more realistic and allows one to study the effect of differ-
ent forms of spatially structured neuron-glia interactions.
Finally we note that while in this paper we used simple
models for the neuronal network, the glial network, and
the resource dynamics, our work can be extended to in-
clude more realistic modeling.

In the broader context of network science, there has
been much recent interest in multilayered networks [27,
57, 58] and in the dynamics of interdependent networks
(e.g., power grid networks and the internet depend on
each other [59]). Our work is an example of how the inter-
actions of two different networks can result in beneficial
dynamics, in particular, the feedback control stabiliza-
tion of an otherwise disabling instability. Other exam-
ples of multilayer network interactions include coupled
oscillator networks (a resource transport network regu-
lating synchronization was considered in Ref. [60]) and
transportation networks [61].
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G. Buzsáki, Organization of cell assemblies in the hip-
pocampus, Nature 424, 552 (2003).

[21] T. Sasaki, N. Matsuki and Y. Ikegaya, Metastability of
active ca3 networks, J. Neurosci. 27, 517 (2007).

[22] W. L. Shew and D. Plenz, The functional benefits of
criticality in the cortex, Neuroscientist 19, 88 (2013).

[23] M. G. Kitzbichler et al., Broadband criticality of human
brain network, PLoS Comput. Biol. 5, e1000314 (2009).

[24] B. Krishnamachari, S. Wicker and R. Bejar, Phase
transition phenomena in wireless ad-hoc networks, in
GLOBECOM, san Antonio, TX, (2001).

[25] S. Bornholdt and T. Rohlf, Topological evolution of dy-
namical networks: Global criticality from local dynamics,
Phys. Rev. Lett. 84, 6114 (2000).

[26] A. Levina, J. M. Herrmann and T. Geisel, Dynamical
synapses causing self-organized criticality in neural net-
works, Nat. Phys. 3, 857 (2007).
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