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Abstract

We investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, non-

linear chemical network under spatial confinement and crowding conditions. In detail, the

Willamowski-Rossler chemical reaction system has been ‘extended’ and considered as a proto-

type reaction-diffusion system. Our results are potentially relevant to a number of open problems

in biophysics and biochemistry such as the synthesis of primitive cellular units (protocells) and the

definition of their role in the chemical origin of life and the characterization of vesicle-mediated

drug delivery processes. More generally, the computational approach presented in this work makes

the case for the used of spatial stochastic simulation methods for the study of biochemical networks

in vivo where the ‘well-mixed’ approximation is invalid and both thermal and intrinsic fluctuations

linked to the possible presence of molecular species in low number copies cannot be averaged out.
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I. INTRODUCTION

Biochemical networks in vivo are typically open to the exchange of energy and mat-

ter with the surrounding environment[1–4]. They often contain autocatalytic steps [5–9]

and their dynamics tends to be strongly influenced by thermal and intrinsic noise [10, 11],

macromolecular crowding and spatial confinement [12–18]. In this study we investigate by

means of an extended set of Brownian dynamics simulations how the dynamics of a generic

chemical network is affected by spatial confinement and particle crowding[12, 13, 16–18].

The reaction-diffusion system considered in this study is based on the Willamowski-Rossler

(WR) chemical network [19] (see left panel in Figure 1); a non-linear, continuous-time min-

imal model for chemical chaos based on first and second order chemical reactions. The WR

network contains three autocatalytic steps involving the ‘intermediate’ species A, B and C

and it’s thermodynamically open [1–4]. The rate equations defining the original implemen-

tation of the model [19] display a rich and complicated dynamics comprising fixed point,

limit cycle and chaotic attractors. The WR network has been previously studied via de-

terministic and non-spatial stochastic simulation methods [20–25] but never as a stochastic

reaction-diffusion system where crowding and spatial confinement are explicitly taken into

account.

In this study, we investigate the effects of spatial confinement and crowding on a minimal

version of the WR network (MWR) (see right panel in Figure 1 and Ref. 25) using hard-

sphere [26, 27] Brownian dynamics simulations integrating chemical reactivity [28, 29]. We

fix the population numbers for species E1, E2, E3, P1 and P2 (consequently the rates k1, k3

and k5 become pseudo-first order) to make the chemical network thermodynamically open.

The following chemical reactions describe the MWR system used in our simulations [25] (see

also right panel in Figure 1).

Ē1 +A
k1−−⇀↽−−
k−1

2A (1a)

A + B
k2−−→ 2B (1b)

A + C
k4−−→��P 2 (1c)

Ē2 + B
k3−−→��P 1 (1d)

Ē3 + C
k5−−⇀↽−−
k−5

2C, (1e)

The main assumption in the MWR system [19, 25] is that three of the backward reaction
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rate constants shown in the left panel of Figure 1, namely k−2, k−3 and k−4, are much

smaller than their forward counterparts and, hence, can be neglected. The MWR system is

composed by two main subsystems: a Lotka-Volterra oscillator [30–32] involving species A

and B and a chemical switch [20] that couples the Lotka-Volterra component to species C

through species A.

Similarly to the ‘full’ WR network, the MWR rate equations derived from the set of

chemical reactions (1a)− (1e) display a diverse dynamical behavior comprising fixed point,

limit cycle and chaotic attractors [19, 25].

We employ various information theory (IT) functionals and (spectral) graph theory to

quantify the effects of confinement and crowding on the population dynamics, transfer of

information and spatial organization within the MWR network. Our results show that

while the effects of a variable container volume are overall linear, the influence of a variable

number of crowders is not immediately quantifiable in a simple analytical way and translates

differently to the three different species in the MWR network. Our analysis reveals a number

of relevant details about the dynamical nature of the MWR network that are not accessible

to simpler models which do not consider excluded volume effects, spatial inhomogeneity and

the particle nature of the chemical system under consideration.

We believe that modeling techniques based on Brownian dynamics simulations integrat-

ing chemical reactivity could be, for example, particularly appealing in the theoretical and

computational study of primitive cellular units or protocells; their synthesis, their stationary

dynamics and their role in the chemical origin of life [4, 8, 9, 33–41]. Another possible appli-

cation for “reactive” Brownian models relates to the study of gene regulatory networks and

in particular of synchronized genetic oscillators [42–45] where chemical species responsible

for both the activation and the repression of gene activity diffuse via Brownian dynamics

between neighboring cells and interact with specific receptors on their surface.

More generally, we make the case for a more widespread development and use of spatial

stochastic simulation methods of biochemical networks in vivo that explicitly take into

account confinement and macromolecular crowding [12, 46–53].
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II. METHODS

All three autocatalytic species A, B and C are spatially confined within a spherical

container, E1 and E3 catalyze the synthesis of A, and C, respectively, whereas E2 catalyzes

the degradation of B. P1 and P2 are the products of reactions (1d) and (1c), respectively, and

they get instantaneously eliminated from the reaction pool, i.e., their constant population

number is zero. The constant population numbers of E1, E2 and E3 and the instantaneous

elimination of P1 and P2 lead to a biochemical network composed by A, B and C which is

spatially enclosed and thermodynamically open, i.e., it exchanges matter and energy with

the surrounding environment by means of three sources (E1, E2 and E3) and two sinks (P1

and P2). The constant values of E1, E2, E3 are incorporated into the pseudo-first order rates

k1, k3, k5, respectively (see Figure 1).

The different chemical species in the MWR system are modeled as reactive, Brownian

hard spheres confined in a spherical, hard container. The details of the Brownian integrator

used in our simulations can be found in Refs. 28 and 29. The radius of the hard spheres for

species A, B, and C is 0.01 µm and the diffusion coefficient is D = 0.01 µm2s−1. In all our

simulations the time step is fixed at ∆t = 0.01 s.

To study the effects of crowding and confinement we run two separate sets of reactive

Brownian dynamics simulations. In the first set we consider six different spherical containers

with radius varying between 0.4 and 0.65 µm. The containers are implemented as ‘hard-

wall’ spherical boundary conditions. For each of the six spherical containers we run a total

of 30 independent simulations, each of total time ttot = 1000 s. Three sets of values for

the reaction rate constants (kset1, kset2, kset3 ) are used for each one of the six different

spherical containers. They correspond to three distinct dynamical behaviors in the deter-

ministic implementation of the MWR model: fixed point, limit cycle and chaotic dynamics,

respectively. The first set (kset1, fixed point attractor) is k1 = 30.0, k−1 = 0.25, k2 = 1.0,

k3 = 10.0, k4 = 0.4, k5 = 16.5, k−5 = 0.5. To generate the second set (kset2 - limit cycle

attractor) we simply consider the first set of parameters and change the value of k4 to 0.6.

In the third set (kset3 - chaotic attractor) we set k4 = 0.6, k5 = 18.5 and k−5 = 0.4. In other

words, kset2 is generated from kset1 by increasing the degradation of A and C (increasing

the coupling between the Lotka-Volterra component and the switch) while kset3 is obtained

from kset1 by increasing both the A− C coupling and decreasing the ratio k−5/k5.
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We run 10 independent simulations for each of the three parameter sets. The starting

point for each simulation is generated randomly placing A = B = C = 100 hard spheres

within the proper spherical container. In the second set of simulations we take into account

the presence of a variable number of “chemically inert” crowders modeled as hard spheres

of radius r = 0.01 µm and with diffusion coefficient D = 0.01 µm2s−1. The starting point

for each simulation in the second set is generated randomly placing A = B = C = 100 hard

spheres and a variable number of inert crowders, with same radius and diffusion coefficient

as A, B and C, in a spherical container with radius R = 0.4 µm. We run independent

simulations for five different crowder population numbers: varying between 2 × 103 and

8× 103. For each of the five crowder population numbers we run a total of 30 independent

simulations (10 for each of the three parameters sets), each of total time ttot = 1000 s.

III. RESULTS AND DISCUSSION

A. Population dynamics

We focus our analysis on the stationary [54] portion of our Brownian dynamics simula-

tions. In Figure 2 we show a set of representative time windows for the population numbers

of species A, B and C related to simulations with variable container volume and no inert

crowders present (left panel), and to simulations with container radius R = 0.4 µm and

varying number of inert crowders from 0 to 8000 (right panel). All data refer to parameter-

ization kset3. Time series population data generated under kset1 and kset2 are not shown

as they display similar temporal patterns. Figure 2 qualitatively shows that (1) both av-

erage population and fluctuations increase with increasing container volume for all species

and (2) the presence of an increasing number of inert crowders affects the average popu-

lation of species A, B and C in different, non-trivial ways. The presence of an increasing

number of inert crowders also appears to lower both the magnitude of the fluctuations in

the population dynamics and the temporal interdependence between the populations of the

different species. A quantitative assessment of the mean and fluctuations dependence from

both the container volume and the crowders number is given in Figure 3. In the left panel

we show that in the limited range of container volumes considered in our simulations, the

mean population increases linearly with increasing container volume. The fluctuations cal-
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culated as the standard deviation from the mean also have a tendency to increase although

not linearly. The effects of the presence of inert crowders are shown in the right panel of

Figure 3. A, B and C ‘chemical’ species all show a decrease in their average population for

increasing crowders numbers which can be intuitively related to the diminished availability

of free volume within the spherical container. The decrease is more apparent, and linear in

nature, for species C (bottom right) than it is for A and B which both appear to reach a

plateau as the number of crowders increases. It is worth pointing out how, even in a simple

chemical network like the MWR network, the effects of crowding are far from being uniform

across the different ‘chemical’ species and cannot be easily incorporated in lower-resolution

reaction-diffusion models that do not explicitly consider excluded volume effects and spa-

tial granularity. An additional observation on the data in Figure 3 which is more specific

to the MWR chemical network relates to the dependence of the average population from

the parameterization set. First, the population dynamics of species A, B and C does not

change significantly when the parameterization set changes from kset1 to kset2. Second, the

transition from parameterization kset1 and kset2 to kset3 has opposite effects on species B

and C. Third, species A does not show any quantifiable dependence from the parameter set

(under both volume and crowders’ number varying conditions). It is easy to connect the

increase in the slope of the average population of species C to the increase in C’s net syn-

thesis going from kset1 and kset2 to kset3. The decrease in the linear fit’s slope for species

B is less clear since species B is not directly affected by the changes in the parameteriza-

tion set and species A, which is directly coupled to B, is insensitive to those changes. The

low sensitivity to parameter changes of species A can be qualitatively explained considering

that A is the connection point in the MWR network between the Lotka-Volterra component

and the switch component [20] and therefore might benefit from the mutual ‘modulation’

given by species B and C. The results on the population dynamics shown in Figure 3 and

discussed in this Section are an example of the level of detail that can be attained only with

particle-based, spatial stochastic models. Indeed, the presence of excluded volume effects

and the explicit representation of the reactor volume and its boundaries set the brownian

simulator apart from both the deterministic and the stochastic well-mixed simulators. All

three dynamic regimes (fixed point, limit cycle, chaotic) generated under parameterizations

kset1, kset2 and kset3 using deterministic rate equations translate into a stationary (in a

stochastic sense [54]) regime in the brownian simulator. In addition, the values for the av-
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erage populations in the deterministic calculations, for all three parameterization sets, are

∼ 10 to ∼ 250 times smaller from what is obtained in our brownian simulations (data not

shown). It is worth mentioning that the collapse of the three dynamical regimes generated

from the MWR rate equations into a common, stochastic, stationary regime has been ob-

served also when the method of Gillespie [11] is used or when gaussian noise is added to the

rate equation solver [21]. Stochastic, well-mixed simulators also generate population levels

that are substantially different. In detail, only the population of species C is consistently

above zero, whereas species A and B weakly oscillate around zero [21]. It appears that

when stochasticity is introduced in the MWR network via well-mixed simulators, the sys-

tem becomes highly sensitive to fluctuations, especially if low particle numbers are employed

[25].

B. Information transfer

A possible explanation of the peculiar behavior of species A and its relation with A’s

‘double coupling’ within the MWR network comes from the analysis of the information

transfer quantified by the transfer entropy [55] defined as:

TY→X =
∑

p(Xn+1, X
(k)
n , Y (l)

n ) log
p(Xn+1 | X

(k)
n , Y

(l)
n )

p(Xn+1 | X
(k)
n )

, (2)

where Xn is the state of species X at timestep n and X
(k)
n ≡ (Xn, · · · , Xn−k+1). In our cal-

culations we consider k = l = 1. The transfer entropy is a particular case of the conditional

mutual information I(X, Y |Z) [56–58]. The transfer entropy defined in Eq. 2 quantifies

how much knowing the state of species Y at timestep n reduces the uncertainty of the state

of X at timestep n + 1, conditioned on Xn. The transfer entropy is non-negative and it’s

equal to zero when past values of species Y have no influence in determining (reducing the

uncertainty on) the state of species X in the immediate future [55, 59–63].

We use transfer entropy to estimate both the amount and the direction of the information

transfer in the MWR network as well as their dependence from the presence of inert crowders

and from the container’s volume. A number of interesting conclusions can be inferred from

the analysis of the transfer entropy data. Considering first the chemical network as a whole

we that the varying container volume does not significantly affect both the information

transfer between the different species in the network (variations are less than 0.5 bits - data
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not shown). For systems with variable number of inert crowders (Figure 4) there is a small

but noticeable systematic increase in the transfer entropy with differences between the less

and the most crowded systems of the order of 1 bit. A further look at the behavior of the

single species shows the pivotal role of species A as a common influencer of the dynamics of

species B and C. Indeed, Figure 4 shows that the amount of information transferred from

species A is systematically larger than the information transferred to species A in crowding

number-varying systems. (the same result has been observed for variable volume, data

not shown). This asymmetry in the information (common to all three parameterization sets

kset1, kset2 and kset3 - kset1 and kset2 data not shown) can be linked to an increased ability

of A to ‘absorb’ external perturbations and therefore to its lower sensitivity to parameter

change (see previous Section).

C. Statistical complexity

In this section we focus only on simulations performed under parameterization set kset3 as

this set of parameters appears to have an additional layer of complexity with respect to kset1

and kset2 and carries all the significant information about our system. IT functionals can be

also used to estimate the degree of complexity in the time evolution of the chemical network

and its dependence from the container volume and from the presence of inert crowders.

The complexity estimation quantity that we choose is an intensive statistical complexity

measure which is the product of the normalized spectral entropy Ŝ(Pr) and the intensive

Jensen-Shannon divergence Q̂(Pr, Pe) [64, 65] defined respectively as:

Ŝ(Pr) = −S0

Nf
∑

r′

Pr′ log2 Pr′ (3)

with

Pr =
f 2
r

∑Nf

r′ f 2
r′

, (4)

where fr are the frequencies in the Fourier spectrum and Nf = 4000 is the number of

frequencies considered, and

Q̂(Pr, Pe) = Q0

[

S
(Pr + Pe

2

)

−
1

2
S(Pe)−

1

2
S(Pr)

]

, (5)
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where S(Pe) = log2Nf = S−1
0 , Q0 is the normalization factor for Q and Pe = 1/Nf .

The statistical complexity ŜQ̂ is zero for both Pr = {1, 0, 0, · · · , 0} and Pr = Pe = 1/Nf ,

i.e., for spectral entropy S = 0 and S = log2Nf (fully ordered and fully stochastic systems)

[65]. The results for the statistical complexity ŜQ̂ are shown in Figure 5. The top panel

shows that container volume variability does not significantly affect the average statistical

complexity for species A, B and C (both Ŝ and Q̂ do not vary significantly; ∆ ≤ 0.02).

Conversely, for systems with constant volume and variable crowders number the statistical

complexity decreases with increasing number of crowders. In detail, the decrease is almost

exclusively due to a decrease in the normalized spectral entropy from 0.62 to 0.55, 0.61

to 0.54 and 0.58 to 0.50, for species A, B and C, respectively. The intensive Jensen-

Shannon divergence remains constant at around 0.39 − 0.40. As a general conclusion from

our information theoretic analysis, we can state that the presence of a growing number of

inert crowders drives the chemical network toward a lower degree of complexity which is

possibly due to a more efficient information transfer (see Figure 4) between the reactive

chemical species.

D. Spatial organization

The spatial organization of the chemical species in the network is investigated under the

framework of (spectral) graph theory [66, 67]. In detail, for each time step in each of our

Brownian dynamics runs we build three binary, symmetric adjacency matrices GA, GB and

GC for the three unweighted, undirected graphs representing the spatial connectivity network

for species A, B and C respectively and separately. Two points (diffusing hard spheres of the

same species) are connected if their distance at a given time step is ≤ 0.06µm. By definition,

each point (hard sphere) is connected with itself and the diagonal elements of the matrices

are therefore all equal to one. We then consider another three adjacency matrices Gs
A, G

s
B

and Gs
C , for species A, B and C, respectively, of the subgraphs composed only by the points

which are directly connected to 4 or more other points (hard spheres) of the same ‘chemical’

species. We discard the remaining points which have less than 4 direct connections to other

points as noise. This procedure is similar to the characterization of the ‘core’ points in the

DBSCAN clustering algorithm [68]. In other words, our approach is akin to a DBSCAN

calculation where only the deterministic part is considered and where the ‘boundary’ points
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are discarded as noise (DBSCAN* in Ref 69). It is easy to show [66] that, given a binary,

symmetric adjacency matrix G of dimension m, the matrix Gfull = Gm−1 (which we call full

connectivity matrix), where the power is defined in a boolean space [70], has element gij = 1

iff there is a connectivity path between points i and j, i.e., iff i and j belong to the same

spatial cluster. The matrix Gfull is binary, symmetric and its diagonal elements are all equal

to one. In order to speed up the calculations of the full connectivity matrix (m ∼ 103) we

exploit the existence of a simple bound on the diameter of our graph [71] and hence reduce

the the matrix power exponent from ∼ 103 to 15− 20. The eigenvalues of Gfull are real and

all ≥ 0. The number and the magnitude of the strictly positive eigenvalues correspond to

the number and the size of the spatial clusters in our system, respectively, as these are the

connected components of the graphs represented by the adjacency matrices GA, GB and GC

[66, 67]. In Figure 6 we show the average number of clusters (top) and the average size of

the largest cluster (bottom) as a function of the number of inert crowders. On the one hand,

the average number of clusters shows a weak tendency to increase with increasing number of

crowders for all three chemical species. On the other hand, the average maximum cluster size

decreases with denser crowding conditions. Among the three reactive species the maximum

cluster size in species C displays both the largest values and the largest decrease rate. Figure

6 basically shows that the presence of an increasing number of crowders opposes the natural

tendency of the reactive particles in our system to aggregate in well-defined regions of the

available space. An interesting feature of the maximum cluster size temporal evolution is

shown in Figure 7. For small numbers of crowders the maximum cluster size for species A

tightly mirrors the time evolution of the population of species A (species B and C show

very similar behavior - data not shown). The ‘correlation’ between population dynamics

and maximum cluster dynamics weakens with increasing crowders number. Indeed, table I

shows that the mutual information [56] between population and maximum cluster dynamics

decreases with increasing crowders numbers. Similarly to what we observed in our analysis

of the population dynamics and information transfer, the influence of a variable numbers

of crowders on the spatial organization is not homogeneous across the three species in the

chemical network.
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IV. CONCLUSIONS

In this study we investigate the dynamical behavior of a generic chemical network under

spatial confinement and crowding. We observe that the presence of inert crowders affects in

a non-trivial way the population dynamics of the reactive species in the network. The choice

of using IT for most of our analysis is motivated by the fact that the MWR network is a

generic chemical system and that the quantities resulting from our simulations are stochastic

in nature. IT offers in this case the most general approach to study interspecies (directional)

correlations and the system’s complex dynamical behavior. The detailed analysis of the pop-

ulation dynamics of the MWR network under different confinement and crowding conditions

presented in Section III represents an extensive example of the level of detail, not accessi-

ble to deterministic and stochastic well-mixed models, that can be resolved when spatial

confinement and crowding are explicitly taken into account.

In conclusion, we try to make the case for the use of spatial stochastic simulations as an

elective method to complement experiments and to improve our understanding of complex,

reaction-diffusion systems where dynamics is both spatially confined and compartmentalized.

The code used for our brownian simulations is available on request.
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TABLE I. Mutual information (in bits) between population size and largest cluster size time series

for species A, B and C and for different numbers of inert crowders. Largest mutual information

values correspond to a stronger non-linear time correlation between population size and the size of

the largest spatial cluster.

Inert Crowders A B C

0 0.969 0.811 1.574

2000 0.893 0.643 1.359

4000 0.847 0.619 0.806

6000 0.611 0.583 0.735

8000 0.568 0.471 0.442
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FIG. 1. Schematic view of the Willamowski-Rossler chemical network. (a) the full version. (b)

the minimal version analyzed in this study obtained by setting k−2 = k−3 = k−4 = 0. In red we

highlight the Lotka-Volterra component of the network [19, 25]. where the overbar on species E1,

E2 and E3 indicates that the concentrations of those species are constants and the diagonal line

crossing P1 and P2 indicates that those species are instantaneously eliminated from the system

(see Methods section for details).

16



FIG. 2. Population time series (partial time windows) obtained each from a single trajectory of our

brownian dynamics simulations of the MWR network with kset3 parameterization. (a) population

time series for systems with varying volume (radii varying from 0.4 to 0.65 µm). (b) population

time series for systems with varying number of crowders and with constant container volume. The

radius of the spherical container is R = 0.4 µm.
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FIG. 3. Average population values for species A ((a) and (b)), B ((c) and (d)) and C ((e) and

(f)) with parameterizations kset1, kset2 and kset3. (a),(c),(e): the average populations are plotted

against the volume of the spherical container, no inert crowders are present. The average population

of the reactive species grows linearly with the volume of the spherical container. (b),(d),(f): the

average populations are plotted against the number of inert crowders. A slight decrease in the

average population is observed when the number of inert crowders within a spherical container of

radius R = 0.4 µm is increased from 0 to 8000. The presence of the inert crowders affects differently

the three ‘chemical’ species in the MWR network.
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FIG. 4. transfer entropy as a function of the number of inert crowders (constant container volume).

Data refer to kset3 parameterization.
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FIG. 5. (a) statistical complexity measure as a function of the container volume with no inert

crowders present. (b) statistical complexity measure as a function of the number of inert crowders

at constant container volume. Data refer to kset3 parameterization.
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FIG. 6. Average number of clusters (a) and average maximum cluster size (b) as a function of the

number of inert clusters. Data refer to species A, B, C under kset3 parameterization. The average

number of clusters shows a weak tendency to increase for all three chemical species. The average

maximum cluster size decreases with denser crowding conditions. The max. cluster size in species

C displays the largest decrease rate.
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FIG. 7. Time evolution for the population size (blue) and the maximum cluster size (yellow). The

temporal pattern in the maximum cluster size accurately mirrors the population size. Data refer to

species A under kset3 parameterization. The mutual information between the two sets of temporal

data decreases with increasing number of crowders (see Table I).
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