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We use a key concept of the continuous-time random walk formalism, i.e., continuous and fluctuat-
ing interevent times in which mutual dependence is taken into account, to model market fluctuation
data when traders experience excessive (or superthreshold) losses or excessive (or superthreshold)
profits. We analytically derive a class of “superstatistics” that accurately model empirical market
activity data supplied by Bogachev, Ludescher, Tsallis, and Bunde that exhibit transition thresh-
olds. We measure the interevent times between excessive losses and excessive profits and use the
mean interevent discrete (or step) time as a control variable to derive a universal description of
empirical data collapse. Our dominant superstatistic value is a power-law corrected by the lower
incomplete gamma function, which asymptotically tends toward robustness but initially gives an
exponential. We find that the scaling shape exponent that drives our superstatistics subordinates
itself and a “superscaling” configuration emerges. Thanks to the Weibull copula function, our ap-
proach reproduces the empirically proven dependence between successive interevent times. We also
use the approach to calculate a dynamic risk function and hence the dynamic VaR, which is sig-
nificant in financial risk analysis. Our results indicate that there is a functional (but not literal)
balance between excessive profits and excessive losses that can be described using the same body of
superstatistics, but different calibration values and driving parameters. We also extend our original
approach to cover empirical seismic activity data (e.g., given by Corral) the interevent times of which
range from minutes to years. Superpositioned superstatistics is another class of superstatistics that
protects power-law behavior both for short- and long-time behaviors. These behaviors describe well
the collapse of seismic activity data and capture so-called volatility clustering phenomena.

PACS numbers: 89.65 Gh, 05.40.-a, 89.75.Da

I. INTRODUCTION

Financial markets fluctuate, sometimes strongly,
as traders estimate risk levels in order to maximize
profit. The interevent interval between times when
market returns produce excessive profits and when
they produce excessive losses can be described us-
ing an element of the continuous-time random walk
(CTRW) formalism, i.e., the waiting or pause-time
distribution (see Refs. [1–4] and references therein).

Empirical market data on excessive profits and
losses [5–8] define excessive profits as those greater
than some positive fixed threshold Q and excessive
losses as those below some negative threshold −Q.

∗ zagielski@gmail.com

The mean interevent (discrete or step) time, mea-
sured by the clock tick between profits/losses versus
Q has been used as an aggregated basic variable.
(The term “interevent time” appears in the litera-
ture under such names as “pausing time,” “waiting
time,” “intertransaction time,” “intertrade time,”
and “interoccurrence time” in different versions of
the continuous-time random-walk formalism [4, 9–
11, 13]).

Interevent times constitute a universal stochastic
measurement of market activity on time scales that
range from minutes to months [5, 6]. The mean in-
terevent discrete time can be used as a control vari-
able that produces a universal description of empiri-
cal data collapse [7], i.e., it produces the distribution
of interevent times for a fixed mean interevent step
time, which is a universal statistical quantity unaf-
fected by time scale, type of market, asset, or index.
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Interevent times in a multifractal structure of finan-
cial markets [10, 11] and in the single-step memory
in order-book transaction dynamics [13] are foun-
dational in the analysis of double auction market
activity.

The distribution of interevent times can be de-
scribed using (i) the canonical CTRW valley model
(see Refs. [2, 4] and references therein), which treats
time intervals as random variables and valley depths
as single losses (or profits), and (ii) generalized ex-
treme value statistics for stochastic dependent basic
processes [14].

We use the extreme value theory to gain an ap-
proximate understanding of the phenomena. This
theory uses the extreme type theorem (also called
the three types theorem) and states that there are
only three types of distributions needed to model the
maximum or minimum of a set of random observa-
tions from the same distribution. In practice, if a
statistical ensemble of M data sets (each of N ele-
ments) is generated from the same distribution and
creates a new data set that contains the maximum
values from these sets, the resulting data set can
only be described (for large M and N) using one of
three models, i.e., the Gumbel, Fréchet, and Weibull
distributions. These models, along with the gener-
alized extreme value distribution, are widely used in
risk management, finance, insurance, economics, hy-
drology, material sciences, telecommunications, and
many other fields that deal with extreme events.

The paper is organized as follows. In Sec. II we
explain the principal goal of our work and indicate a
possibility of extension of our approach to research
areas far outside the social sciences. In Sec. III we
describe how it agrees with empirical data and al-
lows us to develop our formalism. In Sec. IV we
develop our formalism and compare its predictions
with a large body of empirical data from financial
markets. Finally, in Sec. V we describe some useful
applications of our formalism and provide conclud-
ing remarks.

II. PRINCIPAL GOAL

Our goal is to model empirical data associated
with single-variable statistics (see Sec. IV B for a
detailed analysis), i.e., (i) the mean interevent dis-
crete time period (or step) RQ vs. Q(> 0) be-
tween successive extreme losses, which are consid-
ered returns with absolute values that exceed a given
threshold Q(> 0) (for the sake of simplicity we treat
losses as positive quantities), and (ii) the distribu-
tion ψQ(∆Qt) of the continuous interevent times be-
tween successive extreme losses, ∆Qt, previously de-

scribed using an ad hoc q-exponential [5]. Note that
this type of distribution is one of the two pillars of
the continuous-time random walk formalism. We
thus systematically create a general formalism based
on superstatistics for constructing a class of these
distributions, which provides market superstatistics
that have universality.

That our approach is superior to that based on q-
distributions can clearly be seen by considering the
dependence between subsequent interevent times.
The results of our approach agree with empirical
data and those based on q-distributions do not (see
Sec. III C for details). Because no reliable empirical
data associated with our study of excessive profits
are available (the statistical errors are too large—
see Sec. V B for details), we focus on excessive losses
and use the empirical data provided in Refs. [5–8].
In addition to market empirical data, we can accu-
rately describe seismic earthquake data at any scale
[37] (see Sec. V C for details).

III. BASIC ACHIEVEMENT

We find an analytical closed form of the mean in-
terevent step time period RQ between successive ex-
cessive losses ε(> 0) that are greater than threshold
Q(> 0). We allow coupling between these losses and
preceding interevent continuous time periods.

To more clearly explain RQ we consider the bi-
nomial distribution as the simplest instructive ref-
erence case. An event or loss −ε independent of
other losses that has a probability p of occurring,
appears on average Np times during a series of N
observations. We thus find that the characteristic
value of N = 1/p and see on average a single loss
during each series of N observations. This is not
surprising because their dispersion around Np = 1
is
√

1− p < 1. The variable N can be used as a
counting process and is sometimes referred to as the
operational time.

We identify probability p with the cumulative dis-
tribution P (−ε ≤ −Q). Hence −ε ≤ −Q can be
considered an extreme event within N(= 1/p) ob-
servations. Note that large N corresponds to a rela-
tively small p value and hence to a relatively large Q
value. This is supported by the range of the available
empirical data (see Fig. 1 for details). Large losses
are significant from both theoretical and practical
points of view.

Using this identification we can compare RQ with
the step time variable N ,(

RQ
τ

)−1

= P (−ε ≤ −Q) =

∫ −Q
−∞

D(−ε)dε, (1)
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where τ is an arbitrary calibration time (found from
the fit to empirical data – see Formula (4) and
Fig. 1), and D(ε) is the distribution of returns. The
challenge is to find this distribution.

Without loss of generality we can use the absolute
value of the losses instead of their negative values,

P (−ε ≤ −Q) = P (ε ≥ Q) =

∫ ∞
Q

D(ε)dε. (2)

The second equality allows us to quantify the den-
sity of returns D(ε) as a basic local quantity, which
we set using empirical data. This equation shows
that there is no formal difference between losses and
profits when both assume positive values.

From Eqs. (1) and (2) we find

D(ε) = −
d
(
RQ
τ

)−1

dQ
|Q=ε. (3)

We determine the distribution D(ε) in an analytical
form using the empirical dependence of R−1

Q on Q

(cf. Fig. 1).
This finding allows us to extend relations (1) – (3)

to the case of dependent losses. Because of the cou-
pling mentioned above we conclude that interevent
continuous time periods can be dependent, and this
is verified in Sec. III C.

A. D(ε) vs. empirical data

Note that quantity RQ can be directly obtained
from empirical data. Figure 1 shows the quantity
RQ plotted vs. Q for four typical indices presented
by different marks.

We found good agreement with empirical data
(solid curves) by assuming RQ in the form given by
the formula in the upper branch of Eq. (4), which
was derived from the q-Weibull distribution defined
in the upper branch of Eq. (5),

RQ
τ

=


(

exp
−(Q/ε̄′)η

q′

)−1

,

exp
Q/ε̄
q ,

exp ((Q/ε̄)
η
) ,

(4)

where τ is the irrelevant calibration time or scale fac-
tor of RQ axis that differs in different branches (see
Tables I – III). Here the values are q′ = 1

2−q , q <

2, ε̄′ = ε̄q′1/η, ε̄, η > 0. Values of fit parameters
q, ε̄, and exponent η are shown in Table I. Here

exp
Q/ε̄
q = (1 + (1 − q)Q/ε̄)

1
(1−q) is a q-exponential

that tends to the usual exponential exp(Q/ε̄) when
q → 1. Values of fit parameters ε̄ and q are shown
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FIG. 1. Mean interevent discrete time period RQ vs.
threshold Q for four typical classes of indices. Black cir-
cles, red squares, green rhomboids, and blue triangles
concern US/GBP exchange rate, S&P 500 index, IBM
stock, and WTI (the crude oil) empirical data (from Jan-
uary 2000 to June 2010) plotted from the top down to the
bottom of the figure, respectively, were taken from Fig.
2 in ref. [5]. The solid curves are the best fitted to the
empirical data. These curves are predictions of the for-
mula from the upper branch of (4) which is derived from
the q-Weibull distribution. The remaining two types of
curves also fit well the empirical data although slightly
less accurately as previous one. Assumed resolution of
the figure does not allow to distinguish (in the range of
the figure) between these two types. That is, predictions
of the formula from the middle branch of (4), defined
by the q-exponential, are almost totally covered by pre-
dictions of the formula from the bottom branch of (4),
derived from the usual Weibull distribution. Unfortu-
nately, none of predictions are able to reproduce a weak
wavy behavior of empirical data.

in Table II. This q-exponential corresponds to the
distribution defined in the middle branch of Eq. (5).
Table III also shows the values of ε̄ and η driving the
formula in the bottom branch, which were derived
from the Weibull distribution—see the lower branch
of Eq. (5).

Note that both the middle and bottom branches of
Eq. (4) describe the empirical data, although slightly
less accurately than the top branch. Note that mid-
dle and bottom branches are almost indistinguish-
able in the range of the figure. We also find an
exponential distribution with predictions that differ
from the empirical data.

Hence from Eqs. (3) and (4) we obtain distribu-
tions

D(ε) =


η
ε̄′ (

ε
ε̄′ )

η−1

1−(1−q′)(ε/ε̄′)η exp
−(ε/ε̄′)

η

q′ ,

1
ε̄

(
exp

ε/ε̄
q

)−(2−q)
,

η
ε̄

(
ε
ε̄

)η−1
exp (− (ε/ε̄)

η
) .

(5)

These predictions are plotted in Fig. 2 for values
of the corresponding parameters given in Tables I
– III. Note that the q-Weibull distribution in the
upper branch tends toward the usual distribution
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TABLE I. Values of parameter q, exponent η, quantity ε̄, and calibration parameter τ obtained from the fit of
predictions of the top branch of Formula (4) to the empirical data (all of them plotted in Fig. 1) representing the
exchange rate US Dollar against Great British Pound, the index S&P 500, the IBM stock, and crude oil (WTI).

Index/Par. q η ε̄ τ

US/GBP 1.1529±0.0085 1.267±0.0266 0.0041±0.0 2.3131±0.0333
S&P500 1.315±0.0195 1.6202±0.0869 0.0051±0.0001 2.4504±0.0689

IBM 1.2548±0.0106 1.4983±0.0398 0.0086±0.0001 2.1187±0.0267
WTI 1.2088±0.0224 1.228±0.0637 0.0131±0.0003 2.0885±0.0516

TABLE II. Values of parameters q, ε̄, and τ obtained from the fit of predictions of the middle branch of Formula (4)
to the empirical data (all of them plotted in Fig. 1) representing the exchange rate US Dollar against Great British
Pound, the index S&P 500, the IBM stock, and crude oil (WTI).

Index/Par. q ε̄ τ

US/GBP 0.9370±0.0051 0.0040±0.0001 1.9619±0.0302
S&P500 0.8353±0.0114 0.0048±0.0002 1.8354±0.0646

IBM 0.8969±0.0094 0.0086±0.0002 1.7404±0.0414
WTI 0.8639±0.0086 0.0146±0.0004 1.9155±0.0343

when q′ → 1, and the middle branch shows the usual
exponential distribution when q → 1.

Although q-Weibull and q-exponential distribu-
tions approximate a comprehensive analysis of the
system, because multivariate q-distributions do not
exist we use a two-point Weibull distribution to
study the dependence of successive interevent times.

The usual Weibull distribution is used to quan-
tify the interevent times. Reference [21] uses it to
describe the statistics of interevent times between
subsequent transactions for a given asset. We use it
and the reinterpreted conditional exponential distri-
bution from the CTRW valley model to derive su-
perstatistics (or complex statistics) associated with
the threshold of excessive losses or excessive profits.

Sections III B and III C describe how the usual sin-
gle variable Weibull distribution is indistinguishable
from the q-Weibull and q-exponential distributions.

B. An extension of the canonical EVT
viewpoint

The Fisher-Tippett theorem of classical extreme
value theory (the limit laws for the affine trans-
formed maxima [17]) indicates that the cumulative
distribution function (CDF) must be either Fréchet,
Weibull, or Gumbel standard extreme value CDFs,
but only the Weibull distribution, sometimes called
a type III excessive loss [16–18], agrees with empiri-
cal data. The Fréchet and Gumbel distributions dis-
agree with empirical data shown in Fig. 1, and thus
we put them aside. Table III shows that when η < 1
the Weibull distribution for ε/ε̄ � 1 is a stretched
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FIG. 2. Distributions, D(ε) vs. ε (loss), which consti-
tuted the basis for plots in Fig. 1. The q-Weibull distri-
bution (curves in plot (a)) only slightly differs (mainly
for small losses) from the q-exponential (the correspond-
ing curves in plot (b)) and the Weibull distributions (the
corresponding curves in plot (c)). This is astonishing
that q-exponential and Weibull distributions are almost
indistinguishable in the interesting range of ε.
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TABLE III. Values of exponent η, quantity ε̄ and calibration parameter τ obtained from the fit of predictions of the
bottom branch of Formula (4) to the empirical data (all of them plotted in Fig. 1) representing the exchange rate
US Dollar against Great British Pound, the index S&P 500, the IBM stock, and crude oil (WTI).

Index/Par. η ε̄ τ

US/GBP 0.8756±0.0156 0.0037±0.0003 1.7918±0.0277
S&P500 0.6981±0.0292 0.0035±0.0005 1.3923±0.0569

IBM 0.8246±0.0236 0.0078±0.0007 1.5791±0.0346
WTI 0.7855±0.0182 0.0131±0.0008 1.7150±0.0273

exponentially-truncated decreasing power-law [19].
Note that we consider random variable ε to be

an increment of some underlying stochastic pro-
cess. For the Weibull distribution the relative mean
value 〈ε〉

ε̄ = 1
η Γ(1/η) and the relative variance

σ2

〈ε〉2 = 〈ε2〉−〈ε〉2
〈ε〉2 =

[
2η Γ(2/η)

Γ2(1/η) − 1
]

are η-dependent,

that is, they are—for fixed exponent η—universal
quantities. Bertin and Clusel [14] proved that the
Fisher-Tippett theorem can be extended to strongly-
dependent random variables.

C. Role of bivariate Weibull distribution

Unlike multivariate Weibull distributions, multi-
variate q-functions have not been found (see Eq.
(5.1) in Ref. [15] for details). We thus use the bivari-
ate Weibull distribution to construct the conditional
mean interevent discrete time, RQ(RQ0

), i.e., we re-
gard only the time intervals with a preceding interval
length RQ0

. We have

RQ(RQ0)

τ
=

(∫ ∞
Q

D(ε|Q0)dε

)−1

, (6)

where the conditional distribution is defined by

D(ε|Q0)
def.
=

∫∞
Q0
D(ε, ε0)dε0∫∞

Q0
D(ε0)dε0

=
RQ0

τ

∫ ∞
Q0

D(ε, ε0)dε0, (7)

i.e., by the single-variate and bivariate distributions.
Using Eq. (5.1) in Ref. [15] and Eqs. (6) and (7), we
find the conditional mean discrete interevent time,

RQ(RQ0
)

τ
=

(
RQ0

τ

)−1

× exp

(((
ln

(
RQ
τ

))1/γ

+

(
ln

(
RQ0

τ

))1/γ
)γ)

(8)

where exponent γ is a free parameter obtained from
the fit of this formula to the empirical data presented

TABLE IV. Values of exponent γ and parameter τ ob-
tained from the fit of predictions of Formula (8) to em-
pirical data (with about 10% accuracy) for two values of
RQ and four indices (as no other data are available).

Index/Par. RQ = 10 RQ = 30
γ τ γ τ

DJIA 1.30 0.1 1.50 0.01
IBM 1.40 0.01 1.30 0.01

GBP/USD 1.37 0.001 1.27 1.0
Brent 1.25 0.0001 1.02 1.10

in Figs. 11(d) and 11(e) in Ref. [7]. The correspond-
ing Figs. 7(d) and 7(e) – 10(d) and 10(e) concern
profits. Note that based on the family of Weibull
copulas the free exponent γ defines the family of bi-
variate Weibull distributions and not a unique distri-
bution. In addition, when γ 6= 1 the usual multivari-
ate Weibull distribution cannot be factored, i.e., it
describes a possible dependence between interevent
times. Note that only for index Brent and when
RQ = 30 can the subsequent interevent times be con-
sidered independent quantities (see Table IV). They
otherwise are dependent, which is a result unavail-
able when q-functions are used.

Figure 3 compares the predictions of (8) (solid
curves) with empirical data (different marks with
extended error bars) from Figs. 11(d) and 11(e) in
[7]. Note the extended range of RQ0

/RQ where (8)
imitates a power-law dependence, and we find good
agreement between our predictions and the empiri-
cal data.

IV. CLASSES OF SUPERSTATISTICS

We next construct a distribution ψ±Q(∆Qt) of the
interevent time stochastic variable ∆Qt in the form



6

△ △ △
△ △ △

◇ ◇ ◇
◇ ◇

◇□ □ □ □ □ □
◦ ◦ ◦ ◦

◦

0.1

1

10

100

1000

104

105

△ △
△

△ △
△ △◇ ◇ ◇ ◇

◇ ◇ ◇□
□ □ □ □

□

□

◦ ◦ ◦
◦ ◦ ◦

◦

0.050.10 0.50 1 5 10

0.1

1

10

100

1000

104

105
(a)

(b)

RQ0 /RQ

R
Q
(R
Q
0
)/
R
Q
[a
rb
.u
ni
ts
]

FIG. 3. Comparison of theoretical and empirical de-
pendencies RQ(RQ0)/RQ vs RQ0/RQ for four different
indices (see legends) and two fixed values of RQ, i.e.,
RQ = 10 for plot (a) and RQ = 30 for plot (b) (Empiri-
cal data were drawn from Fig. 7 in Ref. [7]).

of superstatistics (or complex statistics),

ψ±Q(∆Qt) =

∫∞
Q
ψ±Q(∆Qt|ε)D(ε)dε∫∞

Q
D(ε)dε

= −
∫∞
Q
ψ±Q(∆Qt|ε)d

(∫∞
ε
D(ε′)dε′

)∫∞
Q
D(ε)dε

.

(9)

We assume the conditional distribution ψ±Q(∆Qt|ε)
in the exponential form

ψ±Q(∆Qt|ε) =
1

τ±Q (ε)
exp

(
− ∆Qt

τ±Q (ε)

)
, (10)

where the condition means that the next (subse-
quent) loss is exactly ε. The relaxation time, τ±Q (ε),
is defined as a mean time-distance to this loss. If
it monotonically increases with the increasing value
of ε its sign is “+” and “-” if it does not. When
it monotonically increases with the increasing value
of ε larger losses are less frequent, and when it does

not there is volatility clustering. In general, both
effects properly weighted can be present in the pro-
cess. No forms of τ±Q (ε) and D(ε) are used in our

derivation (see Appendix A for details, where no ad-
ditional constraint is assumed).

The exponential form of the conditional distribu-
tion (10) does not exclude a statistical dependence
of successful interevent continuous times. In addi-
tion, because of the ε dependence of τ±Q (ε), there
remains a dependence between stochastic variables
ε and ∆Qt.

The subsequent step is based on a key conjecture
that is valid for arbitrary ε ≥ Q,

(
τ±Q (0)

τ±Q (ε)

)±α±Q
=

∫ ∞
ε

D(ε′)dε′ =

(
RQ=ε

τ

)−1

,

α±Q > 0, (11)

which makes an integration in the second equation
in (9) feasible. We need an integration exponent α±Q
that satisfies this equation. Its existence allows us
to transform ψ±Q(∆Qt) into the useful form (A1). It
would appear that this exponent makes the lhs of
Eq. (11) Q-independent.

Equation (11) reflects the (nonlinear) general re-
lation between the corresponding statistics of losses
and the mean time distance between them. The lhs
of this relation as a combined quantity is indepen-
dent of the threshold variable Q, although all the in-
dividual components of this combined quantity are
Q-dependent quantities. Thus we assume the exis-
tence of an integrating exponent α±Q that makes the

lhs of Eq. (11) a Q-independent quantity and the
integration in Eq. (9) feasible.

Note that Eq. (11) allows us to derive exponent
α±Q in an explicit form when the relaxation time,

τ±Q (ε), is explicitly given. Using Eq. (4) we obtain

τ±Q (ε)

τ±Q (0)
=


(

exp
−(ε/ε̄′)η

q′

)∓1/α±Q
, for q-Weibull pdf,(

exp
ε/ε̄
q

)±1/α±Q
, for q-exp pdf,

(exp ((ε/ε̄)
η
))
±1/α±Q , for Weibull pdf.

(12)

Assuming a stretched exponential representation
typical for relaxation phenomena in disordered sys-
tems,

τ±Q (ε)

τ±Q (0)
= exp

(
±(B±Qε)

η
)
, (13)
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using Eq. (12) we obtain

α±Q =


1

(B±Q ε̄
′)η
, for q-Weibull pdf,

1
B±Q ε̄

, for q-exp pdf,

1
(B±Q ε̄)

η
, for Weibull pdf,

(14)

in a parametrized form for any η value, but we as-
sume strong inequalities |1− q′| � 1 and |1− q| � 1
in the upper and middle branches, respectively (see
Tables I and II). In Eq. (13) a more consistent ap-
proach would mean replacing the usual exp with
expq, but this would strongly complicate our ap-
proach.

The stretched exponential given by Eq. (13) is a
straightforward extension of the exponential relax-
ation time used in the canonical CTRW valley model
introduced by [1, 23–25] to describe an anomalous
photocurrent relaxation in amorphous films. Quan-
tity BQ is a formal analog of an inverse temperature
β, and is found below its scaling with the control
threshold Q. Quantity ε̄ becomes the mean valley
depth.

The Weibull exponent η is present in the up-
per and lower branches of (12) and is the same as
that used in Eqs. (4) and (5). This assumption re-
duces the number of free exponents (the principle of
Ockham’s Razor) and enables the derivation of su-
perstatistics ψ±Q(∆Qt) in an exact closed analytical
form.

In the canonical CTRW exponent η = 1 was
set and the usual exponential distribution was as-
sumed according to the Hopf-Arrhenius law defin-
ing the thermally activated over-barrier transitions
and the Vogel-Tamm-Vulcher law used for diffusion
and transport in glasses. Thus quantities ε̄, ε̄′, η,
and B±Q constitute an internal structure of combined

shape exponent α±Q given by Eq. (14), which con-
trols the long time-dependence of the superstatistics
ψ±Q(∆Qt) shown below.

Note that the stochastic dependence of interevent
time ∆Qt on loss ε assumed in (10) is confirmed
when smaller losses appear more frequently than
larger ones. This is described by the ‘+’ case in
definition (12), where the conditional mean time at
fixed ε given by 〈∆Qt〉+ε = τ+

Q (ε) is a monotonically
increasing function of ε. This creates an expand-
ing hierarchy of interevent times where larger losses
and profits appear less frequently than smaller ones.
Unfortunately, the ‘-’ case is examined only in Sec.
V C.

Substituting (10) and the first equality in (11) into
(9), we obtain superstatistics in the form (for de-

tailed derivation see Appendix A)

ψ±Q(∆Qt) =
1

τ±Q (Q)

α±Q(
∆Qt

τ±Q (Q)

)1±α±Q

× Γ±

(
1± α±Q,

∆Qt

τ±Q (Q)

)
, (15)

Γ±

(
1± α±Q,

∆Qt

τ±Q (Q)

)
=


∫ ∆Qt

τ
+
Q

(Q)

0 yα
+
Qe−ydy,∫∞

∆Qt

τ
−
Q

(Q)

y−α
−
Qe−ydy,

(16)

where Γ±
(

1± α±Q,
∆Qt

τ±Q (Q)

)
are the lower (‘+’) and

upper (‘-’) incomplete gamma functions, respec-
tively. We consider the ‘+’ and ‘-’ cases separately

because their dependence on
∆Qt

τ±Q (Q)
differs.

Equation (15) asymptotically for
∆Qt

τ+
Q (Q)

� 1 takes

a power-law form

ψ+
Q(∆Qt) ≈

1

τ+
Q (Q)

α+
Q(

∆Qt

τ+
Q (Q)

)1+α+
Q

× Γ+(1 + α+
Q) (17)

of the relative interevent time
∆Qt

τ+
Q (Q)

while initially

(for
∆Qt

τ+
Q (Q)

� 1) it takes an exponential form

ψ+
Q(∆Qt) ≈

1

τ+
Q (Q)

α+
Q

1 + α+
Q

× exp

(
−

1 + α+
Q

2 + α+
Q

∆Qt

τ+
Q (Q)

)
. (18)

For exponent α+
Q � 1, Eq. (15) reduces to the

α+
Q-independent exponential

ψ+
Q(∆Qt) ≈

1

τ+
Q (Q)

exp
(
−∆Qt/τ

+
Q (Q)

)
, (19)

which is consistent with Eq. (18). Note that
Eqs. (17) – (19) are necessary constraints that must
be obeyed by any distribution claiming to describe
the empirical data shown in Figs. 4 and 5.

For the opposite ‘-’ case when
∆Qt

τ−Q (Q)
� 1, the

corresponding relation for ψ−Q(∆Qt) in Eq. (15) be-
comes a power law truncated by the incomplete
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upper gamma function Γ−
(

1− α−Q,
∆Qt

τ−Q (Q)

)
. For

∆Qt

τ−Q (Q)
� 1 we obtain

ψ−Q(∆Qt) ≈
1

τ−Q (Q)

α−Q(
∆Qt

τ−Q (Q)

)1−α−Q

× Γ−(1− α−Q), (20)

which is a pure short-time power-law behavior.

A. Superscaling

We extract a scaling hypothesis for lnRQ as the
scaling variable and for Q because both are related
by a one-to-one transformation (4) that allows a uni-
versal form of (15) to be solely dependent on RQ (or
Q). This variable was explored in [5] in the case
of the q-exponential. Universality means that B±Q
present in (14) scales with Q in a power-law form
or with the related scaling variable lnRQ. Thus we
formulate this hypothesis as

B±Q = Qζ ×

 B
1/η
± /ε̄′1+ζ , q-Weibull pdf,
B±/ε̄

1+ζ , q-exp pdf,

B
1/η
± /ε̄1+ζ , Weibull pdf,

(21)

where prefactor B± and exponent ζ are Q-
independent basic positive control parameters.

Thus by using (4) to replace variable Q by RQ in
(21) we can use (14) and write superscaling relations,
i.e., the scaling of scaling exponent α±Q,

1

α±Q
= B± ×



(
− lnq′

(
RQ
τ

)−1
)ζ

, q-Weibull pdf

lnζq

(
RQ
τ

)
, q-exp pdf

lnζ
(
RQ
τ

)
Weibull pdf.

(22)

The expressions in (22) are useful because they
can be directly compared with empirical data, e.g.,
for the IBM firm, which is a typical example. From
(11) we also obtain the needed relation

ln

(
τ±Q (Q)

τ±Q (0)

)
= ± 1

α±Q
ln

(
RQ
τ

)
. (23)

Note that quantities B±Q , 1
α±Q

, and
τ±Q (Q)

τ±Q (0)
all depend

on the single control variable RQ/τ . We will also
consider below the RQ-dependence of τ±Q (0) itself.
Using empirical data, we examine all the above-
mentioned quantities.

B. Empirical verification of our formulas

Here we empirically verify our formulas for the ‘+’
case. We consider the ‘-’ case in Sec. V. For the sake
of simplicity we thus here omit the ‘±’ sign.

Note that Fig. 4 and Table V show a data collapse
for a given (fixed) value of a single control (aggre-
gated) variable RQ.

When using the Weibull distribution, the RQ
value is easier to apply than the continuous (full)
mean interevent time 〈∆Qt〉. Thus we use Eqs. (9)
and (10), the lower branch of (5), and Eq. (13) to
obtain the mth moment 〈(∆Qt)

m〉, m = 0, 1, 2, . . . ,
in an explicit closed form,

〈(∆Qt)
m〉 =

∫ ∞
0

(∆Qt)
m ψQ(∆Qt)d(∆Qt)

= (τQ(Q))mGQ,m, (24)

where the first equality gives the definition (here we
consider only integer non-negative moments), while
the key factor

GQ,m =
m!

1−m/αQ
(25)

is responsible for the singular properties of 〈(∆Qt)
m〉

for the ‘+’ case, and in the ‘-’ case no singularity ap-
pears. Here 〈(∆Qt)

m〉 is finite only when αQ > m,
and when it is not it diverges. This is in contrast to
the behavior of RQ, which, because of its quantile
(not momentum) origin, is always finite. For exam-
ple, for IBM 〈∆Qt〉 is finite only when RQ ≤ 10
(see Table VI). We see an analogous situation in
other, quite different indices (see Tab. V). We thus
have two radically different cases, finite mean in-
terevent continuous time, 〈∆Qt〉, and infinite time—
about which much appears in the literature (see, e.g.,
[3, 26–30] and references therein).

Figure 5 shows the somewhat more accurate fits
for the IBM company, indicating an agreement be-
tween the predictions of Eq. (15) (solid curves) and
the empirical data (empty circles) for RQ = 2, 5, 10,
30, and 70. Table VI shows the fitted quantities αQ
and τQ(Q).

The detailed plots shown in Fig. 6 also concern
the IBM company. Figure 6(a) shows the good fit of
the Eq. (22) prediction of the q-Weibull pdf (dotted
curve), the q-exponential pdf (dashed curve), and
the Weibull pdf (solid curve) to the corresponding
data collected from other independent fits for five
values of RQ (black circles). See also the third col-
umn of Table VI. For the sake of comparison, the
corresponding values of the fitted basic quantities B
and ζ are presented in Table VII for the q-Weibull,
the q-exponential, and the Weibull distributions.
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FIG. 4. Collected plots of empirical distributions (colored marks drawn from [5, 6]) and theoretical superstatistics,
ψQ(∆Qt), (black solid curves), which are predictions of our Formula (15) (while the dashed curves are given by
q-exponential shown by Eq. (3) in [5]) vs. interevent time, ∆Qt, for the monthly returns in the period 1709-1823
(a), for the relative daily price returns for sixteen typical examples of financial data in the period 1962-2010 (b),
from minutes over the hours to daily returns for NASDAQ between March 16, 2004 and June 5, 2006 (c), and for the
detrended minute-by-minute eight most typical examples of financial data (d).

TABLE V. Values of exponent αQ and quantity τQ(Q) obtained from the fit of Formula (15) to the empirical data
(with about 5% accuracy) representing companies shown in Fig. 4 in plots (a), (b), (c) and (d) for RQ =2, 5, 10, 30,
70.

Fig. 4(a) Fig. 4(b) Fig. 4(c) Fig. 4(d)
RQ αQ τQ(Q) αQ τQ(Q) αQ τQ(Q) αQ τQ(Q)

2 5.0 1.15 14.0 1.27 7.8 1.256 12.2 1.34
5 3.8 3.12 2.4 2.79 3.0 2.85 3.0 2.85
10 2.0 4.58 1.9 4.6 2.0 4.39 2.20 5.09
30 - - 1.08 5.55 1.2 5.67 1.1 5.51
70 - - 0.55 5.39 0.5 3.5 0.5 4.08

These fits allow us to determine B and ζ and the
corresponding value of the calibration parameter τ
was found from an independent fit and shown in Ta-
bles II and III.

The inset plot shows the good agreement between
the prediction of the lower branch of equality (21)
(solid curve) and the data (black circles) obtained
from the lower branch of (14). Table VI gives values
of exponent αQ for five values of Q. In like manner
we compare the q-Weibull and q-exponential distri-

butions.
Figure 6(b) shows a plot of τQ(Q) vs. Q, where

τQ(Q) comes from the fourth column of Table VI.
The plot consists of a broken straight line or two
crossing straight lines. The corresponding Ta-
ble VIII shows the parameters of linear regressions
as and bs, with s = L,R, that define the dependence
of both straight lines on RQ.

The inset plot uses Eq. (23) to present (i) the data
points (crosses, empty squares, and black circles) of
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FIG. 5. The superstatistics, ψQ(∆Qt), vs. interevent
time, ∆Qt, in log-log scale for the daily price returns of
IBM (empty circles drawn from [5]) in the period 1962-
2010 for RQ=2, 5, 10, 30 and 70 (in units of days). Black
solid curves are predictions of our Formula (15) while
the dashed curves are given by q-exponential shown by
Eq. (3) in [5]. For RQ ≥ 5 the power-law relaxation of
ψQ(∆Qt) is well seen for ∆Qt > 30. The inset is the
plot of ψQ(∆Qt) vs. ∆Qt in the semi-logarithmic scale
for RQ=2 to clearly present the exponential form of the
superstatistics. This exponential form was expected due
to Eq. (19) as αQ is very large in this case (see Tab.
VI).

TABLE VI. Values of exponent αQ and quantity τQ(Q)
obtained directly from the fit of Formula (15) to the em-
pirical data (with about 1% accuracy) representing IBM
company shown in Fig. 5 for RQ=2, 5, 10, 30, and 70.

RQ Q αQ τQ(Q)

2 0.0014 1000 1.4286
5 0.0093 3.0 3.33
10 0.0164 1.9 5.0
30 0.0289 0.95 4.55
70 0.0393 0.47 3.85

τQ(0) for five values of RQ (as above, τQ(Q) is given
by Table VI) and (ii) the dotted, dashed and solid
curves of τQ(0), using the analytical form of τQ(Q)
for arbitrary values of Q (limited by the frame of the
figure).

Thus by proving the RQ-dependence of the super-
statistics ψQ(∆Qt), we explain the empirical data
collapse shown in Figs. 4 and 5 and some of its con-
sequences.

As stated in Sec. III B, the usual Weibull, the q-
Weibull and q-exponential distributions provide an
approximate description of single-variable empirical
results and indicate that both viewpoints, i.e., ex-
treme and non-extensive (the result of long-term
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FIG. 6. Key dependence of quantities: (a) 1/αQ and
(b) τQ(Q) vs. RQ obtained, for instance, for the IBM
company. Black circles in main plots represent empir-
ical data (shown in Tab. VI), while solid curves are
our theoretical predictions. The solid curve was ob-
tained for plot (a) by the fit of Formula (22) to empiri-
cal data, where the fit parameters B and ζ were shown
in Tab. VII. The indirect empirical data for the in-
set plot (i.e., BQ vs. Q) were found from the lower
branch of Eq. (14) by using αQ taken from Tab. VI,
while η, ε̄ and τ from Tab. III for the IBM company.
The solid curve in this inset plot is the prediction of
the lower branch of Eq. (21) for mentioned above pa-
rameters B and ζ as well as η and ε̄ taken from Tab.
III. In plot (b) the broken line or both solid straight
lines are linear regressions (i.e. given by τQ(Q) =
asRQ + bs, where s = L for the lhs straight line and
s = R for the rhs straight line. In this approach we have
constraint RQ ≥ −bR/aR. Herein, τQ=0(0) = aLτ + bL
as RQ=0 = τ . Multiplicative and additive calibration pa-
rameters as and bs defining both straight lines are shown
in Tab. VIII. Thus we have an additional interpretation
of τQ(Q) as equal RQ up to some multiplicative and ad-
ditive calibration parameters. The solid curve in the
inset plot (i.e., τQ(0) vs. RQ) was obtained from For-
mula (23), where B and ζ comes from Tab. VII, while
τQ(Q) was defined by above given straight lines. Dot-
ted curves (except thin vertical ones) and empty squares
together with dashed curves and crosses present results
obtained in the analogous way but basing on q-Weibull
and q-exponential, respectively.

dependence), are closely related. We cannot ex-
clude the possibility that they are “two sides of the
same coin” and in a fluctuation-dissipation relation.
There is a significant advantage to using the Weibull
distribution at the level of bivariate distributions be-
cause there the q-distributions do not exist (cf. Sec.
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TABLE VII. Universal parameter B and universal expo-
nent ζ, defining dependence of BQ vs. Q, obtained from
the good fit of all formulae in (22) to the corresponding
empirical data shown in Fig. 6(a), for instance, for very
representative IBM company.

pdf B ζ

q-Weibull 0.27194±0.0685 1.0037±0.1459
q-exp 0.1572±0.0586 1.6912±0.2626

Weibull 0.1028±0.0446 2.2590±0.3393

TABLE VIII. Parameters of linear regressions as and bs,
s = L,R, defining dependence of both straight lines on
RQ (with accuracy about 1%), presented in Fig. 6(b) for
the IBM company.

Parameters L R

as 0.435 -0.019
bs 0.79 5.161

III C), i.e., q-distributions are not able to explain the
dependence observed between interevent continuous
times.

V. APPLICATIONS AND CONCLUDING
REMARKS

We here have proposed that we can describe uni-
versality and superscaling in empirical data. Super-
scaling allows the possibility of classifying relaxation
processes in systems, but its deeper physical mean-
ing requires further study. We describe data col-
lapse and daily quotations from various markets as
having different time scales and use the bivariate
Weibull distribution to consider the dependence of
subsequent interevent times. We find that extreme
events and their dependence constitute a basis suffi-
cient for the description of threshold phenomena.

Note that using our microscopic model to simulate
the behavior of agents [33, 34] we find results very
close to those predicted by our central expression,
Eq. (15). An approach using agent-based modeling
in this context was also recently explored by other
researchers [35, 36].

Our model is analogous to the one-dimensional
CTRW valley model in that valley depth signifies
loss or profit. Here ψQ(∆Qt) in the analytical closed
form is the distribution of times between events and
the probability density of finding a tagged particle
in the adjacent valley with an depth greater than
Q at time lag ∆Qt. This analogy with the valley
model also indicates the form of exponent α±Q given

by multibranch Eq. (14), whereB±Q is an analog of an

inverse temperature that also scales with Q and cre-
ates superscaling. This allows the universal control
and direction of losses and profits, although expo-
nent ζ in Eq. (21) remains an enigmatic value. Our
extension of the formalism shows that both the expo-
nential distribution and also the Weibull one model
reveal the landscape of a substrate leading to a de-
creasing power-law of ψQ(∆Qt) for long time lags
∆Qt. The construction of ψQ(∆Qt) separately for
losses and profits is the initial step in a preparation
of the full CTRW formalism for financial markets.
The full formalism requires a simultaneous consid-
eration both losses and profits, and this remains a
challenge.

Our research opens the possibility of applying the
formalism in research fields other than finance. One
example is in geophysics to describe seismic empir-
ical data (see Sec. V C). The formalism can be ap-
plied to a broad spectrum of threshold phenomena,
and we describe below two applications of our ap-
proach that are both practically and theoretically
significant—see Secs. V(A) and V(B).

A. Application to risk estimation

The distribution of interevent times ψ±Q(∆Qt) is
an essential value in financial engineering because it
enables us to calculate risk.

The risk function W±Q (t; ∆t) is defined as the
conditional probability that a current single loss
ε greater than the threshold Q will occur within
the next time interval ∆t under the condition that
the previous such loss occurred t days in the past.
Reference [12] shows that W±Q (t; ∆t) is related to

ψ±Q(∆Qt) by the generic formula

W±Q (t; ∆t) =

∫ t+∆t

t
ψ±Q(∆Qt)d∆Qt∫∞

t
ψ±Q(∆Qt)d∆Qt

. (26)

Because ψ±Q(∆Qt) is given by (15) and both cu-

mulative distributions by (26), the risk function can
be obtained in a closed analytical form. The simple
integration required by (26) yields

W±Q (t; ∆t) = 1

−

Γ±(1±α±Q,(t+∆t)/τ±Q (Q))

((t+∆t)/τ±Q (Q))
±α±

Q

± exp

(
− t+∆t
τ±Q (Q)

)
Γ±(1±α±Q,t/τ

±
Q (Q))

(t/τ±Q (Q))
±α±

Q

± exp

(
− t
τ±Q (Q)

) .(27)

Although in principle both the ‘+’ and ‘-’ cases
should be considered, we limit our work to the ‘+’
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FIG. 7. Comparison of two risk functions. The solid
curves are predictions of our Formula (27) based on the
Weibull distribution, while the dashed curves the cor-
responding ones given by Formula (6a) from Ref. [5]
based on q-exponential. Apparently, both formula give
the same universal Zipf law behavior for the asymptotic
long time t (cf. also Eq. (28)). The short-time behavior
is driven by Formula (29). Predictions of both formulae
are shown by dotted straight lines (oblique and horizon-
tal asymptotes, respectively).
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FIG. 8. Comparison of two risk functions, for two sam-
ple selected moments of time (well separated for bet-
ter visualization, i.e., t = 120 and t = 600). The solid
curves are predictions of our Formula (27) based on the
Weibull distribution, while the dashed curves the corre-
sponding ones given by Formula (6a) in Ref. [5] based
on q-exponential, both for ∆t = 1.0. The dotted hori-
zontal line is plotted, e.g., for probability p = 0.01 (the
confidence probability 1− p = 0.99). Apparently, if W+

Q

is fixed at a given p value then, the longer time t forces
a shorter value of RQ (or Q; see the location of small
circles and triangles).

case because it is able to accurately describe all the

empirical data. From Eq. (27) we obtain

W+
Q (t; ∆t) ≈ α+

Q

∆t

t
, min

(
t

τ+
Q (Q)

,
∆t

t

)
� 1.

(28)

It appears that only in an asymptotic long time does
the risk function tend to a universal Zipf law irre-
spective of the type of market and the time horizon.
On the other hand

W+
Q (t; ∆t) ≈

α+
Q

1 + α+
Q

∆t

τ+
Q (Q)

,
t+ ∆t

τ+
Q (Q)

� 1, (29)

is the time-independent quantity.
Figure 7 shows the predictions of (27) for the

Weibull distribution with parameters from the IBM
company for RQ = 70 (solid curves) plotted versus
t for three different values of ∆t, which is consid-
ered a driving parameter. Note the expected asymp-
totic coincidence with the corresponding risk func-
tion based on the q-exponential given by Eq. (6a) in
Ref. [5].

In addition, Fig. 7 shows the monotonic decreas-
ing of the risk function versus time t at fixed ∆t
and RQ, and 8 shows it versus RQ at fixed ∆t and
t. These are utilized below in a numerical sampling
that reveals such useful quantities for financial anal-
ysis as |V aR|.

The algorithm of the numerical sampling is given
in Ref. [5, 7, 8]. We adapt it to our approach. To
push the algorithm, the initial zero-order value of
the threshold Q is required, and we obtain it by us-
ing (1), (2), and (4). Setting P (ε ≥ Q) equal to
probability p, we have

Q =


ε̄′ (− lnq′ p)

1/η
,

ε̄ lnq

(
1
p

)
,

ε̄ (− ln p)
1/η

,

(30)

where lnq(. . .) is a q-logarithm, i.e., the inverse of
a q-exponential. We now can set |V aR| = Q and
finish this initial step.

With the zero-order threshold Q time t can be
drawn as a stochastic variable from the distribution
ψ+
Q(t = ∆Qt) given by Eq. (15). Subsequently, Q

and t enable us to calculate the concrete value of
risk function W+

Q (t; ∆t) from Eq. (27) and decide
whether its value falls into the band p ± ∆p where
∆p � p. If that is the case we can set |V aR| = Q
and draw the next time interval t from ψ+

Q(t = ∆Qt)
for this value of Q. Substituting these t and Q values
into Eq. (27), we obtain a new value of W+

Q (t; ∆t).
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FIG. 9. Comparison of two simulated absolute Value-
at-Risk time series: (i) based on the Weibull distribu-
tion (small black circles connected by segments of solid
straight line) and (ii) based on q-exponential (triangles
connected by segments of dashed straight line) both us-
ing our Formula (27) for ∆t = 0.1. The time range of
both series is as those in Fig. 6 in Ref. [5] that is, for
the IBM stock between 2002 and 2008 for the confidence
probability 1 − p = 0.99. Two horizontal dotted lines
(situated at an altitude of about 0.05) show the zero-
order |V aR| where no dependence between interevent
times is present for the Weibull and q-exponential distri-
butions, respectively. Two pairs of dashed-dotted hori-
zontal lines show the most probable spreads of simulated
|V aR|-s for the Weibull and q-exponential distributions,
respectively. Apparently, our approach drastically re-
duces |V aR|, i.e., the level of losses, in comparison with
the zero-order |V aR| (the single empty circle and trian-
gle).

When this value is outside the band p±∆p we mul-
tiply Q by factor 1 ± γ where γ � 1 depending on
whether it is greater than p + ∆p (we then choose
‘+’) or lower than p − ∆p (we then choose ‘-’), re-
spectively. We repeat this step as many times as
necessary, e.g., n+ + n− times, to find the corre-
sponding Q′ = Q(1 + γ)n+(1 − γ)n− and the value
of t (analogously as given above). Both Q′ and t are
then substituting into Eq. (27), which gives the value
of W+

Q′(t; ∆t) contained in the band. We now can

see that the new |V aR| is equal to Q′. In this way
we obtain the series of |V aR|-s at the proper points
in time, i.e., at (t+ ∆t)-s. Figure 9 shows that this
series consists of fluctuating values that are below
the initial |V aR|. The most probable spread of this
series, which is denoted by pairs of dashed-dotted
horizontal lines in Fig. 9, occurs only over extremely
long time periods.

B. Application to profit analysis

We model the empirical data collapse (cf.
Fig. 4) using superstatistics ψ+

Q(∆Qt) given by (15)
parametrized by a single aggregated variable RQ
and obtain, for example, the scaling shape exponent

1/α+
Q as a power-law function of lnRQ and the su-

perscaling form of (22) that is dependent upon uni-
versal exponent ζ and prefactor B±.

Note that ψ+
Q(∆Qt) also accurately describes the

rescaled empirical statistics of excessive profits.
Here Q defines the threshold for excessive profits in-
stead of excessive losses (see the plots in Fig. 10).
We thus can use the same superstatistics to demon-
strate the functional but not literal symmetry be-
tween excessive losses and profits. The symmetry
is not literal because different control parameters,
i.e., exponent αQ and relaxation time τQ(Q), are
used. Because of large statistical errors in the em-
pirical data, we cannot empirically verify the uni-
versality of excessive profit behavior. For exam-
ple, for RQ = 10 exponent 1.70 ≤ αQ ≤ 3.10
and 0.10 ≤ τQ(Q) ≤ 0.25, for RQ = 30 we have
0.90 ≤ αQ ≤ 1.50 and 0.12 ≤ τQ(Q) ≤ 0.35, and
finally for RQ = 70 we have 0.60 ≤ αQ ≤ 1.10 and
0.08 ≤ τQ(Q) ≤ 0.36, which exhibit ranges that are
too extended.

C. Application to sesismic data

Another significant application of our approach is
the superposition

ψtotQ (∆Qt) = w−Qψ
−
Q(∆Qt) + w+

Qψ
+
Q(∆Qt),

w−Q + w+
Q = 1, (31)

based on the Weibull distribution. When η = 1 (an
exponential distribution) it accurate describes the
rescaled seismic empirical data [37] throughout the
range of the variable 2 min. ≤ ∆Qt

<
∼ 1.5 year for

values of Q in the range from Q = 1.5 to Q = 7.5.
The notation Mc instead of Q was used in Ref. [37].
This exponential distribution leads to the widely ap-
plicable Gutenberg-Richter law that describes the
frequency of earthquakes in a region with a magni-
tude larger than given threshold value Q. Here this
law can be achieved directly as the reverse of the
lower branch of Eq. (4).

Both the seismic single regions of L degrees in
longitude and L degrees in latitude were taken into
account as well as several other regions (see Fig. 11).
Using Eq. (31) we take into account two effects, (i)
the large volatility clustering described by ψ−Q(∆Qt)
that causes avalanches of earthquakes or aftershock
sequences, and (ii) the small volatility clustering de-
scribed by ψ+

Q(∆Qt) that causes weak aftershock se-
quences. Taking into account both effects is impor-
tant although a sufficiently precise determination of
w−Q and α−Q is impossible because exponent α−Q, al-
though still positive, is too small. In addition, we
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FIG. 10. Statistics of interevent times between profit returns of daily closing prices for various markets (from stock
exchange and forex to resource market) and time periods. All empirical data (discrete marks with bars) were taken
from ref. [7]. Solid curves are predictions of our Formula (15) as it can be applied both for losses and profits. Dashed
curves shown, for instance, in plots (a), (b), and (c) are fitted by q-exponential (remaining twelve plots are very
similarly fitted therefore, the fits are not visualized herein). However, the possible empirical data collapse would be
incredible in this case because errors of empirical data points are too large.

see no Q-dependence of exponent α±Q and relaxation

time τ±Q (Q). Thus it is sufficient to characterize

each region, (a) – (f), using single values of expo-
nents α−Q, α

+
Q and relaxation times τ−Q (Q), τ+

Q (Q)

(see Table IX). Thus using Eqs. (13) and the lower
branches of (14) and (21) for the decreasing value of
scaling exponent ζ we write

α±Q = (B±)−1,

τ±Q (Q)

τ±Q (0)
= exp

(
±B±

Q

ε̄

)
, (32)

where constraint

τ±Q (0) ∝ exp

(
∓B±

Q

ε̄

)
(33)

must be obeyed.
Seismic empirical data prove that scalings are

a prominent feature of the earthquake mechanism,
which we still do not understand. Our formula is
well-suited to the empirical data because it is driven
by two power laws. For short interevent times it is
dominated by the Omori law [31, 32] in which ψ+

Q is
self-damped by the upper incomplete gamma func-
tion. For long interevent times the power-law driven
by Pareto-Lévy exponents greater than 2 plays the

TABLE IX. Values of ratio w−
Q/w

+
Q, exponents α±

Q and

relaxation times τ±Q (Q) obtained directly from the fit of
Formula (31) to the seismic empirical data (with accu-
racy about 5%) shown in Fig. 11.

Region w−
Q/w

+
Q α−

Q;α+
Q τ−Q (Q); τ+Q (Q)

a 90/9 0.001; 7.0 1.0; 1.0
b 1000/1 0.00001; 7.0 1.0; 1.0
c 11000/9 0.00001; 7.0 1.0; 1.0
d 1400/1 0.00001; 7.0 1.0; 1.0
e 20/12 0.005; 6.0 1.0; 0.8
f 80/11 0.001; 4.0 1.0; 0.7

most significant role in which ψ−Q is self-truncated by

the lower incomplete gamma function—see Eqs. (15)
and (16), and Fig. 11 for details.

It is our hope that this work will be a valuable
contribution to the research effort searching for uni-
versal properties not confined to market behavior.
The formalism we propose accurately describes the
universalities in empirical data and allows us to clas-
sify quotes using a single scaling variable that points
out their similarities. These similarities suggest that
there is a root cause underlying the identical shape of
various distributions of interevent times in different
time scales. This should allow us to finally derive,
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FIG. 11. Six rescaled statistics (representing Bak et al.’s unified scaling law for earthquakes), for the single-region
seismic empirical data (small circles), of interevent times between successive earthquakes of magnitude stronger than
the corresponding well defined thresholds (from 1.5 to 7.5 in the Richter scale). The seismic single regions are as
follows: (a) the NEIC worldwide catalog for regions with L ≥ 180◦ for years 1973-2002, (b) NEIC with L ≤ 90◦ (the
same years), (c) Southern California years 1984-2001, 1988-1991, and 1995-1998, (d) Northern California years 1998-
2002, (e) Japan 1995-1998 and New Zealand 1996-2001, (f) Spain years 1993-1997, New Madrid 1975-2002, and Great
Britain years 1991-2001. The interevent times go from 2 min. to about 1.5 years. Empirical curves (small circles)
were drawn from [37] – they are spreaded vertically for better visibility. Solid curves are predictions of Formula (31)
describing well these rescaled empirical statistics, which collapse well for different regions and values of threshold Q.

for example, ab initio equations describing financial
market behavior.
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Appendix A: Derivation of ψ±
Q(∆Qt)

To derive the distribution ψ±Q(∆Qt) we use the

second equality in Eq. (9),

ψ±Q(∆Qt) = −
∫∞
Q
ψ±Q(∆Qt|ε)d

(∫∞
ε
D(ε′)dε′

)∫∞
Q
D(ε)dε

,

which we will then use in further transformations.
We base our next step on Eq. (11), which enables

us to rewrite above equality in the form

ψ±Q(∆Qt) =
1

z(Q)

1

τQ(0)
I±Q , (A1)

where auxiliary variable

z = z(ε)
def.
=

∫ ∞
ε

D(ε′)dε′ (A2)

and integral

I±Q
def.
=

∫ τR−1
Q

0

z±1/α±Q exp

(
−z±1/α±Q

∆Qt

τ±Q (0)

)
dz

= A±Q

∫ τR−1
Q

0

exp

(
−z±1/α±Q

∆Qt

τ±Q (0)

)
d
(
z1±1/α±Q

)
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where A±Q = 1
1±1/α±Q

. By using the identity

d
(
z1±1/α±Q

)
= d

(
z±1/α±Q

∆Qt

τ±Q (0)

)α±Q(1/α±Q±1)

×

(
τ±Q (0)

∆Qt

)1±1/α±Q

(A3)

we finally obtain from Eq. (A1) with help of
Eqs. (A2) and (A3),

ψ±Q(∆Qt) =
1

τ±Q (Q)

α±Q(
∆Qt/τ

±
Q (Q)

)1±α±Q

× Γ±

(
1± α±Q,

∆Qt

τ±Q (Q)

)
, (A4)

where

Γ+

(
1 + α+

Q,
∆Qt

τ+
Q (Q)

)
=

∫ ∆Qt

τ
+
Q

(Q)

0

uα
+
Q exp(−u)du

is the lower incomplete gamma (Euler) function,
where we change the variables

u
def.
= z1/α+

Q
∆Qt

τ+
Q (0)

(A5)

and

Γ−

(
1− α−Q,

∆Qt

τ−Q (Q)

)
=

∫ ∞
∆Qt

τ
−
Q

(Q)

u−α
−
Q exp(−u)du,

is the upper incomplete gamma (Euler) function.
We change the variables such that they are com-
plementary to (A5),

u
def.
= z−1/α−Q

∆Qt

τ−Q (0)
. (A6)

Hence

d
(
u1±α±Q

)
= (1± α±Q)u±α

±
Qdu (A7)

is used in both ‘+’ and ‘–’ cases.
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