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Abstract

We present a cascading failure model of two interdependent networks in which functional nodes

belong to components of size greater than or equal to s. We find theoretically and via simulation

that in complex networks with random dependency links the transition is first-order for s ≥ 3

and continuous for s = 2. We also study interdependent lattices with a distance constraint r in

the dependency links, and find that increasing r moves the system from a regime without a phase

transition to one with a second-order transition. As r continues to increase the system collapses in

a first-order transition. Each regime is associated with a different structure of domain formation

of functional nodes.

PACS numbers: 89.75.Hc
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I. INTRODUCTION

Modern real-world infrastructures can be modeled as a system of several interdependent

networks [1–5]. For example, a power grid and the communication network that executes

control over its power stations constitute a system of two interdependent networks. Power

stations depend on communication networks to function, and communication networks can-

not function without electricity. There have been several recent attempts to model these

systems [6–21]. One of these is based on a model of mutual percolation (MOMP) in which a

node in each network can function only if (1) it receives a crucial commodity from support

nodes in other networks and (2) it belongs to the giant component (GC) formed by other

functional nodes in its own network.

If the nodes within each network of the system are randomly connected, and the support

links connecting the nodes in different networks are also random, then the MOMP for an

arbitrary network of networks (NON) can be solved analytically using the framework of

generating functions which allows to map the stochastic model into node percolation.

It turns out that a NON is significantly more vulnerable than a single network with

the same degree distribution. In regular percolation of a single network, the size of the

GC gradually approaches zero, when the fraction, p, of nodes survived the initial failure,

approaches the critical value, pc. In contrast, in the MOMP, the fraction of nodes in the

mutual GC, µ(p) undergoes a discontinuous first order phase transition at p = pτ > pc,

dropping from a positive value, µτ , for p ≥ pτ to zero, for p < pτ .

The authors of Ref. [13] extended MOMP to Euclidian lattices by studying the process of

cascading failures in two lattices A and B of the same size L in which the dependency links

are limited by a distance constraint r. In this case there is a particular value of r denoted by

rmax below which there is a second-order transition and above which the system collapses in

a first-order transition. This process is characterized by the formation of spatial holes that

burn the entire system when r ≥ rmax [22].

The first rule of MOMP is quite general and can be easily verified from an engineering

standpoint, but the second rule is not easy to verify. Although it seems that a functioning

node must belong to the giant component in order to receive sufficient power, information,

or fuel from its own network, this condition can be relaxed, i.e., the second rule in the

MOMP can be replaced by a more general rule (2′) in which a node in order to be functional
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must belong to a connected component of size greater than or equal to s formed by other

functional nodes of this network. This rule is significantly more general and realistic than

rule (2) because the nodes in finite components are still able to receive sufficient commodities

to continue functioning. Note that the original rule (2) is actually a particular case of rule

(2′) for s = ∞. In this paper, we will show how the replacement of condition (2) by the more

general condition (2′) with s < ∞ affects the results in complex networks and Euclidean

lattices [6, 13].

II. THEORETICAL FORMALISM FOR COMPLEX NETWORKS

The most important role of the MOMP of a NON is played by the function gi(yi) [6] such

that yigi(yi) is the fraction of nodes in the giant component of network i of the NON after

a random failure of a fraction 1 − yi of its nodes. The generating function of the degree

distribution of network i is given by [6, 12].

Gi(x) =
∞
∑

k=0

Pk,ix
k, (1)

where Pk,i is the degree distribution of network i and the generating function of the excess

degree distribution is

Hi(x) =
d

dx

Gi(x)

〈ki〉
=

∞
∑

k=0

Pk+1,i(k + 1)xk/〈ki〉, (2)

where

〈ki〉 =
∞
∑

k=1

k Pk,i = G
′

i(x)|x=1 (3)

is the average degree of network i.

The fraction of nodes in the giant component relative to the fraction y of surviving nodes,

is given by

gi(y) = 1−Gi[fi(y)y + 1− y], (4)

where fi(y) is the probability that the branches do not reach the GC, which satisfies the

recursive equation [23]

fi(y) = Hi[fi(y)y + 1− y]. (5)

We also compute the generating function of the component size distribution [24]

Ci(x, y) =

∞
∑

s=1

πi,s(y)x
s = xGi[Bi(x, y)y + 1− y], (6)
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where πi,s(y) is the fraction of nodes belonging to components of size s in network i relative

to the fraction y of surviving nodes, and Bi(x, y) satisfies the recursive equation

Bi(x, y) = xHi[Bi(x, y)y + 1− y]. (7)

Note that when x = 1, Eqs. (6) and (7) are equivalent to Eqs. (4) and (5), respectively, and

hence

Ci(1, y) =

∞
∑

s=1

πi,s(y) = 1− gi(y). (8)

To move from rule (2) to rule (2′) we replace function gi(yi) with function gi,s(yi), defined

the same as gi(yi) but replacing the words giant component with components of size larger

than or equal to s. Thus

gi,s(y) = 1−
s−1
∑

r=1

πi,r(y). (9)

III. ANALYTIC SOLUTION IN RANDOM REGULAR AND ERDÖS RÉNY NET-

WORKS

In this section we present the analytic solution for two Random Regular (RR) and two

Erdös Rény (ER) interdependent networks. From Eq. (9), using the Lagrange inversion

formula [24] we obtain the coefficients πi,s(y) for s > 1

πi,s(y) =
y〈ki〉

(s− 1)!

ds−2

dxs−2
[Hi(x y + 1− y)]s|x=0 , (10)

and

πi,1(y) = Gi(1− y). (11)

For Erdös Rény (ER) graphs with a Poisson degree distribution and an average degree 〈k〉
and for random regular (RR) graphs with degree z, we can obtain an analytical solution for

Eq. (10) for πi,s(y). For ER networks πER,s(y) is given by

πER,s(y) =
(s y 〈k〉)s−1 exp(−s y 〈k〉)

s!
, (12)

and for random regular (RR) graphs, with degree z, for s = 1, πRR,1(y) is given by

πRR,1(y) = (1− y)z , (13)
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and when s > 1, πRR,s(y) is

πRR,s(y) = z ps−1(1− y)s (z−2)+2 [s (z − 1)]!

(s− 1)![s (z − 2) + 2]!
. (14)

IV. MODEL IN COMPLEX NETWORKS

To illustrate our model, we consider two networks A and B with degree distributions

in which bidirectional interdependency links establish a one-to-one correspondence between

their nodes as in Ref. [6]. The initial random failure of a fraction 1 − p of nodes in one

network at t = 0 produces a failure cascade in both networks.

A. Theory

At step t of the failure cascade, the effective fraction of surviving nodes µ̃A,t(p) and µ̃B,t(p)

of networks A and B, respectively, satisfies the recursive equations

µ̃A,t(p) = p gBs

(

µ̃B,t−1(p)
)

,

µ̃B,t(p) = p gAs(µ̃A,t(p)),
(15)

and the fractions of nodes belonging to components of size greater than or equal to s, µA,t(p)

and µB,t(p), are given by

µA,t(p) = µ̃B,t(p) gBs

(

µ̃B,t(p)
)

,

µB,t(p) = µ̃A,t(p) gAs(µ̃A,t(p)),
(16)

where µ̃A,0(p) = p and µA,0(p) = p gAs(p). The process is iterated until the steady state is

reached, where

µ̃A(p) = p gBs(µ̃B(p)),

µ̃B(p) = p gAs(µ̃A(p)),
(17)

and

µ (p) ≡ µA(p) = µB(p) = µ̃A(p)µ̃B(p)/p.

When p = pτ , the order parameter of our model, µ(p), transitions from µ(p) > 0 when

p > pτ to µ(p) = 0 when p ≤ pτ . In the most simple case when the networks have identical
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degree distributions, gAs(x) = gBs(x) ≡ gs(x). At the threshold, p = pτ and µ̃(pτ ) satisfy

µ̃(pτ ) = pτ gs (µ̃(pτ ))

1 = pτ g′s(µ̃(pτ )),
(18)

where g′s(y) = dgs(y)/dy. Because g2(y) = 1 − G(1 − y), the second derivative of g2(y)

is always negative, and thus Eq. (18) has a trivial solution at µ̃(pτ ) = 0 from which pτ =

1/G′(1) = 1/〈k〉, where G′(1) = dG(y)/dy|y=1, and as a consequence the system undergoes a

continuous phase transition. For networks with a non-divergent second moment of the degree

distribution the transition is third-order, however for networks with a divergent second

moment the transition is of a higher order. However, when s ≥ 3, gs(y) changes the sign of

its second derivative from positive at y = 0 to negative at y = 1, and hence Eq. (18) has a

nontrivial solution in the interval 0 < p < 1 at which µ̃(p) abruptly changes from a positive

value above pτ to zero below pτ . Thus for s ≥ 3 we always have a first-order transition,

which was previously found [6], but only for s = ∞. The different kinds of transitions

that we find in our model are reminiscent of the ones found in k-core percolation [25–28].

A k-core of a graph is a maximal connected subgraph of the original graph in which all

vertices have degree at least k, formed by repeatedly deleting all vertices of degree less than

k. In particular, in 2-core there is a continuous transition, while for k ≥ 3 the transition is

first-order, as in our model for s = 2 and s ≥ 3 respectively. The key difference between

the k-core transition and our model is that in our model the functionality of a node is not

based on its degree but rather on the size of the finite components to which it belongs.

The similarity between the phase transitions in our model and the ones in k-core is due

to a resemblance between the pruning rules of both processes. For example, in our model

with s = 2 the final state is constituted of nodes with at least one active link in their own

network and one dependency link and hence, all nodes have two active links as in the final

state of 2-core. Next we will see that the similarities of the phase transitions arise due to

the similarities in the leading terms of the Taylor expansions of the equations that govern

k-core and our model. However we will also demonstrate that both models do not belong

to the same universality class.
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1. Scaling behavior of the fraction of active nodes for s = 2 in our model

From Eq. (18) for s = 2, at the steady state, the effective fraction of remaining nodes

µ̃(p) ≡ µ̃ is given by

µ̃ = p[1−G(1− µ̃)], (19)

where p is the fraction of nodes that survived the initial damage, and G(x) is the generating

function of the degree distribution. For RR, ER and scale free networks with non divergent

second moment (λ > 3), close to the threshold pτ at which µ̃(pτ ) = 0, expanding Eq. (19)

around µ̃ = 0 gives

µ̃ = p[G′(1)µ̃−G′′(1)µ̃2/2 +O(µ̃3)], (20)

and solving this equation for µ̃ leads to

µ̃ = 2
pG′(1)− 1

p G′′(1)
+O(µ̃2). (21)

Equation (21) shows that µ̃ → 0, when p → 1/G′(1), thus there is a continuous phase

transition at p = pτ ≡ 1/G′(1). Recalling that for any degree distribution with converging

first and second moments, G′(1) = 〈k〉, G′′(1) = 〈k2〉 − 〈k〉, we can rewrite Eq .(21) as

µ̃ = 2
δp〈k〉

(pτ + δp)(〈k2〉 − 〈k〉) +O((δp)2), (22)

where p = pτ +δp, with δp → 0. Since the denominator does not diverge then µ̃ ∼ (p−pτ )
β
′

,

with β
′

= 1.

For two interdependent networks with the same degree distribution, the order parameter

µ = µ̃2/p, (23)

and thus µ ∼ (p− pτ )
β with β = 2.

For 2 < λ < 3, the second moment diverges, thus using the Tauberian Theorem [29] the

expansion of µ̃ is given by

µ̃ = p[G′(1)µ̃− Aµ̃λ−1 +O(µ̃λ−2)]. (24)
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From where for p = pτ + δp

µ̃ =

(

δpG′(1)

pA

)1/(λ−2)

+O(δp)1/(λ−2) (25)

∼ (p− pτ )
1/(λ−2), (26)

so β
′

= 1/(λ − 2), and as a consequence [See Eq. (23)] β = 2/(λ − 2). Thus there is a

fourth-order phase transition for 5/2 < λ < 3. In general, for SF networks with 2 < λ < 3,

the transition is of mth order for 2 + 2/m < λ < 2 + 2/(m− 1).

2. Scaling behavior of the fraction of active nodes in 2-core

In contrast with Eq.(19), for 2-core percolation, the fraction of active nodes q obeys the

equation

q = p[1−G(1− f)− fG′(1− f)], (27)

where p is the fraction of nodes that survived the initial damage, f is the effective fraction

of survived links obeying a self-consistent equation

f = p

[

1− G′(1− f)

G′(1)

]

. (28)

For homogeneous networks, such as RR and ER, expanding Eq. (28) around f = 0 we obtain

f =
p

G′(1)
[G′′(1)f −G′′′(1)f 2/2 +O(f 3)]. (29)

If G′′′(1) < ∞, then pτ = G′(1)/G′′(1) = 〈k〉/(〈k2〉 − 〈k〉) as in regular percolation, and

f =
2[δpG′′(1)]

p G′′′(1)
. (30)

Finally expanding Eq. (27) around f = 0 leads to q = pf 2G′′(1)/2 + O(f 3) ∼ (p− pτ )
2,

which indicates a third-order phase transition.

For SF networks, if 3 < λ ≤ 4, from the Tauberian theorem [29]

f = p

[

G′′(1)

G′(1)
f −Afλ−2 +O(fλ−2)

]

, (31)

from where f ∼ (p − pτ )
1/(λ−3) with pτ = G′(1)/G′′(1) and q ∼ (p − pτ )

2/(λ−3) and the

transition becomes of the order m if 3+2/m < λ ≤ 3+2/(m−1). If 2 < λ < 3, G′′(1) = ∞,

then pτ = 0, f ∼ p1/(3−λ) and q ∼ p1/(3−λ). Thus for 2 < λ < 3 there is a phase transition
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but at pτ = 0, and the order parameter of this transition changes in reverse order from

infinity for λ = 3 to 3 for λ = 2 + ǫ with ǫ → 0.

Thus we have a close analogy between the model of functional finite component inter-

dependent networks with s = 2 and 2-core percolation in terms of the order of the phase

transition. This analogy stems from the similarities in the Taylor expansion of the equations

describing these two models, but the physical basis on which these equations are constructed

is totally different. In addition, the order of the transitions is different for SF networks with

2 < λ < 4, thus the two models do not belong to the same universality class.

B. Simulations in Complex Networks

We test our theoretical arguments with stochastic simulations in which we use the Molloy-

Reed algorithm [30] to construct networks with a given degree distribution. The procedure

is as follows

(1) At t = 0 we remove a random fraction of nodes 1 − p in network A, remove all the

nodes in the components of network A smaller than s, and remove all the dependent nodes

in network B.

(2) At t ≥ 1 we remove all the nodes in the components of network B smaller than s and

remove all the nodes in network A dependent on dead nodes in B.

(3) We repeat (2) until no more nodes can be removed.

We perform simulations for a system of two ER graphs, two RR graphs in which all

nodes have the same degree z, each of N = 106 nodes, and two scale-free (SF) graphs

with N = 5 × 106 (see Fig. 1). The SF networks have a degree distribution Pk ∝ k−λ

with kmin ≤ k ≤ kmax, where λ is the exponent of the SF network. We set kmin = 2 and

kmax =
√
N . To compare our simulations with the theoretical results [Eq. (18)] we use

analytical expressions for πi,s(p) given in the case of ER and RR networks by Eq. (10). For

SF networks we compute πs(p) numerically. The details of the analytical solution for ER

and RR networks are presented in Section III.

Figures 1(a), 1(b), and 1(c) show perfect agreement between the theoretical results and

the simulations. Figure 1(d) shows a plot of pτ as a function of s for two RR networks with

degree z = 3, two ER networks with 〈k〉 = 3, and two SF networks with λ = 3, kmin = 2

and an average degree 〈k〉 = 3.18. As predicted, pτ = 1/〈k〉 for s = 2 and increases as
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FIG. 1: µ(p) as a function of p for different values of s for two (a) RR networks with degree z = 3

for N = 106 , (b) ER networks with average degree 〈k〉 = 3 for N = 106 and (c) SF networks with

λ = 3 for N = 5 106 with 1000 networks realizations for different values of s, from s = 2 to s = 6,

(the left most curves, indicated by circles). The symbols are the simulations and the dashed lines

are the theory. (d) The threshold pτ as a function of s obtained from the theory for the same RR

(black, circles), ER (red squares) and SF (blue diamonds) networks presented in (a), (b) and (c).

The dashed lines are used as a guide to show pτ for s → ∞.

s increases. For s → ∞ we recover the mutual percolation threshold of Ref. [6] shown as

dashed lines in Fig. 1(d).

V. MODEL IN INTERDEPENDENT EUCLIDEAN LATTICES

We also study the same model for square lattices, generalizing Refs. [13, 15]. When

there are random interdependency links, i.e., when there is no geometric constraint on

the interdependencies, we use the exact results for the perimeter polynomials of the finite
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components to compute gs(p),

gs(p) = 1−
s−1
∑

n=1

n pn−1 Dn(1− p), (32)

where Dn(1 − p), are the perimeter polynomials for small components on a square lattice

[31].

Here the system undergoes a first-order phase transition when s ≥ 3 at the predicted

values of pτ = 0.485 for s = 3 and pτ = 0.5506 for s = 4, obtained by solving Eq. (18).

When the interdependency links satisfy distance restrictions, we define the distance between

the two interdependent nodes in lattices A and B as the shortest path between the nodes

along the bonds of the lattices, i.e., |xA − xB|+ |yA − yB| ≤ r, where (xA, yA) and (xB, yB)

are the coordinates of the interdependent nodes in lattices A and B, respectively. Using

simulations we see a first-order phase transition emerging at a certain value of r = rI in

qualitative agreement with the case s = ∞ studied by Li et al. [13]. At this value of r the

system reaches maximum vulnerability, indicated by a maximum of pτ (r) as a function of r

[See Fig. 2(a)].

15 20 25 30 35
r

0.56

0.57

0.58

0.59

0.6

p τ , 
 p

c

r
Ir

II

f (a)

0 0.2 0.4 0.6 0.8 1
p

0.2

0.4

0.6

0.8

1

µ(
p)

r=0
r=5
r=10
r=r

II
=15

(b)

FIG. 2: For interdependent lattices with interdependent distance r and survival component size

s = 4, for L = 512 (a) pτ (r) (©) vs. r for the first-order r ≥ rI = 18 and the continuous phase

transition rII = 15 ≤ r < rI = 18 and p
f
c (r) (△). The lines are used as a guide for the eyes. (b)

µ(p) vs. p for different values of r. For r < rII = 15 the results do not depend on the lattice size

L. The system size dependence emerges only at r = rII = 15.

The rI value is much greater than the value obtained for the MOMP (s = ∞). For r
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close to rI , the cascading failures propagate via node destruction on the domain perimeters

composed of surviving node components, and this creates moving interfaces when the size

of the void separating the domains is greater than r. These moving interfaces belong to the

class of depinning transitions characterized by a threshold p = pfc (r) that increases with r

(see Fig. 2). Here p = pfc (r) is the critical fraction of nodes remaining after the initial failure,

such that for p > pfc (r) the interface of an infinitely large void will be eventually pinned and

stop to propagate. In contrast, when p < pfc , the interface of the voids propagates freely

without pinning, and burns eventually the entire system. Near pfc (r), the velocity of the

domain interfaces approaches zero with a power law behavior v ∼ (pfc − p)θ where θ > 0 is

a critical exponent [32]. In order to compute pfc , we compute the velocity v of the growing

interface as a function pf −p until we get a straight line in a log-log plot, which corresponds

to the value of the critical threshold pfc . The value of the slope of v ∼ pfc − p is the critical

exponent θ. We find θ = 0.53, suggesting that the interface belongs to the universality

class of a Kardar-Parisi-Zhang (KPZ) equation [33] with quenched noise. As p = pfc (r)

increases, the probability that large voids with a diameter greater than r will spontaneously

form, decreases and becomes vanishingly small in a system of a finite size. Thus in a finite

system we must decrease p below pfc (r) in order to create these voids. When p < pfc (r), the

interface of the voids begins to freely propagate without pinning and eventually, like a forest

fire, burns through the entire system. Thus the emergence of a first-order transition in a

finite system depends on system size, i.e., the larger the system, the larger the rI value at

which the effective first-order (all-or-nothing) transition is observable.

Figure 2(a) shows that as r continues to increase, pτ begins to decrease and slowly

approaches the pτ value for random interdependence as r → ∞. There is no second-order

percolation transition for finite s and small r that governs the size of the voids, in contrast

to what was found by Li et al. [13] for s → ∞. For finite s, a second-order transition

emerges when the r value is large, r = rII < rI , but when r < rII there is no transition, the

fraction of survived nodes µ(p) is zero only at p = 0, and it continues to be differentiable

and independent of the system size for any positive value of p. Note, however, that as r

approaches rII the derivative of µ(p) develops a sharp peak at a certain value of p ≡ pm(r)

below which µ(p) is very small but finite. At r = rII we see a second-order transition because

the height of the peak of the derivative of µ(p) now increases with lattice size L, which is

typical of a second-order transition. This behavior is associated with different regimes of
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FIG. 3: Snapshots of the model of interdependent lattices for s = 4, L = 1024 and different values

of r = 10 < rII , p = 0.56 (left) and r = rII = 15, p = pm = 0.572 (right) at the end of the cascade

of failures. It can be seen that for small r < rII the system is divided into many independent

domains, while for r = rII the domains coalesce, and the cascades are driven by the propagation

of the interface near the depinning transition.

domain formation. For small values, r < rII , the first stages of the cascading failure fragment

the system into small independent regions, each of which has its own pinned interface(see

Fig. 3). In this regime, after the first stages of the cascade of failures the system practically

does not change. After the first stages, the interfaces propagate very slow and can stop

at any point leaving the resulting snapshots indistinguishable from the one obtained in the

steady state. A single interface emerges only when these regions coalesce at r = rII , and a

second-order phase transition related to the propagation of this interface through the entire

system emerges. This second-order phase transition observed for r = rII has a unimodal

distribution of the order parameter µ(p), and we use the maximum slope of the graph µ(p) to

compute the critical point pτ = pm(rII). As r increases between rII and rI the distribution

of µ(p) becomes bimodal, and we compute the transition point pτ using the condition of

equal probability of both modes. Note that pτ reaches a maximum at r = rI where the two

peaks of the distribution of µ(p) separate completely, as indicated by a wide plateau in the

cumulative distribution of µ(p) [34]. The cumulative distribution of µ̃(p) ≡ µ̃ for square

lattices is presented in Fig. 4

The emergence of the first order-phase transition above rII is related to the decrease of
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FIG. 4: Cumulative Distribution of the fraction of survived nodes, µ̃ , for different values of r. As

we can see from the plots, as r increases above rII , a plateau develops in the cumulative distribution

for p ≈ pτ , which means that the distribution of the values of µ̃ is bimodal and the system will

eventually reach a first-order transition at r ≥ rI . In this regime, there is a large gap between the

values of µ̃, indicating that for the same value of p, either a large fraction of the system can stay

functional, or the system can completely collapse.

the correlation length as we move away from rII . We, thus, find that when s is small, rI is

significantly larger than rI(∞). For the shortest path metric rI(∞) = 11, and rII(4) = 15

and rI(4) = 18 for L = 1024. As s increases, rI gradually decreases and coincides with

rI(∞) for s → ∞.
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VI. CONCLUSION

In summary, we find that in complex networks with s > 2, our model has a first order

transition as for the previously studied case of MOMP with s → ∞. For s = 2, our model

has a higher than second order transitions similar to that found in k-core, but the order of

the transitions in SF networks differs depending on the exponent of the degree distribution.

However, the finite component generalization of MOMP in spatially embedded networks

has a totally different behavior, which is not related to k-core. In this case, the transitions,

when they exist, are dominated by the behavior of the pinning transition of void’s interfaces.

Our model in spatially embedded network is a rich and interesting phenomenon, which has

many practical applications for studying the cascade of failures in real world infrastructures

embedded in space. Our work can be extended to any NON model incorporating MOMP,

but our finite component model is significantly more general and realistic. We can generalize

our model to derive equations for a partially interdependent NON. Here the second-order

transition will also appear when s > 2 if the fraction of interdependent nodes is small. The

value of s can differ in different networks of the NON, and can be a stochastic variable,

such that a component of size s survives with probability p(s), as in the heterogeneous

k-core [28, 35].
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