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Abstract: 12 

Earthquakes are quite hard to predict. One of the possible reasons can be the fact that 13 

the existing catalogues of past earthquakes are limited at most to the order of 100 years, 14 

while their characteristic time scale is sometimes greater than that time span. Here we 15 

rather use these limitations positively and characterize some large earthquake events 16 
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as abnormal events that are not included there. When we constructed probabilistic 17 

forecasts for large earthquakes in Japan based on similarity and difference to their past 18 

patterns, which we call known and unknown abnormalities respectively, our forecast 19 

achieved probabilistic gains of 5.7 and 2.4 against a time independent model for main 20 

shocks with the magnitudes of 7 or above. Moreover, the two abnormal conditions 21 

covered 70% of days whose maximum magnitude was 7 or above. 22 

 23 

PACS number(s): 91.30.Ab, 05.45.Tp, 07.05.Kf 24 

 25 

I. INTRODUCTION 26 

The idea of plate tectonics [1] implies that the earthquake activity can be governed to 27 

some extent by dynamical laws. In addition, there are many mathematical models for 28 

earthquakes [2-4]. However, we cannot predict earthquakes in deterministic ways until 29 

now [5]. There also exist three empirical statistical laws related to the earthquake 30 

activity: The Omori-Utsu formula [6-8] describes the decay of aftershocks after their 31 

main shocks; The Gutenberg-Richter law [9] describes the relation between the 32 
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magnitude and the number of earthquakes; it is also known that the hypocenters of 33 

earthquakes are located in a fractal manner [10]. By combining the Omori-Utsu formula 34 

with the Gutenberg-Richter law, we can construct forecasts [11, 12] for aftershocks that 35 

may follow main shocks. However, the predictability of the main shocks like the 36 

Tohoku-Oki earthquake [13-16] is highly limited partially because these gigantic events 37 

were not recorded in the existing catalogues. 38 

 39 

In this paper, we rather use the property that gigantic events are mostly not included in 40 

the existing catalogues, for forecasting such events in the short-terms. We divided the 41 

time axis into time windows whose length is one day. Based on the similarity of the 42 

marked point process pattern of earthquakes on each day with those of the past time 43 

windows, we define two types of abnormal time windows: the known abnormal and the 44 

unknown abnormal. We call time windows as the unknown abnormal if we do not have 45 

similar time windows in the past; the detailed definitions are given below. In addition, 46 

we call time windows as the known abnormal if they are not the unknown abnormal 47 

and the similar time windows in the past are likely to have been followed by time 48 
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windows containing an event with a large magnitude. To evaluate the similarity among 49 

time windows, we use the edit distance for marked point processes [17-19]. The edit 50 

distance was more powerful than the commonly used inter-event intervals [20-22] when 51 

we characterize marked point processes because the edit distance can evaluate the 52 

times, hypocenters and magnitudes of earthquakes, simultaneously. Previously, the edit 53 

distance was used to characterize the dynamics of foreign exchange markets [18, 23], 54 

classify aftershocks of earthquake activity [17], and characterize the response of foreign 55 

exchange markets to the earthquake activity [24]. 56 

 57 

This paper is organized as follows: In Section II, we introduce the datasets we analyzed. 58 

In Section III, we explain the methods we analyzed the datasets. In Section IV, we 59 

present the results. In Section V, we discuss the results and conclude this paper. 60 

 61 

II. ANALYZED DATSETS 62 

We prepared the dataset around Japan by selecting earthquakes whose longitudes were 63 

between 125 oE and 150 oE, and the latitudes were between 25 oN and 48 oN. The time 64 
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period was from 1 January 2000 to 30 June 2011. The events whose magnitudes are 65 

greater than or equal to 4 were selected because they could be detected completely 66 

without being missed [25]. 67 

 68 

In addition, we also analyzed the dataset of earthquake activity around New Zealand. 69 

The longitudes were between 164 oE and 136 oW, the latitudes were between 15 oS and 70 

50 oS, and the times were between 1 January 1990 and 7 February 2011. We treated the 71 

earthquakes whose magnitudes were greater than or equal to 3.5. 72 

 73 

III. METHODS 74 

A. Size of time window 75 

1. Backgrounds 76 

We sample a time window every day to reconstruct the earthquake activity. We decide 77 

the length of the time window by extending the idea of delay coordinates in dynamical 78 

systems. 79 

 80 



6 
 

First, we review delay coordinates for a time series with a fixed sampling interval. Let 81 

 be an -dimensional manifold. Suppose that a dynamical system :  is given by 82 

. We also have an observation function  through which we 83 

observe the dynamical system. Then, delay coordinates for a time series  are 84 

defined as , , … , . The constant  is called the embedding 85 

dimension. Takens [26] showed that when 2 1, delay coordinates  are 86 

generally one-to-one with a state . Later, Sauer et al. [27] replaced it by the condition 87 

of d 2  with the box-counting dimension  of the attractor. 88 

 89 

States  and , and their delay coordinates  and  are related by 90 

the following diagram: 91 

. 
 When  and  are one-to-one, then  has an inverse. Thus, we can write 92 

 by . Because  is written only by the observed values, we can 93 

predict  without knowing  itself directly. 94 

 95 
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 96 

2. How to decide the size of time window 97 

(a) Using a time window instead of delay coordinates. We can formulate the problem for 98 

deciding the length of time window by extending the idea of delay coordinates 99 

mentioned above. Suppose that we have dynamics of , where 100 

:  defines mapping to the state the time of  later. We define an observation 101 

function :  that returns a point process on the time interval , 1 , 102 

whose set is written by . Then, the states  and , and their corresponding 103 

time windows  and  of point processes are related by the following 104 

diagram: 105 

. 
Then, if the window size  is large enough such that  has a unique inverse, then we 106 

can write  by . Therefore, we can predict  from 107 

 if  is sufficiently large. The window size for a point process is the notion 108 

similar to the embedding dimension for a time series with a fixed sampling interval. We 109 

call the method for sampling the time intervals , 1  as the Uniformly 110 
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Sampling Window method. The Uniformly Sampling Window method was previously 111 

applied to the datasets of foreign exchange markets [18, 23, 28] and neurons [29-31]. 112 

 113 

(b) Calculation of edit distances for marked point processes. We formulate the prediction 114 

and evaluate its goodness by an edit distance for a marked point process. In this edit 115 

distance, we evaluate how much it costs to edit one marked point process to the other by 116 

deletion, insertion, and/or shift of events. We assign a cost of 1 for deleting or inserting 117 

an event. We also assign a cost proportional to the time and the values shifted when we 118 

shift an event. In all the examples, we normalized marks so that the standard deviation 119 

for each mark is the same as the standard deviation of inter-event intervals. 120 

 121 

To calculate edit distances for marked point processes more efficiently, we employ the 122 

following method. 123 

 124 

As mentioned above, the edit distance between two marked point processes  and 125 

 is defined as the minimum total cost to edit  to . Let  denote 126 
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the th event of the marked point process  and | | denote the number of 127 

events contained in . Without loss of generality, we assume that the number of 128 

events in the marked point process  is smaller than or equal to that in . 129 

We consider a set of | |  pairs of events in two marked point processes 130 

, , where any event cannot be included in multiple 131 

different pairs. For a pair of events , , if the cost of shift of  to  132 

is larger than 2, we should choose deletion of  from and insertion of  into 133 

 to minimize the total cost to edit rather than shift of  to . Otherwise, 134 

we should shift  to . Finally, we insert all of remaining | | | | 135 

events of  into  to complete editing. Thus, the edit distance for marked 136 

point process can be calculated by 137 

,  

min ∑ min 2, ∑, | | | |,         (1) 138 

where  means the th mark of  and  denotes the coefficient of shift of 139 

the th mark. This definition of the edit distance can be represented by the complete 140 

bipartite graph , ,  (Fig. 1), where vertices are 141 
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events and all events of  connect to all events of . Here,  denotes the set 142 

of dummy vertices whose edges to vertices of  mean insertion of corresponding 143 

events. Edges from the vertices of events of  have the costs of shift or insertion 144 

and deletion, that is, the first term of Eq. (1). On the other hand, those from dummy 145 

nodes have costs of 1. Then, the minimum-cost perfect matching in this bipartite graph 146 

provides us the editing which minimizes the cost and the edit distance between two 147 

marked point processes (Fig. 1B). The minimum-cost perfect matching can be solved in 148 

a polynomial-time. Thus, we can calculate the edit distance for marked point processes 149 

in a polynomial time. This minimum cost perfect matching was first used in Ref. [24] to 150 

calculate the edit distance for marked point processes. We need about 15 days to 151 

calculate all the distances for 4199 days to produce Table III, for example using a 152 

computer with 2 CPUs of 6-Core Intel Xenon (2.66GHz) and 64 GB memory. 153 

 154 

(c) Nearest neighbor prediction. We find the closest match  for the current 155 

time window  from the past part of point processes using the above edit 156 

distance (c t argmin , ) and letting the following time window 157 
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 as the prediction  for  windows ahead (see Fig. 2 for the 158 

illustration). The prediction error for  windows ahead can be evaluated as 159 

, . 160 

 161 

(d) How to decide the window size. When we decide the window size , we compare the 162 

above nearest neighbor prediction with the persistence prediction where we let the 163 

current time window  as the prediction for  windows ahead  164 

between 1 5  (See Fig. 2 for the illustration). Namely, letting 2  the total 165 

number of windows, we minimize 
∑ ∑ ,/∑ ∑ ,/ . When  is 166 

smaller than 1, the nearest neighbor prediction is better than the persistence prediction. 167 

We eventually use the first half of the dataset to decide the window size. The candidates 168 

of  are selected in such a way that the smaller window length is multiplied by a 169 

number between 1.5 and 3 to obtain the next window size. 170 

 171 

We evaluate the nearest neighbor prediction by using the second half of the dataset. 172 

 173 
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3. Examples 174 

We here show four examples for choosing the length of the time window. 175 

 176 

The first example is an integrate-and-fire neuron [32] driven by the Lorenz model [33]. 177 

The equations can be written as 178 

10 ,                                       (2) 179 

28 ,                                    (3) 180 

,                                          (4) 181 

20 0.025 1 , 
1, 

where  represents the time for the th firing, and  is arbitrarily chosen. 182 

 183 

The result presented in Fig. 3 shows that the window size of 0.1 is optimal in this case. 184 

Thus, we used this window size to predict the following part of time series. We found 185 

that the nearest neighbor prediction was better than the persistence prediction in 1247 186 

out of 1499 time windows and these predictions were tie in 5 out of the remaining 252 187 
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time windows (the winning rate: 0.83, p-value < 0.001). Thus, by choosing the window 188 

size optimally, we could predict the future more efficiently than the persistence 189 

prediction. 190 

 191 

The second example is a local maxima series [34] of the Rössler model [35]. The 192 

equations for the Rössler model are written as 193 

, 
0.36 , 

0.4 4.5 . 
We observed the series of , extracted local maxima, and recorded their times and 194 

values to generate a series of the marked point process. 195 

 196 

The result presented in Fig. 4 shows that the window size of 5 is optimal. When we used 197 

5 for the window size, we could predict the next window with the nearest neighbor 198 

prediction better than with the persistence prediction in 924 out of 999 time windows 199 

and these predictions are tie in 3 time windows out of the remaining 75 time windows 200 
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(the winning rate 0.92, p-value < 0.0001). Thus, in this example of the Rössler model, 201 

the window size was appropriately chosen such that the nearest neighbor prediction is 202 

effective. 203 

 204 

In the third example, we used the Lorenz model of Eqs. (2)-(4) and generated a marked 205 

point process by extracting times and values of local maxima for the upper lobe of  as 206 

well as those of local minima for the lower lobe of  (see Fig. 5). We integrated Eqs. 207 

(2)-(4) for the duration of 10000 after throwing away the initial transient. 208 

 209 

We set 2.5 for the minimal size of time window because we need to span the time range 210 

of length 2.21 to include at least three events in any of the time windows. When we 211 

looked for an optimal time window by the normalized prediction errors, we found that 212 

2.5 was optimal (Fig. 6). When we used the second half to evaluate the prediction 213 

performance, we found that the nearest neighbor prediction won the persistence 214 

prediction in 1825 out of 1999 time windows. The winning rate was 0.93 (the p-value < 215 

0.001). 216 
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 217 

As the fourth example, we even restricted ourselves to use only the events on the upper 218 

lobe (Fig. 7) and applied the same analysis using the Lorenz model of Eqs. (2)-(4). Then, 219 

still the time window of length 2.5 was chosen as the optimal (Fig. 8). This length of 220 

time window accompanied with the nearest neighbor prediction has the superior 221 

prediction skill to the persistence prediction because the nearest neighbor prediction 222 

won the persistence prediction in 1730 time windows out of 1999 time windows 223 

predicted and tied in 3 time windows. Thus, the winning rate for the nearest neighbor 224 

prediction was 0.87 (the p-value < 0.001).  225 

 226 

When we applied the above way of choosing the length of the time window to the series 227 

of earthquakes around Japan, we chose 1 day as the optimal length for the window size 228 

(see Fig. 9). 229 

 230 

4. Notes 231 

For a time series with a fixed sampling interval, the false nearest neighbor method [36] 232 
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is a standard technique for deciding the embedding dimension. However, we cannot 233 

extend the false nearest neighbor method for deciding the length of time window of 234 

point processes because the edit distance between neighbors jumps when we follow its 235 

change along the time axis. Instead, we used the approach of using prediction errors 236 

[37-39] to evaluate the length of time windows. 237 

 238 

B. Converting the edit distances for the marked point process to the ones with long-term 239 

memory 240 

 241 

Because the earthquakes may depend on their long history, we convert the edit 242 

distances for the marked point process obtained using the 1 day window above into the 243 

ones that can retain the long-term memory. For this sake, we use the Fréchet product 244 

metric [40] as follows: 245 

, ∑ ,, ,                  (5) 246 

where  and 0 1. 247 

This definition is similar to the Bielecki metric [41], but the direction of the sum is the 248 
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opposite: our metric takes the sum toward the past. We chose 0.5. 249 

 250 

C. Weighted average for magnitude 251 

Suppose that , , , , and  be a set of time indices for the 5 nearest 252 

neighbors for day . Let  be the maximum magnitude for day . Then, we took the 253 

weighted average [42] of the maximum magnitudes for the next days in the following 254 

way: 255 

∑ . ,∑ . , .            (6) 256 

If the current time window is not classified to unknown abnormal conditions, and 257 

Expression (6) is larger than the threshold magnitude M, we declare that the current 258 

time window belongs to known abnormal conditions. 259 

 260 

D. Optimization of forecast parameters 261 

We optimize forecast parameters, namely the threshold magnitude M and the threshold 262 

percent tail q for the median distances of each time window with all the time windows 263 

in the database, by maximizing the product of modified odds ratios for aftershocks and 264 
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main shocks with magnitude greater than or equal to 7. To define the quantity for the 265 

optimization more precisely, let ,  be a 3 by 3 matrix containing the numbers of 266 

days satisfying specified two classifications in the second quarter of the given dataset: 267 

The first classification is which condition a day belongs to, the normal ( 1), the 268 

known abnormal ( 2), or the unknown abnormal ( 3) defined using the first 269 

quarter of the given dataset; the second classification is the outcome of the following day, 270 

whether the following day does not have an earthquake with magnitude greater than or 271 

equal to 7 ( 1), it has an aftershock with magnitude greater than or equal to 7 ( 2), 272 

or it has a main shock with magnitude greater than or equal to 7 ( 3). Then we 273 

define the modified odds ratio for the known abnormal conditions by 274 

, , ,, , . , . ,             (7) 275 

and the modified odds ratio for the unknown abnormal conditions by 276 

, , ,, , . , . .             (8) 277 

We maximized the product of Expressions (7) and (8) in terms of M and q by the grid 278 

search. Here M was chosen from 50, 60, 70, 80, 90, 95, 98, 99, and 99.5% points of the 279 

weighted average of magnitudes for the following day in the first quarter of the dataset, 280 
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and q was chosen from 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 281 

and 95%. 282 

 283 

E. Time-independent model 284 

A time-independent model is often used to evaluate the predictability for earthquake 285 

activity [43, 44]. Here, we use the following time-independent model: Suppose that we 286 

predict over N days, within which  and  days have the maximum magnitude over 287 

or equal to the used magnitude threshold  achieved by an aftershock and a main 288 

shock, respectively. Then, the probability that the maximum magnitude was greater 289 

than or equal to the used threshold is /  where . Let  be a matrix 290 

representing the results shown, for example, in Table III. Namely, , 1624, ,291 

1, , 2, , 135, , 0, , 3, , 330, , 1  and , 3 . Then, the 292 

probabilistic gains for the aftershocks and the main shocks of known abnormal 293 

conditions against the time—independent model were ,, , , / /  and 294 

,, , , / / , and those of unknown abnormal conditions were ,, , , /295 

/  and ,, , , / / , respectively. 296 

 297 
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F. Epidemic Type Aftershock Sequence (ETAS) model 298 

The ETAS model is a stochastic point process model for earthquake occurrences [45-47], 299 

and has been recently recognized as a standard model for probabilistic earthquake 300 

forecasting. Although various types of the ETAS models have been proposed, the central 301 

assumption of the model is that each earthquake with any magnitude can trigger its 302 

own aftershocks, the number of which depends on its magnitude. Here we consider the 303 

hierarchical space-time ETAS (Hist-ETAS) model [46], which is realistic enough to 304 

reproduce the actual seismicity. For the Hist-ETAS model, the occurrence rate (t, r) at 305 

time t and location r given an occurrence history It = {(tv, Mv, rv) | tv < t, Mc ≤ Mv} is 306 

expressed as 307 

, | ∑  Δ ,                         (9) 308 

where the first and the second terms, respectively, represent the background activity 309 

and the triggering effect from the preceding events. Some parameters µ(r), K(r), p(r), 310 

α(r), and q(r) are assumed to be location-dependent, modeled as the piecewise function 311 

with the Delaunay triangulation for the set of the locations {rv} of the past events. The 312 

Hist-ETAS model is estimated based on objective Bayesian estimation [46]. 313 

 314 
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The synthetic seismicity is simulated by using the estimated Hist-ETAS model. Here 315 

the magnitude of each simulated earthquake is randomly sampled from the following 316 

Gutenberg-Richter formula  of magnitude distribution: 317 

10 ,                                                               (10) 318 

where we set b = 0.9. The distribution of the simulated events is plotted in Fig. 10. 319 

 320 

  321 

 322 

IV. RESULTS 323 

A. Predicting earthquake patterns 324 

First, we compared the nearest neighbor prediction with the persistence prediction to 325 

consider a possibility that if the earthquake activity of some day in the past is similar to 326 

that of the current window, the earthquake activity similar to that following the “some 327 

day” occurs for the next day, namely there is possibly an underlying deterministic law 328 

behind the earthquake activity. In the nearest neighbor prediction, we found the closest 329 

match from the past part of the series in the edit distance or the Fréchet product metric 330 
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[40] with the exponentially decaying weights (see Section IIIB) and let the next window 331 

as the prediction for the following window [23] (see Fig. 2 for the schematic illustration; 332 

see also Section IIIA). In the persistence prediction, we let the current window as the 333 

prediction for the following window [23] (see Fig. 2 for the schematic illustration; see 334 

Section IIIA as well). The prediction errors were also evaluated by using the edit 335 

distance. At the beginning, we only used the numbers of earthquakes within a day to 336 

predict the future. But, in this case, the nearest neighbor prediction is worse than the 337 

persistence prediction (see Tables I and II, respectively). On the other hand, if we 338 

represented a series of earthquakes as a point process and increased the number of 339 

marks, namely if we used additional information such as times, magnitudes, and places 340 

(longitudes, latitudes, and depths) of the earthquakes, the predictability has improved 341 

(see Tables I and II). Therefore, the earthquake activity can be better predicted by the 342 

nearest neighbor prediction because if the earthquake activity for the most recent day is 343 

similar to that in some past day, the earthquake activity for the next day becomes 344 

similar to that for the day after the “some past” day, and that the marks provide useful 345 

information for the prediction for the next day activity. 346 
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 347 

In what follows, we use the Fréchet product metric for forecasting. 348 

 349 

B. Forecasting large earthquakes 350 

Therefore, we have constructed a probabilistic forecast of the maximum magnitude for 351 

the next day by combining the concept of the nearest neighbor prediction with the 352 

concept of the known and unknown abnormalities. Because the dataset we have was too 353 

short compared with the characteristic time scale of the earthquake activity, we divided 354 

time windows into 3 categories: normal conditions, known abnormal conditions, and 355 

unknown abnormal conditions. If the median distance of the current time window with 356 

all the time windows in the database is larger than the q% tail for the median distance 357 

of each time window with all the time windows in the database, then we classified the 358 

current time window as an unknown abnormal condition. If the current time window is 359 

not classified into the unknown abnormal conditions and its spatio-temporal 5 nearest 360 

neighbors in the edit distance has the weighted average magnitude (Section IIIC) 361 

greater than or equal to M in their following next days, then the current time window is 362 



24 
 

classified to a known abnormal condition. Otherwise the current time window is 363 

classified to a normal condition. We used the first quarter as the database and the 364 

second quarter for optimizing the parameters M and q to 4.12 and 90 so that we can 365 

achieve a large product of two modified odds ratios for forecasting main shocks and 366 

aftershocks (see Section IIID for details. We used the criteria of Ref. [47] to distinguish 367 

main shocks from aftershocks). Then we evaluated the probabilistic forecast using the 368 

third and fourth quarters. 369 

 370 

The results presented in Table III show that the probabilistic forecast achieved the 371 

probabilistic gains of (2.17/0.38=) 5.7 and (0.90/0.38=) 2.4 for the known abnormal 372 

conditions and the unknown abnormal conditions against a time independent model 373 

under which we assume that there is no time-dependence and we evaluated the 374 

probability that the maximum magnitude was more than or equal to 7 by the empirical 375 

histogram without any conditioning (see Section IIIE). When the two abnormal 376 

conditions were combined, the probabilistic gain was 3.1. In addition, the 95% 377 

confidence interval for the odds ratio of the abnormal conditions was [1.85, 49.02]. This 378 
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forecast could provide some warning by either the known abnormality or the unknown 379 

abnormality for 70% cases when the maximum magnitude for the next day was more 380 

than or equal to 7. For example, the day before the Tohoku-Oki earthquake was 381 

classified as a day for the unknown abnormal condition. The forecasted earthquakes 382 

were located widely all over Japan but the days classified to the unknown abnormal and 383 

normal conditions were concentrated around the east of Japan’s main island, while the 384 

days classified to the known abnormal conditions were far from the center of Japan (see 385 

Figs. 11 and 12). 386 

 387 

Marks such as magnitudes, longitudes, latitudes, and depths of earthquakes helped to 388 

improve the accuracy of the probabilistic forecast, especially because the lower bound 389 

for the 95% confidence interval of the odds ratio for the known and unknown abnormal 390 

conditions became highest if we added all these pieces of information as marks when 391 

obtaining the edit distances (see Tables III-VII). Therefore, it is more informative to 392 

forecast based on more information. In addition, even if we evaluate only the time 393 

period before the Tohoku-Oki earthquake, the probabilistic forecasts had the forecast 394 
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skill (Table VIII). 395 

 396 

Our probabilistic forecast did not work well in predicting the artificial earthquake 397 

series generated from the Epidemic-type aftershock sequence (ETAS) model [46] (the 398 

Hist-ETAS model, see Section IIIF and Table IX), which is a current standard statistical 399 

model for earthquake occurrence. The probabilistic gains for the known abnormal and 400 

the unknown abnormal conditions were 1.0 and 0.8 against the time independent 401 

model. 402 

 403 

When we reduced the time periods for the database and the parameter optimization 404 

into a half, the probabilistic gain for the abnormal conditions against the 405 

time-independent model became 1.0 (see Table X), which was smaller than when we 406 

used the first and the second quarters of the whole dataset as the database and the 407 

optimization (see Table III). Thus we expect that we may increase the accuracy of the 408 

short-terms probabilistic forecast by accumulating longer-term observations of 409 

earthquakes. 410 
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 411 

C. Results on the earthquake activity around New Zealand 412 

We obtained the similar results by analyzing the dataset of New Zealand. While we 413 

analyzed the dataset of New Zealand, we also used the time windows of 1 day for the 414 

analysis. When we predicted the pattern of the earthquake activity using the nearest 415 

neighbor prediction, the winning rate was the best when all the information of the 416 

marks was used (See Tables XI and XII). When we constructed the probabilistic 417 

forecasts for the earthquake activity around New Zealand (see Tables XIII-XVII), we 418 

found that the lower bound of the 95% confidence interval for the odds ratio for the 419 

abnormality conditions was the highest when we used all the marks, namely, the times, 420 

magnitudes, longitudes, latitudes, and depths of earthquakes (See Table XVII) 421 

compared with the cases where we only used the partial information (see Tables 422 

XIII-XVI). Here we used the different magnitude thresholds for the dataset of New 423 

Zealand from those for the dataset of Japan because the earthquake activity around 424 

Japan was more active. The forecasted days are illustrated in Figs. 13 and 14. In this 425 

case, the known abnormal days were spread along the islands of New Zealand, while 426 
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the days classified to normal were concentrated on north-east of New Zealand. 427 

 428 

V. DISCUSSIONS 429 

The proposed method is based on the embedding theorem for non-uniformly sampled 430 

data generated from a dynamical system [48]. Actually, when we convert the distance 431 

matrices obtained for Figs. 3, 4, 6, and 8 to recurrence plots [49, 50], making them 432 

continuous by the method of Ref. [51], and convert back to evenly sampled time series 433 

by the method of Refs. [52,53], the reconstructed time series look similar to the original 434 

time series (Figs. 15-18; their correlation coefficients were 0.8865, 0.6157, 0.3369, and 435 

0.3826, respectively). These figures mean that even if we only have a series of events, 436 

we have sufficient information for reconstructing the underlying dynamics. When we 437 

visualize the exponentially weighted distance matrix for the earthquake data around 438 

Japan by the multidimensional scaling [54] without assuming the continuity respect to 439 

the time axis, we found that the absolute values for the top three components correlated 440 

well with the maximal magnitudes for the next days (see Figure 19; the correlation 441 

coefficients were 0.1996, 0.2214, and 0.2257, respectively). Because the similar 442 
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observation holds for the case of New Zealand as well (see Fig. 20; the correlation 443 

coefficients were 0.0797, 0.0682, 0.0644, respectively, while their p-values were less 444 

than 0.001). 445 

 446 

Judging from Figures 19 and 20, the catalogs we used contain substantial information 447 

for forecasting large earthquake events. But, we are not sure whether the catalogs miss 448 

some other important pieces of information for such a purpose. Thus, we should check, 449 

in our future research, whether or not we should include other pieces of information in 450 

the catalogs to improve our forecasts further, while based on the embedding theorem by 451 

Ref. [48], the other pieces of information might not be necessary because we could 452 

reproduce them from a general series of events. 453 

 454 

Because our prediction is based on the embedding theorem by Ref. [48], we expect that a 455 

time window should be longer than one day if we use a magnitude threshold  greater 456 

than 4. This point should be also examined in our future research. 457 

 458 
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The novel part of the proposed method is that we consider abnormal conditions that are 459 

not recorded in the detailed existing catalogues. Thus, our retrospective probabilistic 460 

forecasts could achieve high probabilistic gains as demonstrated in Table III. It should 461 

be also important, on the other hand, to keep accumulating data of earthquake 462 

catalogues for further improvement of forecasts. We hope that the proposed 463 

probabilistic forecast will help to not only start preparing countermeasures for the large 464 

earthquakes before they will actually happen, but also establish short-terms insurances 465 

for the casualties and damage that the forecasted large earthquakes might cause. 466 

 467 
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TABLE I. Comparison of the winning rate for the nearest neighbor prediction using the 554 

edit distance against the persistence prediction in the case of Japan. We increased the 555 

amount of information we can use for the nearest neighbor prediction. Each winning 556 

rate was obtained by dividing the number of wins by the number of time windows 557 

within which the nearest neighbor prediction and the persistence prediction provided 558 

different predictions. 559 

Used information Winning rate 

Number of events within a day only 0.461 (681/1478) 

Times 0.503 (913/1817) 

Times and magnitudes 0.533 (941/1764) 

Times and places 0.556 (928/1670) 

Times, magnitudes, and places 0.562 (930/1656) 

  560 
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TABLE II. Comparison of the winning rate for the nearest neighbor prediction using the 561 

Fréchet product metric against the persistence prediction in the case of Japan. We 562 

increased the number of information we can use for the nearest neighbor prediction. See 563 

the caption of Table I to find the definition for the winning rate. 564 

Used information Winning rate 

Number of events within a day only 0.433 (698/1613) 

Times 0.610 (1043/1711) 

Times and magnitudes 0.811 (1326/1635) 

Times and places 0.880 (1402/1593) 

Times, magnitudes, and places 0.881 (1404/1594) 

  565 
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TABLE III. Experiment for forecasting days with large events around Japan using the 566 

times, places (longitudes, latitudes, and depths), and magnitudes of earthquakes. 567 

MaxM shows the maximum magnitude of earthquakes that happened within a day. 568 

Each integer shows the number of days for the corresponding classification. The 95% 569 

coincidence interval for the odds ratio of abnormal conditions was [1.85, 49.02]. The 570 

p-value obtained by the Fisher’s exact test was 0.0018 when we grouped up the 571 

abnormal conditions. 572 

 MaxM<7 MaxM 7 

& 

aftershock 

MaxM 7 

& 

main shock 

Total 

Normal 1624(99.82%) 1(0.06%) 2(0.12%) 1627(100.00%)

Known abnormal 135(98.31%) 0(0.00%) 3(2.17%) 138(100.00%)

Unknown abnormal 330(98.78%) 1(0.30%) 3(0.90%) 334(100.00%)

Total 2089(99.52%) 2(0.10%) 8(0.38%) 2099(100.00%)

  573 
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TABLE IV. Experiment for forecasting days with large events around Japan using the 574 

number of earthquakes for each day only. See the caption of Table III to interpret this 575 

table. The probabilistic gains of known abnormal conditions and unknown abnormal 576 

conditions were 0.0 and 2.4 against the time-independent model, respectively. The 95% 577 

confidence interval for the odds ratio of abnormal conditions was [1.09, 20.75]. The 578 

p-value was 0.019 when we grouped up the abnormal conditions. 579 

 MaxM<7 MaxM 7 

& 

aftershock 

MaxM 7 

& 

main shock 

Total 

Normal 1726(99.71%) 0(0.00%) 5(0.29%) 1731(100.00%)

Known abnormal 42(100.00%) 0(0.00%) 0(0.00%) 42(100.00%)

Unknown abnormal 321(98.47%) 2(0.61%) 3(0.92%) 326(100.00%)

Total 2089(99.52%) 2(0.10%) 8(0.38%) 2099(100.00%)

  580 
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TABLE V. Experiment for forecasting days with large events around Japan using the 581 

times of earthquakes only. See the caption of Table III to interpret this table. The 582 

probabilistic gains for the known abnormal conditions and the unknown abnormal 583 

conditions were 1.5 and 0.9 against the time-independent model, respectively. The 95% 584 

confidence interval for the odds ratio of abnormal conditions was [0.27, 13.05]. The 585 

p-value was 1 when we grouped up the abnormal conditions. 586 

 MaxM<7 MaxM 7 

& 

aftershock 

MaxM 7 

& 

main shock 

Total 

Normal 526(99.62%) 0(0.00%) 2(0.38%) 528(100.00%)

Known abnormal 357(99.44%) 0(0.00%) 2(0.56%) 359(100.00%)

Unknown abnormal 1206(99.50%) 2(0.17%) 4(0.33%) 1212(100.00%)

Total 2089(99.52%) 2(0.10%) 8(0.38%) 2099(100.00%)

  587 
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TABLE VI. Experiment for forecasting days with large events around Japan using the 588 

times and magnitudes of earthquakes only. See the caption of Table III to interpret this 589 

table. The probabilistic gains for the known abnormal conditions and the unknown 590 

abnormal conditions were 0.0 and 2.4 against the time-independent model, respectively. 591 

The 95% confidence interval for the odds ratio of the abnormal conditions was [0.67, 592 

13.81]. The p-value was 0.075 when we grouped up the abnormal conditions. 593 

 MaxM<7 MaxM 7 

& 

aftershock 

MaxM 7 

& 

main shock 

Total 

Normal 1734(99.66%) 1(0.06%) 5(0.29%) 1740(100.00%)

Known abnormal 26(100.00%) 0(0.00%) 0(0.00%) 26(100.00%)

Unknown abnormal 329(98.80%) 1(0.30%) 3(0.90%) 333(100.00%)

Total 2089(99.52%) 2(0.10%) 8(0.38%) 2099(100.00%)

  594 
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TABLE VII. Experiment for forecasting days with large events around Japan using the 595 

times and places (longitudes, latitudes and depths) of earthquakes only. See the caption 596 

of Table III to interpret this table. The probabilistic gains for the known abnormal 597 

conditions and the unknown abnormal conditions were 0.8 and 2.4 against the 598 

time-independent model, respectively. The 95% confidence interval for the odds ratio of 599 

the abnormal conditions was [0.04, ∞]. The p-value was 1 when we grouped up the 600 

abnormal conditions. 601 

 MaxM < 7 MaxM  7 

& 

aftershock 

MaxM  7 

& 

main shock 

Total 

Normal 35(100.00%) 0(0.00%) 0(0.00%) 35(100.00%)

Known abnormal 1724(99.62%) 1(0.06%) 5(0.29%) 1730(100.00%)

Unknown abnormal 330(98.80%) 1(0.30%) 3(0.90%) 334(100.0%)

Total 2089(99.52%) 2(0.10%) 8(0.38%) 2099(100.00%)

  602 
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TABLE VIII. Experiment for forecasting days with large events around Japan 603 

evaluated up to the 4000th day after 1 January 2000 using the times, magnitudes, and 604 

places of earthquakes. This table is the same as Table III except that only 4000 days 605 

after January 2000 were considered. See the caption of Table III to interpret the results. 606 

The probabilistic gains for the known abnormal conditions and the unknown large 607 

abnormal conditions were 5.6 and 2.5 against the time-independent model, respectively. 608 

The 95% confidence interval for the odds ratio of the abnormal conditions was [0.94, 609 

99.23]. The p-value was 0.029 when we grouped up the abnormal conditions. 610 

 MaxM < 7 MaxM  7 

& 

aftershock 

MaxM  7 

& 

main shock 

Total 

Normal 1604(99.88%) 0(0.00%) 2(0.12%) 1606(100.00%)

Known abnormal 135(98.54%) 0(0.00%) 2(1.46%) 137(100.00%)

Unknown abnormal 156(99.36%) 0(0.00%) 1(0.64%) 153(100.00%)

Total 1895(99.74%) 0(0.00%) 5(0.26%) 1900(100.00%)

  611 
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TABLE IX. Forecasting experiment for dataset generated from the ETAS model. In this 612 

table, we used the times, magnitudes, and places of earthquakes. See the caption of 613 

Table III to interpret this table. The probabilistic gains for the known abnormal 614 

conditions and the unknown abnormal conditions were 1.0 and 0.8 against the 615 

time-independent model, respectively. The 95% confidence interval for the odds ratio of 616 

the abnormal conditions was [0.08, 55.05]. The p-value was 1 when we grouped up the 617 

abnormal conditions. 618 

 MaxM < 7 MaxM  7 

& 

aftershock 

MaxM  7 

& 

main shock 

Total 

Normal 863(99.88%) 0(0.00%) 1(0.12%) 864(100.00%)

Known abnormal 1102(99.91%) 0(0.00%) 1(0.09%) 1103(100.00%)

Unknown abnormal 1370(99.85%) 1(0.07%) 1(0.07%) 1372(100.00%)

Total 3335(99.88%) 1(0.03%) 3(0.09%) 3339(100.00%)

  619 
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TABLE X. Experiment for forecasting days with large events around Japan using a 620 

small database. In this table, the conditions are the same as those of Table III except 621 

that the time periods for the database and the optimization were made half. Namely, we 622 

only used the second quarter to forecast the third and fourth quarters. See the caption 623 

of Table III to interpret this table. The probabilistic gains for the known abnormal 624 

conditions and the unknown large abnormal conditions were 0.8 and 2.8 against the 625 

time-independent model, respectively. When the two abnormal conditions were 626 

combined, the probabilistic gain was 1.0. Both the abnormal conditions covered all the 627 

days with earthquakes with the magnitudes greater than or equal to 7. The p-value was 628 

1 when we grouped up the abnormal conditions. 629 

 MaxM < 7 MaxM  7 

& 

aftershock 

MaxM  7 

& 

main shock 

Total 

Normal 21 (100.00%) 0 (0.00%) 0 (0.00%) 21 (100.00%)

Known abnormal 1882 (99.63%) 1 (0.05%) 6 (0.32%) 1889 (100.00%)

Unknown abnormal 186 (98.41%) 1 (0.53%) 2 (1.06%) 189 (100.00%)
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Total 2089 (99.52%) 2 (0.10%) 8 (0.38%) 2099 (100.00%)

  630 
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TABLE XI. Comparison of the winning rate for the nearest neighbor prediction using 631 

the edit distance against the persistence prediction in the case of New Zealand. We 632 

increased the number of information we can use for the nearest neighbor prediction. See 633 

the caption of Table I for the definition of the winning rate. 634 

Used information Winning rate 

Number of events within a day only 0.467 (1410/3022) 

Times 0.407 (1565/3849) 

Times and magnitudes 0.428 (1648/3849) 

Times and places 0.452 (1691/3743) 

Times, magnitudes, and places 0.630 (2078/3300) 

  635 
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TABLE XII. Comparison of the winning rate for the nearest neighbor prediction using 636 

the Fréchet product metric against the persistence prediction in the case of New 637 

Zealand. We increased the number of information we can use for the nearest neighbor 638 

prediction. See the caption of Table 1 for the definition of the winning rate. 639 

Used information Winning rate 

Number of events within a day only 0.483 (1488/3082) 

Times 0.515 (1948/3786) 

Times and magnitudes 0.601 (2180/3625) 

Times and places 0.830 (2739/3302) 

Times, magnitudes, and places 0.876 (2865/3271) 

  640 
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TABLE XIII. Experiment for forecasting days with large events around New Zealand 641 

using the number of earthquakes for each day only. See the caption of Table III to 642 

interpret this table. The probabilistic gains for the known abnormal conditions and the 643 

unknown large abnormal conditions were 2.7 and 0.7 against the time-independent 644 

model, respectively. The 95% confidence interval for the odds ratio of the abnormal 645 

conditions was [0.30, 2.43]. The p-value was 1 when we grouped up the abnormal 646 

conditions. 647 

 MaxM < 6 MaxM  6 

& 

aftershock 

MaxM  6 

& 

main shock 

Total 

Normal 2856 (99.34%) 1 (0.03%) 18 (0.63%) 2875 (100.00%)

Known abnormal 60 (98.36%) 0 (0.00%) 1 (1.64%) 61 (100.00%)

Unknown abnormal 912 (99.45%) 1 (0.11%) 4 (0.44%) 917 (100.00%)

Total 3828 (99.35%) 2 (0.05%) 23 (0.60%) 3853 (100.00%)

  648 
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TABLE XIV. Experiment for forecasting days with large events around New Zealand 649 

using the times of earthquakes only. See the caption of Table III to interpret this table. 650 

The probabilistic gains for the known abnormal conditions and the unknown large 651 

abnormal conditions were 1.7 and 0.4 against the time-independent model, respectively. 652 

The 95% confidence interval for the odds ratio of the abnormal conditions was [0.43, 653 

3.05]. The p-value was 0.64 when we grouped up the abnormal conditions. 654 

 MaxM < 6 MaxM  6 

& 

Aftershock 

MaxM  6 

& 

main shock 

Total 

Normal 2897 (99.38%) 1 (0.03%) 17 (0.58%) 2915 (100.00%)

Known abnormal 475 (98.96%) 0 (0.00%) 5 (1.04%) 480 (100.00%)

Unknown abnormal 456 (99.56%) 1 (0.22%) 1 (0.22%) 458 (100.00%)

Total 3828 (99.35%) 2 (0.05%) 23 (0.60%) 3853 (100.00%)

  655 
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TABLE XV. Experiment for forecasting days with large events around New Zealand 656 

using the times and magnitudes of earthquakes only. See the caption of Table III to 657 

interpret this table. The probabilistic gains for the known abnormal conditions and the 658 

unknown abnormal conditions were 2.0 and 1.3 against the time-independent model, 659 

respectively. The 95% confidence interval for the odds ratio of the abnormal conditions 660 

was [0.81, 4.72]. The p-value was 0.10 when we grouped up the abnormal conditions. 661 

 MaxM < 6 MaxM  6 

& 

aftershock 

MaxM  6 

& 

main shock 

Total 

Normal 2309 (99.53%) 1 (0.04%) 10 (0.43%) 2320 (100.00%)

Known abnormal 244 (98.79%) 0 (0.00%) 3 (1.21%) 247 (100.00%)

Unknown abnormal 1275 (99.14%) 1 (0.08%) 10 (0.78%) 1286 (100.00%)

Total 3828 (99.35%) 2 (0.05%) 23 (0.60%) 3853 (100.00%)

  662 
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TABLE XVI. Experiment for forecasting days with large events around New Zealand 663 

using the times and places of earthquakes only. See the caption of Table III to interpret 664 

this table. The probabilistic gains for the known abnormal conditions and the unknown 665 

large abnormal conditions were 1.1 and 0.4 against the time-independent model, 666 

respectively. The 95% confidence interval for the odds ratio of the abnormal conditions 667 

was [0.02, ∞]. The p-value was 1 when we grouped up the abnormal conditions. 668 

 MaxM < 6 MaxM  6 

& 

aftershock 

MaxM  6 

& 

main shock 

Total 

Normal 16 (100.00%) 0 (0.00%) 0 (0.00%) 16 (100.00%)

Known abnormal 3394 (99.33%) 1 (0.03%) 22 (0.64%) 3417 (100.00%)

Unknown abnormal 418 (99.62%) 1 (0.24%) 1 (0.24%) 420 (100.00%)

Total 3828 (99.35%) 2 (0.05%) 23 (0.60%) 3853 (100.00%)

  669 
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TABLE XVII. Experiment for forecasting days with large events around New Zealand 670 

using the times, places, and magnitudes of earthquakes. See the caption of Table III to 671 

interpret this table. The probabilistic gains for the known abnormal conditions and the 672 

unknown large abnormal conditions were 1.9 and 0.4 against the time-independent 673 

model, respectively. The 95% confidence interval for the odds ratio of the abnormal 674 

conditions was [0.99, 6.13]. The p-value was 0.041 when we grouped up the abnormal 675 

conditions. 676 

 MaxM < 6 MaxM  6 

& 

aftershock 

MaxM  6 

& 

main shock 

Total 

Normal 2192 (99.59%) 1 (0.05%) 8 (0.36%) 2201 (100.00%)

Known abnormal 1213 (98.86%) 0 (0.00%) 14 (1.14%) 1227 (100.00%)

Unknown abnormal 423 (99.53%) 1 (0.24%) 1 (0.24%) 425 (100.00%)

Total 3828 (99.35%) 2 (0.05%) 23 (0.60%) 3853 (100.00%)

  677 
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 678 

FIG. 1. Calculation of edit distances. (a) Examples of two marked point processes. 679 

Circles and crosses indicate event series of u , u  and 680 

, , , respectively. (b) The bipartite graph representing two marked 681 

point processes in (a). The black square indicates a dummy node. The numbers shown 682 

by the arrows represent the costs required for editing. If the numbers are 1, then it 683 

means deletion or insertion of events. If “min” is shown, then its first arguments are the 684 

costs for deletion and insertion of the corresponding events, and the second arguments 685 

are the costs required for a shift when 0.4. In addition, the numbers after “=” 686 

show the costs chosen after taking the minimum of the two costs. When a cost for a shift 687 

is larger than 2, which is the total cost of an insertion and a deletion, we choose the 688 

insertion and deletion of these events rather than the shift. For example, because the 689 

cost of shift from  to  is 2.3 and larger than 2, the cost of the edge between 690 
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these nodes is 2 which is required for the deletion of  and insertion of . 691 

Solid lines indicate the editing procedure which minimizes the total cost, while broken 692 

lines show the other potential edges. The edit distance between these two marked point 693 

processes is 2.6.  694 

  695 
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 696 

FIG. 2. (color online) Schematic diagram for persistence prediction and nearest 697 

neighbor prediction. Panel A corresponds to an original marked point process. Panel B 698 

shows how we generate persistence prediction, which is just letting the current window 699 

as the prediction for the following window. Panel C shows how we generate nearest 700 

neighbor prediction, by which we first find the closest match in the past and let the 701 

window next to the closest match as the prediction for the following window. 702 

  703 
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 704 

FIG. 3. The window size vs the normalized sum of mean prediction errors , for the 705 

case of the integrate-and-fire neuron forced by the Lorenz model. 706 

  707 
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 708 

FIG. 4. The window size vs the normalized sum of mean prediction errors , for the 709 

case of a local maxima series of the Rössler model. 710 

  711 
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 712 

FIG. 5. The original time series (the solid line) of the Lorenz model and the extracted 713 

events (the crosses) for the third example. Here we extracted the times and values for 714 

the local maxima on the upper lobe as well as the times and values for the local minima 715 

on the lower lobe. 716 

  717 
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 718 

FIG. 6. The size of time window vs the normalized sum of mean prediction errors , for 719 

the third example of the Lorenz model. 720 

  721 
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 722 

FIG. 7. The original time series (the solid line) of the Lorenz model and the extracted 723 

events (the crosses) for the fourth example. Here we extracted the times and values for 724 

the local maxima for the upper lobe. 725 

  726 
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 727 

FIG. 8. The size of time window vs the normalized sum of mean prediction errors , for 728 

the fourth example of the Lorenz model. 729 

 730 

  731 
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 732 

FIG. 9. The window size vs the normalized sum of mean prediction errors , for the 733 

earthquake series around Japan. 734 

  735 

we
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 736 

FIG. 10. (color online) Distribution of earthquakes in the ETAS model. 737 

  738 
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 739 

FIG. 11. (color online) Magnitudes, longitudes, and latitudes of earthquakes with the 740 

largest magnitudes that were 7 or above, depending on the probabilistic forecasts. Black 741 

diamonds, blue upper headed triangles and red down headed triangles show the days 742 

with forecasts with normal conditions, known abnormal conditions, and unknown 743 

abnormal conditions, respectively. Panels A, B, and C show magnitudes, longitudes, and 744 

latitudes, respectively. 745 

  746 
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 747 

FIG. 12. (color online) Locations for earthquakes whose magnitudes were 7 or above. 748 

Black diamonds, blue upper headed triangles and red down headed triangles show the 749 

days with forecasts with normal conditions, known abnormal conditions, and unknown 750 

abnormal conditions, respectively 751 

  752 
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 753 

 FIG. 13. (color online) Magnitudes, longitudes, and latitudes of earthquakes with the 754 

largest magnitudes that were 6 or above, depending on the probabilistic forecasts in the 755 

case of New Zealand. See the caption of Fig. 7 to interpret the results. 756 

  757 
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 758 

FIG. 14. (color online) Locations for earthquakes whose magnitudes were 6 or above in 759 

the case of New Zealand. See the caption of Fig. 8 to interpret the results.  760 
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 761 

FIG. 15. The comparison between the original time series (the solid line) of the Lorenz 762 

model and its reconstruction (the dash dotted line) from the simple point process 763 

generated by the integrate-and-fire neuron. The reconstruction shown here is the first 764 

principal component obtained after drawing a recurrence plot by plotting points on 10% 765 

of places, making the plot continuous by the method of Ref. [51], and reproducing the 766 

original time series by the method of Refs. [52,53]. 767 
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 769 

FIG. 16. The comparison between the subsampled time series (the solid line) of the 770 

Rössler model and its reconstruction (the dash dotted line) from the local maxima series 771 

of the Rössler model. Here, the reconstruction shown is the first principal component 772 

obtained after drawing a recurrence plot, making the plot continuous in time by the 773 

method of Ref. [51], and reproducing its time series by the method of Refs. [52.53]. 774 
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 776 

FIG. 17. The comparison between the subsampled time series (the solid line) of the 777 

Lorenz model and its reconstruction (the dash dotted line) for the third example. Here, 778 

the reconstruction shown is the third principal component after obtaining a recurrence 779 

plot, making the plot continuous by the method of Ref. [51], and reproducing the 780 

encoded time series by the method of Refs. [52,53]. 781 
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 783 

FIG. 18. The comparison between the subsampled dataset (the solid line) of the Lorenz 784 

model and its reconstruction (the dash dotted line) from the local maxima series of the 785 

upper lobe of . Here, the reconstruction shown is the fourth principal component 786 

obtained after obtaining a recurrence plot, making the plot continuous by the method of 787 

Ref. [51], and reproducing the time series by the method of Refs. [52,53].  788 
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 790 

FIG. 19. The comparison between the top three components underlying the earthquake 791 

activity around Japan obtained by the edit distances and the maximum magnitude for 792 

the next days. We excluded the days when the maximum magnitudes were less than 4. 793 
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 795 

FIG. 20. The comparison between the top three components for the earthquake activity 796 

around New Zealand obtained by the edit distance, and the maximum magnitude for 797 

the next days. We excluded the days whose maximum magnitudes were less than 3.5. 798 


