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Abstract

A statistical model for simple 3DMercedes-Benz model of water was used to study phase diagram.

Model on a simple level describes the thermal and volumetric properties of water-like molecules.

A molecule is presented as a soft sphere with four directions in which hydrogen-bonds can be

formed. Two neighboring waters can interact through a van der Waals interaction or an orientation-

dependent hydrogen-bonding interaction. For pure water, we explored properties such as molar

volume, density, heat capacity, thermal expansion coefficient and isothermal compressibility and

found that the volumetric and thermal properties follow the same trends with temperature as in

real water and are in good general agreement with Monte Carlo simulations. Model exhibit also two

critical points, for liquid-gas transition and transition between low density and high density fluid.

Coexistence curves and Widom line for maximum and minimum in thermal expansion coefficient

divide phase space of model into three parts, in one part we have gas region, in second high density

liquid and third region contains low density liquid.
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I. INTRODUCTION

The structure and thermodynamics of water and aqueous solutions are of great impor-

tance for chemistry and biology. Water molecules has simple formula, (H2O), but it is highly

complex liquid. It has many anomalous properties due to ability to form inter-molecular

hydrogen bonds. It is believed that these anomalies are related to the hypothetical second

critical point between two liquid phases in supercooled region[1]. This critical point was

first discovered by computer simulations of the ST2 water model[2]. Much of the subse-

quent research was focused on proving or disproving the existence of LLCP and results to

this day remain mixed[3–11]. Studies of water in ST2 as well as other models continue

to support the LLCP hypothesis, but there is limited experimental evidence to back these

claims up because the supposed LLCP is well below the homogenous nucleation temperature

of water[12–14]. The anomalous properties of water and the possibility of liquid-liquid phase

transition can be explained of water is viewed as mixture of two interconvertible organiza-

tions of hydrogen bonds whose ratio is controlled by thermodynamic equilibrium[8, 15–17].

The two-scale models have often been used as way of explaining the thermodynamic and

dynamic anomalies of liquid water. These models separate states of water into two differ-

ent groups, one corresponding to low-energy low-entropy configurations and the other to

high-energy high-entropy configurations. In these models water properties are modeled as a

mixture of two different liquids. There exist also models which are extensions of the van der

Waals equation with two microscopic states: hydrogen bonded states (low-density water)

and van der Waals states (high-density water) like the model by Poole et al.[18]. There is

another group of lattice models[19, 20] where water is presented as a lattice fluid in which

bond formation depends strongly on molecular orientations and local density. These models

are able to qualitatively reproduce the known thermodynamic behavior of water including

the behavior of supercooled water and describe how the predictions of lattice-gas models are

relevant to understanding liquid and amorphous solid water, but it is more difficult to use

it for description of solvation effects. Tanaka[21, 22] has a simple model of water that focus

on medium-range ordering in water. He introduce an additional bond order parameter next

to a density order parameter. In the model he recognizes that in any liquid locally favored

structures with low configurational entropy are formed in a sea of random, normal liquid

structures with high configurational entropy. Anisimov and coworkers [3, 6, 8, 9, 15, 16] on
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the other hand describe water as a competition between an ideal entropy of mixing and a

non-ideal part of the Gibbs energy of mixing.

The aim of this work is to apply a statistical mechanical model we developed for a two di-

mensional (2D) Mercedes Benz model[23, 24] to three dimensions (3D) Mercedes Benz (MB)

model of water. A previous version of the MB model dates back to the early 1970s [25–28].

Recently, 3D Ben-Naim model was reinvented by Bizjak et al.[29, 30] and Dias et al.[31, 32]

and studied using computer simulations [29–32] and integral equation theory[30]. Models

are advantageous since they separate the hydrogen bonding effect from others. The realistic

models include many geometrical details and types of interactions, including electrostatic,

hydrogen bonding, and van der Waals interactions, which creates the difficulties in com-

putational treatment and interpretation of obtained results. According to 3D MB model,

each water molecule is a Lennard–Jones sphere with four arms, oriented tetrahedrally to

mimic formation of hydrogen bonds. In a statistical mechanical model, which is based on

Urbic and Dill’s (UD) model being directly descendant from a treatment of Truskett and

Dill (TD), who developed a nearly analytical version of the 2D MB model [34, 35], each

water molecule interacts with its neighboring waters through a van der Waals interaction

and an orientation-dependent interaction mimicking formation of hydrogen bonds.

II. THEORY

In the analytical theory, the structure of the liquid state is a perturbation from an un-

derlying hexagonal (ice) lattice (Figure 1). Each water molecule is located close to one grid

point which can be occupied by single molecule. In the model, we focus on a single water

molecule on the grid and its interactions with the neighbor molecule. Each molecule can be

in one of three possible orientational states relative to its clockwise-like positioned neighbor

on the lattice: (i) hydrogen-bonded (HB) state, (ii) van der Waals (vdW) state, or (iii)

non-bonded (NB) state where the two water molecules do not interact. This is presented

in Figure 2. First we compute the isothermal-isobaric statistical weights, ∆i, of the states

as a functions of temperature, pressure, and interaction energies [23, 24]. In the HB state

the test water molecule can point one of its four hydrogen bonding arms at an angle θ to

within π/3 of the center of its neighbor water. In this case it forms a hydrogen bond[24]
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Clockwise-like neighbourTest water

FIG. 1. One layer of the hexagon of the ice-like lattice structure and a pair interaction used for

bookkeeping to avoid triple counting.

(see Figure 2) and the interaction energy of the test water with its neighbor is then

uHB(θ) = −ǫHB + ks(1 + cos θ)2, 0 < θ < π/3 (1)

ǫHB is an HB energy constant of the maximal strength of a HB and ks is the angular spring

constant that describes the weakening of the hydrogen bond with angle. We treat this type

of hydrogen bond as weak bond [23] as it does not cooperate with neighboring hydrogen

bonds. The isothermal-isobaric partition function, ∆HB, of this state is calculated as integral

of this Boltzmann factor over all angles φ, θ and ψ and over all the separations x, y and

z of the test molecule relative to its clockwise neighbor. In the vdW state, the test water

molecule forms a contact with its clockwise-like positioned water, but no hydrogen bond.

Energy of this state is

uLJ(θ) = −ǫLJ , 0 < θ < π/3 (2)

The isothermal-isobaric partition function, ∆LJ , of this state is obtained by same procedure

as for HB state. In the last possible state, the test water molecule does not interact with its

neighbors so the energy is

uo(θ) = 0. (3)

Upon obtaining the isobaric-isothermal ensemble Boltzmann weights of the three possible

states of each water molecule and the partition function for a full hexagon of 6 waters can

be written as

Q1 = (∆HB +∆LJ +∆o)
6, (4)
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FIG. 2. The three states of the model: (1) hydrogen-bonded, (2) van der Waals, and (3) nonbonded.

where the subscript 1 indicates a single hexagon. The total partition function for each

hexagon, by taking into account also higher cooperativity in ice [23, 24], is given by

Q1 = (∆HB +∆LJ +∆o)
6
−∆6

HB + δ∆6

s (5)

where δ = exp (−βǫc) is the Boltzmann factor for the cooperativity energy, ǫc, that applies

only when 6 water molecules all collect together into a full hexagonal cage. The terms

on the right-side of this expression simply replace the statistical weight for each weakly

hydrogen-bonded full hexagonal cage with the statistical weight for a cooperative strongly

hydrogen-bonded hexagonal cage. ∆s is the Boltzmann factor for a cooperative hexagonal

cage. It differs from ∆HB only in the volume per molecule, vs instead of vHB [23, 24]. Now
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FIG. 3. Temperature dependence of the molar volume, thermal expansion coefficient, isothermal

compressibility and heat capacity for pressures p∗=0.19 (green) and p∗=0.12 (red) comparison of

analytical theory (lines) with results of computer simulations (symbols) [29, 30].

we combine the Boltzmann factors for the individual water molecules to get the partition

function for the whole system of N particles, population of different states can be calculated

[23, 24] and all the other thermodynamic properties from simple derivations of the partition

function as described previously [23, 24, 34, 35]. The attraction beyond pair is treated

in the mean-field attractive level with energy, [33], −Na/v, among hexagons, where a is

the van der Waals dispersion parameter [23, 34, 35] and v is the average molar volume.

Parameters needed for calculations can be obtained directly from interaction pair potential

between two 3d MB water particles (ǫHB=1, rHB=1, ks=80, ǫHB=0.1, a=0.045, ǫc=0.18,

σLJ=0.7)[29, 30].
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III. RESULTS AND DISCUSSION

Analytical theory has additional approximations comparing to Monte Carlo simulations

this is why we first checked the qualty of the predictions of the analytical theory. We calcu-

lated temperature dependence of the density, heat capacity, isothermal compressibility and

thermal expansion coefficient for reported pressures [29, 30]. For 3D MB model it was previ-

ously shown that the Mercedes–Benz water qualitatively correctly reproduces the anomalies

of water[29, 30] for these quantities. Analytical results are presented in dimensionless units,

normalized to the strength of the optimal hydrogen bond ǫHB and hydrogen bond separa-

tion rHB (T ∗ = kBT/ǫHB, u
ex∗ = uex/ǫHB, V

∗ = V/r3HB, and p∗ = pr3HB/ǫHB). In Figure

3 comparison of predictions of the present theory (lines) for the molar volume, V ∗/N , the

thermal expansion coefficient, α∗, the isothermal compressibility, κ∗T , and the heat capacity,

C∗

p , vs. temperature to NPT Monte Carlo simulations [29, 30] (symbols) of the 3D MB

model with the same parameters is shown. The calculations of the theory were performed

at a reduced pressure of p∗ = 0.12 and 0.19. The theory is in good general agreement with

the simulations, including the density maximum (minima in molar volume). The thermal

expansion coefficient is negative at low temperatures which is consistent with computer sim-

ulations and with experiments for water. The Monte Carlo simulations of MB water do not

show experimentally observed minimum in the isothermal compressibility versus tempera-

ture. On the other hand the present theory predicts minimum in κ∗T . This is consistent with

scattering experiments [36]. At low temperatures, our present model shows a drop in C∗

p as

the temperature is reduced.

Being satisfied with prediction of the model we continue our research by calculating den-

sity of 3D MB water as a function of temperature along isobars (up to p∗ = 0.25) and de-

termine critical points of the model. Results are shown in Figure 4. In these pressure range,

upon increase of temperature density increases, reach maximum and then decreases. The

3D MB model exhibits two critical points; the liquid-gas critical point (C1) at T ∗

C1
=0.1166,

p∗C1
=0.0115, ρ∗C1

=0.467 and the liquid-liquid critical point (C2) at T ∗

C2
=0.0779, p∗C2

=0.167,

ρ∗C2
=1.295. There exists also region of pressures between both critical points where we have

only one fluid phase, at higher pressures we have two liquid phases and at lower pressures

the liquid and the gas phases.

Model also gives us chance to study what is happening with populations of different states.
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FIG. 4. Temperature dependence of the density for various pressures (red solid line), high density

liquid - low density liquid coexistence line (green long-dashed line), liquid - gas density coexistence

line (pink dotted line) and maximum densities (green dashed line).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.04  0.08  0.12  0.16  0.2

f s

T*

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.04  0.08  0.12  0.16  0.2

f H
B

T*

FIG. 5. Low-density fraction, fs, and high density fraction, fHB as a function of temperature for

various isotherms. (p∗ =0.06-0.23)

.

8



10-5

10-4

10-3

10-2

10-1

100

 0.04  0.06  0.08  0.1  0.12  0.14

p*

T*

FIG. 6. Phase diagram of the noncrystalline phases of water, red solid line is liquid-liquid and

green dashed line liquid-gas coexistence line.

According to Mishima, if the intermolecular potential of a pure fluid exhibits two minima,

the interplay between the two indicates that a liquid-liquid separation may be present [37].

In our theory we have two states with different energies and volume which is equivalent as

having potential with two minima. Initial 3D MB potential has LJ minima and HB minima.

There is also competition in the model between translation and orientational order. In Figure

5 we plotted populations of low-density and high-density fractions as function of temperature

at different pressures. Upon heating of water cage structures of solid phase are converted

by phase transition into closed packed hydrogen bond structures of high density phase or

slowly changes for pressures lower than critical pressure (C2). All this is in agreement with

the prediction of the two-state thermodynamics in the model by Anisimov [9] as well as

for two-state model for TIP4P/2005 water [38]. Experimental IR results[39] for structural

change of confined water upon crossing the Widom line show same temperature dependence

of the relative population of high density amorphous-like and low density amorphous-like

water species as predicted by our model for pressures outside phase transition region.
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Figure 6 contains the phase diagram of the noncrystalline phases of 3D MB model of

water. The phase diagram of a 3D MB fluid shows regions where at given pressure and

temperature two coexisting phases are present separated by coexisting lines; gas and liquid

by the gas-liquid coexisting line and two liquid phases by the liquid-liquid coexisting line.

These lines terminate at the critical point. Model predict liquid-liquid coexistence curve with

negative derivative dp

dT
as it is predicted for real water [40]. It has been recently reported

that for supercritical water exist different regimes that are not separated by any first order

line of transition as in the subcritical region [41]. The two regions are separated by so

called Widom line that connects the maxima of the thermodynamic response functions upon

approaching the critical point from the single supercritical phase. Figure 7 shows calculated

coexistence lines for both phase transitions as well as maximums of heat capacity, isothermal

compressibility and thermal expansion coefficient (in case of C2 minima in thermal expansion

coefficient) in the single phase region after the critical point. All these curves are related to

the Widom line. Starting from critical point the curves first follow a similar path. In case

of C1, the maxima of compressibility deviates from the other two lines at some distance

from the critical point and later also other two lines separate. For both critical points lines

for heat capacity and isothermal compressibility terminate while lines for thermal expansion

coefficient continue and terminate only when bumping in gas liquid coexisting line and at

temperature 0 like observed for van der Waals gas [42]. In the framework of the van-der-

Waals equation it has been possible to obtain exact analytical expressions for these lines in

the region of a supercritical fluid and to determine how far from the critical point a single

Widom line for different thermodynamic values may be established. Our model has limiting

behavior of van der Waals model[24], but can also predict two liquid phases. For the model

coexistence lines and the curves of maxima and minima in thermal expansion coefficient

divide phase space into three regions as shown in Figure 8. Each region contains one phase.

In one part we have gas region, in second high density liquid and third region contains low

density liquid.

IV. CONCLUSIONS

Summing up, we can conclude that in the analytical model for 3D MB water it has been

possible to obtain analytical expressions for thermodynamic properties and phase diagram
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including Widom lines in the regions of supercritical fluids. 3D MB model has similar

noncrystalline phase diagram as real water and Widom lines for thermal expansion coefficient

with coexistence curves divide phase space into 3 regions each containing own fluid phase. It

is expected that system with richer internal freedom, meaning to have more then two states

can have richer phase space with even more divisions.
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