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Network reliability is the probability that a dynamical system composed of discrete elements inter-
acting on a network will be found in a configuration that satisfies a particular property. We introduce
a new reliability property, Ising-feasibility, for which the network reliability is the Ising model’s par-
tition function. As shown by Moore and Shannon, the network reliability can be separated into
two factors: structural, solely determined by the network topology, and dynamical, determined by
the underlying dynamics. In this case, the structural factor is known as the joint density of states.
Using methods developed to approximate the structural factor for other reliability properties, we
simulate the joint density of states, yielding an approximation for the partition function. Based on a
detailed examination of why näıve Monte Carlo sampling gives a poor approximation, we introduce
a novel parallel scheme for estimating the joint density of states using a Markov chain Monte Carlo
method with a spin-exchange random walk. This parallel scheme makes simulating the Ising model
in the presence of an external field practical on small computer clusters for networks with arbitrary
topology with ∼ 106 energy levels and more than 10308 microstates.

PACS numbers: 05.10.Ln, 02.70.Tt, 64.60.De, 05.50.+q

I. INTRODUCTION

The Ising model [1, 2] of ferromagnetism in crystals has
been the object of sustained scrutiny since its introduc-
tion nearly a century ago, due to the rich phenomenology
it produces from simple dynamics [3, 4]. The Ising model
has also had a far-reaching influence in domains ranging
from protein folding [5] to social science [6, 7]. Yet it has
proven resistant to analytical solution, except in special
cases such as 1 or 2-dimensional lattices with no exter-
nal field. Indeed, solving the model in the general case is
known to be NP-hard [8–10]. Hence we largely depend on
approximations or numerical simulations for understand-
ing its properties. Unfortunately, the näıve Metropolis
algorithm suffers from poor convergence at precisely the
most interesting region of parameter space, the critical
point [11, 12]. Wang and Landau [13, 14] proposed a
more efficient algorithm that focuses on estimating the
density of states. Once the density of states is known,
the system’s partition function and related thermody-
namic quantities can be computed without further simu-
lation. The original sequential Wang-Landau method is
not practical for large systems, because its convergence
time increases rapidly with the number of energy states.
The state-of-the-art replica-exchange framework [15, 16]
provides a parallel algorithm to estimate the univariate
density of states g (k). However, it is not clear how to
apply this parallel scheme to estimate the joint density
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of states g (k, v), necessary for computing physical quan-
tities in the presence of an external field. Here we use
insights from Moore-Shannon network reliability [17, 18]
to construct a new parallel scheme that bridges the gap
between the Wang-Landau approach and the estimation
of joint density of states g (k, v). The result is an efficient
estimation scheme for the partition function of the Ising
model in the presence of an external field that performs
well even on large, irregular networks.

The Ising model is defined on a graph G (V,E) with
vertex and edge sets V and E, respectively, by the Hamil-
tonian

H = J
∑

(i,j)∈E

σiσj + µB
∑
i∈V

σi, (1)

where σi ∈ {−1, 1} represents the state of the vertex i.
J is the coupling strength between neighboring vertices
and B is the external field. The exact solution of the
Ising model in one dimension does not exhibit any criti-
cal phenomena. In the study of the order-disorder trans-
formation in alloys, Bragg and Williams [19, 20] used a
mean-field approximation for the Hamiltonian in which
each individual vertex interacts with the mean state of
the entire system. This is known as the Bragg-Williams
approximation or the zeroth approximation of the Ising
model [21]. An analytic expression for the partition func-
tion of a two-dimensional Ising model in the absence of
an external field was given by Onsager [22] and later de-
rived rigorously by C. N. Yang [23]. In spite of great
effort in the seven decades since, the exact solution of
the 2D Ising model in the presence of an external field
remains unknown.

A network’s reliability is the probability it “functions”
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– i.e., continues to have a certain structural property –
even under random failures of its components. It was
proposed in 1956 by Moore and Shannon [17, 18] as a
theoretical framework for analyzing the trade-off between
reliability and redundancy in telephone relay networks.
The desired structural property in that case, known as
“two-terminal” reliability, is to have a communication
path between a specified source node and specified tar-
get node. Since then, a wide variety of properties have
been studied, for example: “all-terminal” reliability re-
quires the entire graph to be connected; “attack-rate-α”
reliability requires the root-mean-square of component
sizes is no less than αN [24]. Network reliability can be
expressed as a polynomial in parameters of the dynami-
cal system whose coefficients encode the interaction net-
work’s structure. A reliability polynomial is the partition
function of a physical system [25–27], but it emphasizes
the role of an interaction network’s structure rather than
the form of the interactions.

Specifically, the reliability of an interaction network
G (V,E) is

R (x; r,G) ≡
∑
s∈S

r (s) ps (x) , (2)

where S is the set of all subgraphs of G (V,E); r (s) ∈
{0, 1} is a binary function indicating whether the sub-
graph s has the desired property, i.e. “two-terminal”;
and ps (x) is the probability resulting in a modified inter-
action subgraph s. The probability of picking a subgraph
ps (x) reflects random, independent edge failures in the
network with a failure rate (1− x) ∈ [0, 1] [17]. Hence,

with M ≡ |E|, ps (x) = xk (1− x)
M−k

where k is the
number of edges in the subgraph s.

If we group all 2M subgraphs into M equivalence
classes by the number of edges in the subgraphs, the re-
liability can be expressed as

R (x; r,G) =

M∑
k=1

Rk (r,G)xk (1− x)
M−k

(3)

where Rk is the number of subgraphs with k edges that
have the desired property. As shown in Section II, Rk is
equivalent to the density of states in the Ising model.

Evaluating Rk exactly is known to be as difficult as
#P − complete. In practice, however, Rk can be esti-
mated by Rk = Pk

(
M
k

)
, where Pk is the fraction of sub-

graphs with the desired property, which can be estimated
via sampling.

In summary, the reliability of a graph G (V,E) with
respect to a certain binary criterion can be written as a
polynomial:

R (x; r,G) =

M∑
k=1

Pk (r,G)

(
M

k

)
xk (1− x)

M−k
(4)

Each term in the reliability polynomial, Eq. (4), contains
two independent factors: a structural factor Pk and a dy-

namical factor xk (1− x)
M−k

. The reason for calling this

factor “dynamical” will become apparent in Section III.
The structural factor depends only on the topology of
the graph G and the reliability criterion r, whereas the
dynamical factor only depends on the parameter x – for
given values of Pk, the reliability R is a function of x
alone.

This separation of dynamical and structural factors
suggests new, more efficient ways to simulate Ising mod-
els. In Section II, we will illustrate that the reliabil-
ity R (x) is equivalent to the partition function Z (β) of
the Ising model; and the “failure rate” 1 − x actually
corresponds to physical quantities such as the tempera-
ture, the external field and the coupling strength in the
Ising model. In Section III, we use this perspective to
show that the Bragg-Williams approximation is given by
the first-order term in a principled approximation to the
structural factor. In Section IV, we use this perspec-
tive to extend the Wang-Landau method into an efficient
parallel scheme for estimating the joint density of states,
which we demonstrate on a 32× 32 square lattice and a
Cayley tree.

II. NETWORK RELIABILITY AND PARTITION
FUNCTION

The Ising model assumes that the state of a site
is binary, either “spin-down” (σi = −1) or “spin-up”
(σi = 1), and that each site interacts only with its near-
est neighbors, with a coupling strength J . All sites are
exposed to a uniform external field B. The collection of
all the sites’ states is called a “microstate” of the system.
The Hamiltonian for the Ising model on a graph G (V,E)
is shown in Eq. (1). The canonical partition function
Z (β,B, J) is given by the summation of exp (−βHs)
over all possible microstates s: Z (β,B, J) =

∑
s e
−βHs ,

where β = (kBT )
−1

is the inverse temperature. In the al-
ternative expression of the reliability polynomial Eq. (4),
the summation over all subgraphs is organized into equiv-
alence classes by the number of edges in the subgraphs.
Similarly, we can group all microstates into equivalence
classes (energy levels) determined by the number of adja-
cent sites in opposite states (“discordant vertex pairs” or
“edges”) and the number of spin-up sites. With N ≡ |V |,
the partition function can be expressed as:

Z (β,B, J) = C

M∑
k=0

N∑
v=0

g (k, v) e−2β(Jk+µBv) (5)

where C ≡ eβ(JM+µBN) and g (k, v) is the number of
microstates with v spin-up vertices and k discordant ad-
jacent vertex pairs (edges). Note that in the absence
of an external field (B = 0), the sum over v reduces
to the univariate density of states g (k). Eq. (5) is a use-
ful form for deriving a “low-temperature” expansion [21],
in which only equivalence classes with small k and v
contribute. In analogy with the reliability polynomial
Eq. (4), each term in Eq. (5) can be factored into two



3

Ising-feasible not Ising-feasible
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Figure 1. (a) An Ising-feasible configuration with three spin-
up vertices (red dots) and eight discordant spin pairs or edges
(solid line segments). (b) A configuration that is not Ising-
feasible because of the inconsistent edges (red line segments).
Independently choosing edges and spin-up vertices will rarely
produce an Ising-feasible configuration, but any set of ran-
domly chosen spin-up vertices uniquely determines a set of
edges.

separate parts: structural – the number of microstates
g (k, v) determined by the graph, and dynamical – the
physical quantities β, J and B– or thermal to be more
precise in the Ising model context. Just as the struc-
tural factors Rk(r,G) of the reliability R (x; r,G) can
be computed independently of x, Eq. 3, g (k, v) can be
computed independently of β, B or J . Once we have
g (k, v), we can plug in any value of physical quanti-
ties and compute the thermodynamic functions without
any further simulation. This is more efficient than the
traditional Metropolis methods. This observation has
also been made by Wang and Landau [13, 14]. By in-

troducing the transformation x (B, β) ≡
(
1 + e2βµB

)−1
and y (J, β) ≡

(
1 + e2βJ

)−1
, we can express the partition

function Z (β,B, J) as a bivariate reliability polynomial
R (x, y; r,G) using the transformation βµB ≡ 1

2 ln 1−x
x

and βJ ≡ 1
2 ln 1−y

y (Appendix A):

Z (β,B, J) ∝
∑
v,k

g (k, v)xv (1− x)
N−v

yk (1− y)
M−k

= R (x, y; r,G)

Note that the density of states g (k, v) is equivalent to
Rk, the number of subgraphs satisfying a binary crite-
rion, Eq. 3. We call the corresponding reliability crite-
rion r Ising-feasibility : a subgraph s is Ising-feasible if
and only if it is possible to find an assignment of spins
to all vertices such that every pair of discordant vertices
connected by an edge in G is also connected by an edge
in s and there is no edge between any other pair of ver-
tices. Fig. 1a illustrates an Ising-feasible microstate on a
4-by-4 square lattice; Fig. 1b, an infeasible one. Thus the
Ising model’s partition function is a bivariate reliability
polynomial with the special Ising-feasibility criterion.

III. δ−FUNCTION APPROXIMATION

By definition, the structural factor g (k, v) is indepen-
dent of any of the physical variables, β, J , or B. Solv-
ing the Ising model numerically on any graph G requires
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Figure 2. (a) Conditional state distribution of p (k|v) sam-
pled by a näıve Monte Carlo simulation on a 16-by-16 square
lattice. The conditional probability is normalized separately
for each value of v. The color reflects the value of p (k|v) in
logarithmic scale. As p (k|v) is symmetric along v = N/2,
the simulation is only done for v ≤ N/2. (b) The peaks
of p (k|v) for various lattices have the same functional form:
y (x) = 2x (1− x), where x ≡ v/N and y ≡ k/M .

only estimating its joint density of states g (k, v). Given
the joint density of states, the partition function, and
thus any thermodynamic quantities, can easily be eval-
uated for any particular values of β, J and B. We use
Monte Carlo sampling to estimate g (k, v). Because sam-
pling vertices and edges independently rarely produces
an Ising-feasible configuration, we randomly assign v ver-
tices to be in the spin-up state and then measure the
number of discordant node pairs (edges) k. We then esti-
mate the conditional probability p (k|v) by the frequency
of producing k edges given v spin-up vertices. Because
there are exactly

(
N
v

)
ways to choose v vertices, the joint

density of states g (k, v) can be expressed as p (k|v)
(
N
v

)
.

For example, on a 2D square lattice with periodic bound-
ary conditions, when v = 1 the only feasible microstates
have k = 4. Therefore, the number of microstates with
4 edges and 1 spin-up vertex is g (4, 1) = 1 ·

(
N
1

)
= N .

Similarly, for v = 2, k = 6 when the two chosen vertices
are neighbors and k = 8 when they are not. Assum-
ing N ≥ 4, the corresponding conditional probabilities
p (k = 6|v = 2) = 4

N−1 and p (k = 8|v = 2) = N−5
N−1 . The

number of states g (k = 6, v = 2) and g (k = 8, v = 2) can

be calculated accordingly by multiplying
(
N
2

)
. These are

the lowest order terms in the low temperature expansion.
In general, p (k|v) is very difficult to compute analyti-
cally.

An example of p (k|v) sampled using a näıve Monte
Carlo method on a 16-by-16 square lattice is shown in
Fig. 2a. Note that, because p (k|v) is the conditional den-
sity function, it is normalized separately for each value
of v so that

∑
k p (k|v) = 1. Also, for a 16-by-16 square

lattice, N = 256 and M = 512, the maximum of k can
be as great as 512. This maximum is only achieved by a
microstate in which spin-up and spin-down sites strictly
alternate. There are only two such states out of

(
256
128

)
possible microstates with v=128. The näıve Monte Carlo
method described above can hardly be expected to sam-
ple microstates as rare as this. Interestingly, as we ex-
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plain in Section IV, these rare microstates can dominate
the value of the joint density of states.

Empirically, the peaks of p (k|v) lie on the curve k
M =

2 v
N

(
1− v

N

)
. This functional relationship seems indepen-

dent of the system size N or the coordination number
(mean degree) q ≡ 2M/N of the lattice, Fig. 2b. A sim-
ple argument suggests why this is the case. If the spin-
up vertices are distributed uniformly across the lattice,
the probability that the neighbor of a spin-up vertex is
spin-down is 1 − v

N . For v spin-up vertices, each with
q neighbors, the expected number of discordant pairs is
thus 1

2qv(1− v
N ).

As the system size goes to infinity, N →∞, the condi-
tional probability p (k|v) becomes more sharply peaked
at its center. We can approximate p (k|v) as a Kronecker
δ-function p (k|v) ' δ

(
k
M , 2 v

N

(
1− v

N

))
. Inserting the δ-

function approximation for p (k|v) in our expression for
the partition function, Eq. (5), yields:

Z (ζ, η) = C
∑
e,v

p (k|v)

(
N

v

)
e−2(ζv+ηk)

' C
∑
e,v

δ (k/M, y (v/N))

(
N

v

)
e−2(ζv+ηk)

' C
∑
v

(
N

v

)
e−2N(ζ v

N + 1
2ηqy(v/N)) (6)

where ζ ≡ βµB, η ≡ βJ and y (x) = 2x (1− x). This
produces the Bragg-Williams mean-field approximation
[19, 20] , where the interaction term in the Hamiltonian
−J

∑
(i,j)∈E σiσj is approximated as −J

(
1
2qσ

)∑
i σi,

and σ = 1
N

∑
i σi is the average spin of the system.

The Bragg-Williams mean-field approach – and hence
Eq. 6 – incorrectly predicts that one-dimensional systems
exhibit a critical point. According to Eq. 6, the partition
function depends on the dimension of the system and the
graph structure only through q, the coordination number,
where q = 2 for a 1D lattice, q = 4 for a 2D square lattice
and q = 6 for a 2D triangular lattice. Moreover, its
dependence on q is only through the product Nηqy(x). If
the external field is zero (ζ = 0), changing q is equivalent
to changing the system size N or coupling strength η. In
other words, a 2D square lattice with size N behaves the
same as a 1D lattice with size 2N in this approximation,
which is physically incorrect. In Section IV we explore
the causes of this failure and explain how to address it.

IV. ESTIMATING THE DENSITY OF STATES

Although, for a particular v, it is reasonable to ap-
proximate p (k|v) as a δ-function, critical phenomena are
determined by all p (k|v) synergistically. The Ising model
is hard to solve exactly because extremely rare events for
one value of v are as important as the most common
events for another value. To demonstrate this, we first
transform the conditional probability p (k|v) to the num-

ber of states g (k, v) = p (k|v)
(
N
v

)
. Since the binomial
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Figure 3. The exact joint density of states g (k, v) computed
via exhaustive enumeration on a 5-by-5 square lattice. Be-
cause a näıve Monte Carlo only samples points near the peak
of each curve, and the tails of many curves are as important as
the peaks of others, it severely underestimates the univariate
density of states g (k) ≡

∑
v g (k, v) at k = 16.

factor
(
N
v

)
scales exponentially with v, it can dominate

the ratio g (k, vi) /g (k, vj). Ceteris paribus, this makes
contributions to Z from the tails of p(k|vi) comparable
to contributions from the peaks of p (k|vj). The joint
density of states of a 5-by-5 2D lattice is shown in Fig. 3.
Consider g (16, 5), the number of microstates with k = 16
discordant neighbors when there are v = 5 spins up. It
corresponds to the peak of p (k|5), and is roughly the
same as g(16, 10), which is in the tail of p (k|10). The
näıve Monte Carlo method misses the tail of p (k|v), and
is thus inaccurate.

Despite the failure of the näıve Monte Carlo method,
the strategy of dividing energy states into equivalence
classes remains valuable. It separates the estimation of
the joint density of states g (k, v) into N/2 independent
estimations of univariate distributions p (k|v), thus en-
abling a novel parallel estimation scheme. And, each
of p (k|v) can be estimated using the improved Wang-
Landau (WL) algorithm[13, 14]. The WL algorithm is a
Markov-chain Monte Carlo algorithm to obtain the uni-
variate density of states g (k) for the Ising model.

The WL algorithm is very similar to the Metropolis-
Hasting [11, 28] algorithm. However, instead of assuming
the detailed balance condition, the WL algorithm pursues
its so-called “flat” histogram by sculpting the g (k) grad-
ually during the simulation. Therefore, the running time
of the WL algorithm largely depends on the number of
energy states. As the number of states in g (k, v) is pro-
portional to O

(
N2
)
, the square of the number of states

in g (k), the WL algorithm takes a tremendous amount
of time to converge when computing the joint density of
states [29]. Each step in the random walk in WL algo-
rithm flips the spin of a random vertex, which inevitably
changes both v and k. Our modification of this algorithm
is to constrain the random walk to maintain v invariant.
For each v-spin subspace, we assign an independent ran-
dom walker. Therefore, the number of energy states is
reduced to O (N) for each walker. Specifically, instead
of randomly flipping the spin of a vertex as is done in
the WL random walk, each step of our random walk ex-
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Figure 4. The running time for estimating the joint density of
states g (k, v) on 2D lattices of different sizes, from N = 8×8
to N = 24 × 24. The sequential Wang-Landau algorithm
(blue) needs to cover O

(
N2
)

energy states, and become im-
practical for large systems. The spin-exchange WL algorithm
(red) divides the energy states into N/2 energy slices, and the
running time is bounded by the energy slice with the most
number of states at v = N/2. This energy slice only contains
O (N) states. By dividing the energy slice into 6 equal-sized,
75% overlapping energy windows, the running time is reduced
even further (yellow).

changes the locations of a spin-up vertex and spin-down
vertex. The rest of the algorithm is as the same as the
WL algorithm [13], Appendix B.

To demonstrate the efficiency of our algorithm, we
compare the running time on 2D lattices of different sizes,
from N = 8 × 8 to N = 24 × 24, Fig. 4. The num-
ber of energy states is proportional to N2. The running
time for the sequential WL algorithm (blue) grows ex-
ponentially as the number of energy states increases. It
becomes impractical for large systems N > 103. The
spin-exchange method (red) splits the energy states into
N/2 v-specific energy slices of different sizes. The overall
running time is bounded by that of the slice for which
v = N/2, which contains the most energy states. As
the number of energy states in each slice is O (N), the
spin-exchange method is much faster than the sequen-
tial WL algorithm. Since each energy slice essentially
is a univariate density, we can reduce the computation
time even further by dividing an energy slice into multi-
ple overlapping energy windows. We tested using six 75%
overlapping energy windows (yellow). The running time
test simply assumes independent random walkers in each
window. One can choose more sophisticated methods,
such as the replica-exchange scheme [15, 16].

We apply our algorithm on a 32-by-32 square lattice,
with ∼ 0.5 × 106 energy levels (equivalence classes) and
more than 10308 microstates. Note that, for the same
system, the univariate density of states g (k) only has
∼ 103 energy levels . Fig. 5a shows estimates for the
joint density of states. The simulation is performed using
300 cores within two days. To verify this result, we com-
pare its projection onto the univariate density of state
g (k) ≡

∑
v g (k, v) with the known analytical result [30].

As shown in Fig. 5b, the agreement is very good. Given

Figure 5. (a) The joint density of states g (k, v) of a 32-
by-32 square lattice. (b) The univariate density of states
g (k) ≡

∑
v g (k, v) estimated using a spin-exchange MCMC

algorithm, compared with the exact analytical result. (c) The
internal energy U = −∂ lnZ/∂β, and (d) the heat capacity
C = ∂U/∂T with coupling strength J = 0.5.

the joint density of states, we can easily find the partition
function Z (β,B, J) using Eq. (5). Then, without addi-
tional simulations, any thermodynamic functions can be
obtained directly from the partition function, such as the
internal energy U = −∂ lnZ/∂β and the heat capacity
C = ∂U/∂T . Fig. 5c and d show the internal energy U
and heat capacity C as a function of inverse temperature
β and external field B (assuming the magnetic suscepti-
bility µ = 1) at J = 0.5. The heat capacity curve presents
the correct critical point of kBT/J = 2.27 at B = 0. As
the heat capacity is known to be very sensitive to the
density of states, in Fig. 7a Appendix C, we show that
the heat capacity at B = 0 from our simulation agrees
with the one from the analytic result.

We also apply our algorithm on Cayley trees (a finite-
size analogue to Bethe lattices), where the exact re-
sult of the Ising model for B = 0 is known [31, 32].
A Cayley tree has a central vertex and every vertex
(except leaves) has d neighbors, Fig. 6a. It is de-
fined by two parameters, the degree d and the num-

ber of shells r. There are d (d− 1)
(j−1)

vertices at
j-th shell and d [(d− 1)

r − 1] / (d− 2) vertices in to-
tal. So the ratio of the number of leaves to the sys-
tem size tends to (d− 2) / (d− 1). The dimensionality
limn→∞ (ln cn) / lnn → ∞, where cn is the number of
vertices within n shells. All these characteristics make
Cayley trees very different from a regular lattice and very
interesting to study. The simulation on a Cayley tree
with d = 3 and r = 8 (N = 765) yields the joint density
of states as shown in Fig. 6b. As d = 3 in this particu-
lar Cayley tree, there are inaccessible states (“holes”) in
the g (k, v). The heat capacity is shown in Fig. 6c and a
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Figure 6. (a) A Cayley tree with degree d = 3 and number
of shells r = 6. (b) The joint density of states g (k, v) of the
Cayley tree with d = 3 and r = 8 (N = 765). As d = 3,
there are many inaccessible states. (c) The heat capacity of
the Ising model on the Cayley tree. The red curve is from the
exact solution at B = 0.

comparison with the analytic result at B = 0 is shown in
Fig. 7b in Appendix C. Due to the difference in topolo-
gies, the heat capacity of the Ising model on the Cayley
tree is very different from that on the 2D square lattice.

The spin-exchange WL algorithm proposed above pro-
vides a unique and efficient parallel scheme for computing
the joint density of states of Ising models in the presence
of an external field. Essentially, this parallel scheme splits
the joint density of states g (k, v) into N/2 conditional
densities p (k|v).

V. CONCLUSION

Network reliability is a general framework for under-
standing the interplay of network topology and network
dynamics. Here we have used network reliability to study
a prototypical network dynamical system – the Ising
model. This framework can be adapted to other net-
work dynamics as well, by defining a suitable feasibility
criterion for microstates.

The network reliability perspective separates effects of
network structure from dynamics in the system’s parti-
tion function. Based on this separation, we introduced a
δ-function approximation for the density of states, which

leads to the Bragg-Williams approximation for the inter-
nal energy. We also showed why a näıve Monte Carlo
method is not accurate enough for estimating the joint
density of states. Finally, we introduced a novel parallel
scheme using a spin-exchange MCMC algorithm for esti-
mating the joint density of states. The scheme requires
no inter-processor communication and can take advan-
tage of the replica-exchange parallel framework. We ap-
plied our method to a periodic 32-by-32 square lattice
estimating its internal energy and heat capacity as a func-
tion of both temperature and external magnetic field.

This work will make simulations of Ising-like dynam-
ics on large, complex networks feasible and efficient, and
opens the door to studying the Ising model in the pres-
ence of an external field. An efficient algorithm makes
it possible to study the effects of network structure in
systems that are too irregular to admit closed-form so-
lutions. Furthermore, as is suggested by Fig. 5d, the
nature of the phase transition depends on the external
field strength. Our approach enables studies of such phe-
nomena in large systems for the first time.
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Appendix A:

Here we show that the Ising model’s partition func-
tion, Eq. (5), can be expressed as the network reliability

Eq. (4) under the transformation x (ζ) ≡
(
1 + e2ζ

)−1
and

y (η) ≡
(
1 + e2η

)−1
, where ζ ≡ βµB and η ≡ βJ . The in-

verse transformations are ζ ≡ 1
2 ln 1−x

x and η ≡ 1
2 ln 1−y

y .

Plugging ζ and η into the partition function Eq. (5) gives:
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Z (ζ, η) = eηM+ζN
M∑
k=0

N∑
v=0

g (v, k) e−2ηk−2ζv

= e(
1
2M ln 1−y

y + 1
2N ln 1−x

x )
M∑
k=0

N∑
v=0

g (v, k) e−k ln 1−y
y −v ln

1−x
x

=

(
1− y
y

)M
2
(

1− x
x

)N
2

M∑
k=0

N∑
v=0

g (v, k)

(
y

1− y

)k (
x

1− x

)v

= (y (1− y))
−M

2 (x (1− x))
−N

2

M∑
k=0

N∑
v=0

g (v, k) yk (1− y)
M−k

xv (1− x)
N−v

= (y (1− y))
−M

2 (x (1− x))
−N

2 R (v, k; r,G)

Appendix B:

The spin-exchange WL algorithm starts with a choice
of v ∈ [2, N/2], a prior unknown p (k|v) and a his-
togram H (k|v). At each step of the random walk, the
system selects a new state k′ with probability P =
min (1, p (k|v) /p (k′|v)). The p (k∗|v) and H (k∗|v) of
the accepted state k∗ (k∗ = k or k′) will be updated:
p (k∗|v) ← f · p (k∗|v) and H (k|v) ← H (k|v) + 1,
where f is a modification factor. Once the histogram
H (k|v) ≥ 1/

√
f, ∀k is sufficiently “flat”[33], it is re-

set to zero H (·|v) ← 0, and the modification factor is
downscaled f ←

√
f . The simulation stops when the

modification factor f is very close to 1, e.g. exp
(
10−6

)
.

Appendix C:

2 4 6
kBT/J

0

0.5

1

1.5

2

C
/N

k

exact
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kBT/J
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a b

Figure 7. Compare the heat capacity with the known results
at B = 0 (without external field). (a) On a 32 × 32 2D
square lattice. The exact solution is calculated from the exact
density of states g (k) from P.D. Beale [30]. (b) On a d = 3
and r = 6 Cayley tree. The exact solution is computed as
C/k = −β2d2 lnZ/dβ2, where lnZ is given by [32].
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