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A spinning gas, heated adiabatically through axial compression, is known to exhibit a rotation-
dependent heat capacity. However, as equilibrium is approached, a new effect is identified here
wherein the temperature does not grow homogeneously in the radial direction, but develops a
temperature differential with the hottest region on axis, at the maximum of the centrifugal potential
energy. This phenomenon, which we call a piezo-thermal effect, is shown to grow bilinearly with the
compression rate and the amplitude of the potential. Numerical simulations confirm a simple model
of this effect, which can be generalized to other forms of potential energy and methods of heating.

PACS numbers: 05.70.Ce, 47.55.Ca, 47.70.Nd

Introduction: A spinning gas exhibits a rotation-
dependent heat capacity [1]. Under axial compression,
a cylinder of gas rotating about its axis, will become
hotter, but not as hot absent the rotation. This effect
occurs because, as the gas becomes hotter, gas molecules
originally flung by centrifugal forces to the periphery be-
come more homogeneously distributed. Since the heating
changes the moment of inertia, the gas must spin faster to
conserve angular momentum. Thus, some of the energy
expended in compressing the gas goes to making the gas
rotate faster, rather than into heating it, making it softer
to compress axially. The question now posed is: to the
extent that the axial compression is not quite infinitely
slow, do radial temperature gradients develop?

We identify here that, in fact, radial temperature gra-
dients do develop in the direction perpendicular to the
gas compression. By analogy to the piezoelectric effect
[2], we term this temperature gradient formation a piezo-

thermal effect. It will become clear how, in certain limits,
this analogy is rather precise. The effect appears in the
presence of any potential. With compression perpendicu-
lar to the potential gradient, temperature gradients arise
in the direction of the potential gradient.

Although our interest is spinning gas in a cylinder, for
didactic purposes, consider first a slab of gas in equilib-
rium in a vertical gravitational field, so that it has an at-
mospheric density distribution but constant temperature.
The force of gravity takes the place of the centrifugal
force, but, since gravity is constant, rather than coupled
to temperature, the essential effect is captured far more
simply. If the slab is compressed slowly in the horizontal
direction, it becomes hotter, so the scale height rises. For
mean free path small compared to system size, at each
height local thermodynamic equilibrium is achieved. As
the gas becomes hotter, an axial temperature gradient
develops, with the gas on bottom coldest. This is the
piezo-thermal effect in a gravitational field.

There are several important time scales: the collision
time τc, the compression or energy input time τE , the rise
time of the gas or sound time τs, and the heat diffusion
time τH . Consider the case τc ≪ τE ≪ τs ≪ τH . The
smallness of τc guarantees local thermodynamic equilib-
rium. The largeness of τH allows for temperature dif-

ferentials. The inequality τE ≪ τs means “fast com-
pression,” where the energy from compression will first
be distributed among all other degrees of freedom, while
the density remains unchanged. Although more energy
is deposited at the bottom than at the top, the energy
deposited per particle is the same throughout the ver-
tical direction, since the energy delivered to the parti-
cles is just proportional to the particle number at that
height. Local thermodynamic equilibrium is achieved at
increased temperature, but the system is not in global
equilibrium, so the gas center of mass (COM) rises to the
proper scale height. Particles on the bottom then see a
receding COM ceiling, and hence are cooled by collisions
with the receding ceiling; conversely, particles on top see
a rising COM floor, and hence are heated. In the fol-
lowing, these predictions will be described quantitatively
and demonstrated through simulations.

Similarly, the axial compression of spinning gas pro-
duces a piezo-thermal effect. Here the temperature in
the center is higher than at the periphery, since the cen-
trifugal force pushes from the center to the periphery.
Interestingly, the fact that the hottest region is on axis
might be useful in low-temperature engines with spinning
gas, either by initiating a central spark or by limiting
energy loss at the periphery. This temperature differ-
ential occurs in addition to the rotation-dependent heat
capacity effect, which was already shown to increase the
theoretical maximum of efficiency of internal combustion
engines that utilize spinning gas [3].

That the temperature on axis tends to be larger than
at the periphery might come as a surprise, since the effect
is opposite to that in the Ranque-Hilsch vortex tube [4], a
closely related rotating gas device. In the vortex tube, a
very substantial radial temperature differential similarly
occurs, however the colder gas exits at small radii, while,
in our case, the colder gas is found at larger radii. The
source of the vortex tube temperature differential is still
debated within the archival literature; explanations in-
volve turbulence [5] or secondary flows [6]. The compres-
sion of spinning gas has been studied in other contexts
as well, including vortex compression [7, 8], the cutting
of vortices [9], or under periodic compression, where a
parametric instability appears [10]. However, it is the
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FIG. 1: Piezo-thermal effect. Step 1: equilibrium at T0. Step
2: instant vertically uniform temperature rise to T ∗ produced
by lateral compression. Step 3: pressure balance, under heat
insulation, restored through partition displacement z.

curious behavior of vortex tubes, in giving the opposite
result, that most contributes to the surprise here.
Gravitational Potential: To describe quantitatively

the piezo-thermal effect, consider a slab of finite width
(in the x̂-direction) of an ideal gas in constant vertical
gravitational field −gẑ. In equilibrium, the tempera-
ture T is constant, so the density falls off exponentially,
n(z) = n0 exp(−z/λ), where z is the vertical height and
λ = T/mg is the atmospheric scale height, for particle
mass m. Under adiabatic compression in the x̂-direction,
the gas COM rises, as the temperature increases. The
increase in the gravitational potential energy causes the
gravity-dependent heat capacity of the gas [11].
As will be demonstrated in particle simulations, the

key piezo-thermal effects can be described in various lim-
its by crudely modeling the gas, initially at temperature
T0, as divided by a movable, heat-insulating partition
with mass M (later identified with the total gas mass),
with N1 massless molecules in the lower section and N2

in the upper section, as depicted in Fig. 1. Consider first
the case τE ≪ τs ≪ τH , namely where sudden lateral
compression heats the gas in a time τE short compared
to the rise time τs. The initial pressure balance gives

N1T0/L1 −N2T0/L2 = Mg, (1)

where L1,2 are the lengths of the lower and upper sections
respectively. Upon heating, the temperature increases
everywhere from T0 to T ∗. To balance pressures, the
partition rises to height z, but gas in the lower section
performs mechanical work, and hence is cooled, while
gas in the upper section is compressed and heated. Since
τs ≪ τH , the temperatures on top and bottom separately
equilibrate to T2 and T1 respectively. For heat capacity
cv and heat capacity ratio γ, energy balance gives

cv(N1T
∗ +N2T

∗) = cv(N1T1 +N2T2) +Mgz, (2)

while the adiabatic law for each section gives

T1 = T ∗ (1 + z/L1)
1−γ , T2 = T ∗ (1− z/L2)

1−γ . (3)

FIG. 2: Temperature profile for fast heating. Black: initial
profile; red: upon heating; green: at maximum temperature
gradient; blue: at new equilibrium. (δ = G = 1.0.)

Eq. (2) together with Eq. (3) is a transcendental equa-
tion for z; however, for small z/L1,2, we can Taylor ex-
pand to second order and obtain the following solution:

z =
2Mg

(
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1
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)

γ
(
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1
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2

) . (4)

To estimate the magnitude of the temperature differential
T2 − T1, we Taylor expand again Eq. (3) and make use
of expression for z from Eq. (4).
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(5)

Now for large scale heights L ≪ λ, we can approximate
L1,2 ≈ L/2, N1,2 ≈ N/2. For rough scaling, take the
mass of the partition equal to the mass of the gas M ≈

Nm, and expand for small displacements z/L, to find

∆T

T0

= κ1

(

mgL

T0

)(

T ∗ − T0

T0

)

, (6)

which exhibits bilinear dependence on G = mgL/T0 ≡

L/λ, which measures the system size to scale height, and
δ = (T ∗ − T0)/T0, which measures the heat imparted,
with proportionality constant κ1 = 0.8 for monatomic
ideal gas (cv = 3/2, γ = 5/3).
Numerical simulations confirm these effects also in the

absence of a partition. We used the Direct Simulation
Monte Carlo method [12] in 1D geometry in vertical di-
rection. A fluid code would also have captured the piezo-
thermal effects. The fast heating or compression in the
perpendicular direction was modeled by imparting to all
particles, in a vertical column, a lateral impulse propor-
tional to their lateral velocity. For hard-sphere collisions,
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FIG. 3: Density profile for fast heating. Black: initial profile;
red: upon heating; green: at maximum temperature gradient;
blue: at new equilibrium. (δ = G = 1.0.) Density is normal-
ized to homogeneous one, i.e. total number of particles over
total volume.

the temperature first increases quickly and vertically uni-
formly. A temperature differential then develops, as de-
picted in Fig. 2. This differential is accompanied by a
rise in the density scale height, as depicted in Fig. 3.
The bilinear dependence on both G and δ in Eq. (6) is
confirmed, with proportionality constant κ1 ≈ 0.64 nu-
merically determined, by fitting a large number of par-
ticle simulations. The temperature gradient oscillates at
the sound frequency. As the new equilibrium is reached,
these oscillations are damped somewhat sooner than the
heat diffusion time, τH ≈ νcL

2/v2t , for thermal speed vt,
collision frequency νc = vtnd

2, and molecule radius d.
Interestingly, in the limit L/λ → ∞, the temperature

differential can no longer depend on L, since there are no
particles at large L. Hence, the bilinear dependence de-
rived in Eq. (6) must be replaced by a dependency only on
δ. However, at the same time, the notion of temperature
becomes ill-defined for too many scale heights. Focusing
then on the temperature differential say between z = 0
and z = cλ, where c ≡ ln 10, one determines through sim-
ulations ∆T/T0 = 0.47δ. Note that the maximum tem-
perature differential may occur at larger scale heights,
but because of the increasing rare atmosphere, further
contributions to the differential become less meaningful
with greater heights.
Note that in either limit the temperature differential

can be of the order of the temperature increase itself.
To be concrete, consider for example a 100m high cham-
ber, filled with xenon gas at 273 ◦K. At standard grav-
ity, a 10 ◦K temperature differential results upon com-
pression sufficient to heat to 546 ◦K, assuming the com-
pression time is less than the sound time of about 1 s.
The heat diffusion time is about 109 s. Greater differen-
tials are possible with realizable centrifugal forces. Spin-
ning xenon gas at 30,000RPM in a cylinder of radius
10 cm, and then heating it (like through axial compres-
sion) from T=273 ◦K to T=1,355 ◦K, gives a tempera-

ture differential of 120 ◦K between the axis and the pe-
riphery. This example is in the range of temperatures
for low-temperature combustion engines [13]. For con-
ventional engines, the maximum temperature is about
2,200 ◦K [14], so the temperature differential will be even
greater. For the 10 cm engine, the sound time is about
0.7ms, making 30,000RPM marginally in the range of
validity of Eq. (6). The heat diffusion time (about 103 s)
is easily long enough.
Slow Compression: For compression times exceeding

the sound time, namely the case τc ≪ τs ≪ τE ≪ τH ,
one might speculate that, once a temperature differential
develops upon compression, namely after some change
in the scale height, further lateral compression accen-
tuates that differential. After all, compression heats at
each height proportionally to the local vertical tempera-
ture, so less energy will go to the cooler regions. On the
other hand, slower heating means slower rise times, which
would counteract this effect. It turns out, however, that,
except for lateral compression x(t) specifically timed to
exploit the oscillations in temperature, slower compres-
sion produces smaller temperature differentials.

To see this, note that compression slow compared to
sound time implies pressure balance as in Eq. (1); while
temperatures of lower and upper sections read as

T1,2 = T0

(

x(t)

x0

(

1±
z

L1,2

))1−γ

. (7)

Now make use of the temperature dependence and sub-
stitute it into the force balance equation Eq. (1). Then,
for small z, obtain

z̄ =
(η − 1)Mg

γT0η
(

N1

L2

1

+ N2

L2

2

) . (8)

Here η = (x(t)/x0)
1−γ , and ‘bar’ over z denotes its

smooth, averaged value, because in principal it will have
a small quiver part that can be solved for but not needed
for our analysis. From energy conservation, we see that
the compression energy went to increase of temperatures
of both sections of the gas, as well as to increase of the
potential energy of the piston. Hence, we have

Q = Mgz̄ + cvN1T0

(

x(t)

x0

(

1 +
z̄

L1

))1−γ

+

cvN2T0

(

x(t)

x0

(

1−
z̄

L2

))1−γ

.

(9)

Thus, Eq. (9) gives us an approximate relation between
the normalized horizontal displacement η and the total
amount of work Q. We can find the approximate expres-
sion for η as:

η =
Q

cvT0(N1 +N2)
+ 1. (10)
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Substitute Eq. (10) into Eq. (8) to get z̄ and then use it
to find the normalized temperature differential

∆T

T0
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(T2 − T1)

T0

=

(γ − 1)

γ

(

1
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1

L2

)

MgQ

T0Q0

(

N1

L2

1

+ N1

L2

1

) ,
(11)

where we denoted Q0 = cvT0(N1+N2). As we can see, in
the case of continuous energy deposition, the final tem-
perature difference has the same bilinear form as Eq. (6),
with half the proportionality constant. However, by fit-
ting numerical simulations of monatomic gas, we find
numerically a slightly smaller proportionality constant,
namely ∆T/T0 = 0.26Gδ. This indicates that, unless a
very specific compression time profile is taken, compress-
ing slower than the sound time gives a smaller temper-
ature differential compared to compressing faster. Also
keep in mind, that this derivation was based on the as-
sumption of small piston displacement; the result may be
different in the case of extreme values of the parameters
Q/Q0 or mgL/T0.
Centrifugal Potential: The piezo-thermal effect under

a centrifugal potential is considerably more complicated
than under a gravitational potential because the temper-
ature is coupled to the centrifugal potential. However, by
analogy to the gravitational potential case, it can be ex-
pected that the temperature differential will be bilinear
in the heat imparted through compression and the ini-
tial centrifugal potential parameter ϕ0 = mω2r2

0
/2T . To

see the analogous evolution effects, a spinning gas is sim-
ulated, with ignorable axial and azimuthal coordinates,
and with specular reflection off the perfectly cylindrical
boundary. The collision operator exploited the azimuthal
symmetry to allow for hard-sphere collisions based on ra-
dial location only. The axial compression on a time scale
short compared to a sound time is simulated by taking
vz → αvz for all particles, where z is the axial direction.
As in the gravitational case, the imparted energy quickly
becomes isotropic and thermally distributed, followed by
radial density redistribution and a radial temperature dif-
ferential. The collisions insure that the system remains
at all times very close to solid body rotation, even as the
temperature and density evolve radially. Like in the 1D
gravitational piezo-thermal effect, the temperature gra-
dient in this limit oscillates several times before the new
equilibrium is reached. In Fig. 4 the density evolution
is shown. In Fig. 5, the temperature differential forms
very much like in the case depicted in Fig. 2. As antici-
pated, the hotter region is near the axis. Note, however,
that the region close to r = 0 is very noisy, since, for
the centrifugal potential, there are very few particles on
axis. Nonetheless, it can clearly be seen that a significant
temperature differential is established.
These simulations are also consistent with the rotation-

dependent heat capacity effect [1]. Since neither temper-
ature nor angular velocity are constant under compres-
sion, the spinning parameter ϕ = mω2r2

0
/2T varies in

FIG. 4: Spinning gas normalized density profile. Black: initial
profile; red: upon heating; green: at maximum temperature
gradient; blue: new equilibrium. (Fast heating; δ = 8/3;
ϕ0 = 2.74.)

FIG. 5: Spinning gas temperature profile. Black: initial pro-
file; red: upon heating; green: at maximum temperature
gradient; blue: new equilibrium. (Fast heating; δ = 8/3;
ϕ0 = 2.74.)

time. Hence, in transiting from one equilibrium to an-
other, an average heat capacity can be estimated. Here,
the initial equilibrium has ϕ0 = 2.740 at initial temper-
ature T0 = 0.501, while the final equilibrium (after com-
pression) has ϕf = 1.470 at temperature Tf = 1.233.
The energy per particle in bringing the system from the
initial state to the final state was ∆E = 1.232 (temper-
atures and energy here are dimensionless). The addi-
tional heat-capacity term, B(ϕf ), depends on the spin-
ning parameter. It represents the energy in the spin-
ning under compression [1] and can be estimated using
(cv +B)(Tf − T0) = ∆E. For monotomic ideal gas with
cv = 1.5, we find B = 0.168, intermediate between the
equilibrium values at the initial state, B(ϕ0) = 0.305,
and at the final state, B(ϕf ) = 0.119 [1], as expected
since the spinning parameter changes under compression.
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Discussion: To summarize, a piezo-thermal effect was
identified. The fundamental associated dimensionless co-
efficient, the temperature differential over the tempera-
ture increase, was calculated in various limits. The tem-
perature gradient produced here is remarkably opposite
from that found in vortex tubes, which have the coldest
flow on axis. Although vortex tubes also exploit rotating
gas effects, the temperature differentials occur through
different mechanisms, such as by gas leaving the device
through counterpropagating flows in the axial direction,
by turbulence, or by frictional forces.
As a matter of fact, the piezo-thermal effect identi-

fied here can also produce cold flow on axis, since the
effect changes sign with expansion rather than compres-
sion. Thus, axial expansion of spinning gas, produces
the coldest point on axis. Similarly, lateral expansion of
the gas in a gravitational field produces a temperature
differential with the bottom hottest.
The piezo-thermal effect might also be run in reverse;

a temperature gradient can produce contraction. Thus,
imagine, as in Fig. 1, that the upper chamber is heated
in less than a sound time, but an equal amount of heat is
taken from the bottom chamber. Then, initially, because
the force is proportional to the total contained energy,
there is no change in the force on the horizontal walls.
However, to restore pressure balance, the gas on bottom
is compressed, so the partition is lowered, thereby re-
leasing gravitational potential energy, and thus creating
more net pressure on the horizontal walls. The reverse
effect, producing horizontal constriction, would occur by
imposing the opposite temperature differential.
It can now be appreciated how deep is the analogy to

the piezoelectric effect in the limit of compression slow
compared to the sound time. In this limit, a temperature

differential develops much as a voltage differential devel-
ops in the case of the piezoelectric effect. Moreover, ab-
sent dissipation, in both cases the effect is reversible: for
the piezo-thermal effect, it is the flow of heat that leads
to dissipation; for the piezoelectric effect it would be the
flow of charge. Finally, in both cases, the effect can also
be run in reverse. The analogy is not quite as complete
in the limit of fast compression, where the temperature
is sensitive to the precise time history; however, it might
also be surmised that a counterpart to this inertial effect
might be found within the piezoelectric effect.

What is particularly fascinating about this piezo-
thermal effect is that it is generalizable to compression
under any potential and to multiple gas constituents; we
considered here both gravitational and centrifugal poten-
tial, but for a single gas constituent. To see the possibil-
ities in more general cases, consider, for example, that,
under an electric potential, oppositely charged molecules
experience opposite forces. If the temperature equili-
bration between the species takes longer than the sound
time, then this can lead to interesting effects. Consider
then a column of plasma, in a vertical potential, such as
would occur in the region of a plasma sheath. Upon lat-
eral compression, a vertical temperature differential will
develop, but, interestingly, this differential might be op-
posite for electrons and ions. More generally yet, it is
hoped that the identification and elucidation here in spe-
cial cases in a variety of limits of the piezo-thermal effect
will lead to variations and elaborations on this effect in
a variety of physical contexts.
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