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In a two-dimensional dusty plasma composed of superparamagnetic, charged dust grains and
immersed in an external magnetic field B, the grains interact via both Yukawa and magnetic dipole-
dipole potentials. Because the grains’ magnetic dipole moments are induced by B, the dipole
moments all lie along B. When B is tilted with respect to the normal to the dust layer, the
interaction between the grains becomes anisotropic. In our previous paper (Hartmann et al., 2014,
Phys. Rev. E 89, 043102) we studied the character of waves in such a system, confined strictly to two
dimensions, without any spatial extension in the direction perpendicular to the layer. We analyzed
how the dispersion of waves depends on the direction of propagation and the relative strengths of
the magnetic dipole and Yukawa potentials. In this paper, we consider a more realistic quasi-2D
system where the grains are confined by an external potential and can undergo small oscillations
perpendicular to the layer. We analyze the effect of the strength of the confining potential on the
in-plane correlations and on the wave propagation. In addition to the in-plane compressional and
transverse waves, there now appears an out-of-plane transverse wave generated by the oscillation
of the grains in the confining potential. The theoretical approach uses the Quasi-Localized Charge
approximation paralleled by molecular dynamics simulations.

I. INTRODUCTION

Dusty plasmas contain small (micron sized) charged
solid particulates, or dust grains. Because the dust grains
can be imaged, collective processes such as the behavior
of dust waves can be observed on the kinetic particle
level. Typically the dust grains interact via a screened
Coulomb (Yukawa) interaction, where the dust charge is
screened by the background electrons and ions. When
the Yukawa potential energy is larger than the thermal
(kinetic) energy of the dust, the dust is strongly coupled
[1–3]. The behavior of dust waves in weakly or strongly
coupled dusty plasmas have been studied theoretically
and experimentally (e.g., [4–11]). Generally in terrestrial
laboratory experiments, waves in two-dimensional (2D)
layers of strongly coupled dust grains have been studied,
owing to the difficulty of generating 3D systems due to
gravitational compression.

With the advent of experiments on dusty plasmas
immersed in large magnetic fields (e.g., [12] and refs.
therein), there has been interest in collective processes in-
volving grains with magnetic properties that interact via
magnetic dipole forces in addition to Yukawa forces (e.g.,
[13–17]. Recently, we theoretically investigated wave be-
havior in the liquid phase of a 2D dusty plasma composed

of superparamagnetic grains and immersed in an external
uniform magnetic field B whose magnitude and direction
with respect to the layer could be varied ([16], to be re-
ferred to as I in the sequel). Since the grains acquire a
magnetic dipole moment along B, the magnetic dipole
moments are parallel. When B is normal to the layer,
the dipole interaction is repulsive. When B is tilted with
respect to the layer, the magnetic dipole interaction be-
comes anisotropic. It also becomes attractive along the
projection of B in the layer if the angle α between B and
the layer is smaller than a threshold angle αth, while it
is repulsive otherwise. We studied wave dispersion for
α > αth which would correspond to stable equilibrium.
It was found that two modes can propagate in the layer,
corresponding to a compressional and transverse mode
at small wavenumber k. The wave dispersions depend
on the ratio of the strengths of the magnetic dipole to
Yukawa interactions, and the direction of propagation in
the layer when α 6= 90◦.

In an experiment, one may expect that the grain layer
would be confined by an external potential normal to the
layer. In this paper, we extend our prior analysis in I
to include the effects of the confining potential and allow
the dust grains to have small oscillations perpendicular to
the layer. Similarly to the magnetic field-free quasi-2D
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Yukawa system [18], there is a new out-of-plane trans-
verse mode in this system generated by the oscillation of
the grains in the confining potential with a frequency that
is determined primarily by the strength of the confining
potential.

Our theoretical approach uses the Quasi-Localized
Charge Approximation (QLCA) reformulated to treat
dipole interactions [16, 19–21]. Paralleling the theoretical
analysis we have performed Molecular Dynamics (MD)
simulations of the system. The simulation generates fluc-
tuation spectra, which provide the basis for comparison
with the QLCA collective mode spectrum. The simula-
tions also provide the pair correlation function which is
needed as input for the QLCA calculations.

A goal of this study is to try to motivate experiments
in waves in 2D dusty plasmas where the dust interacts via
tunable anisotropic potentials. While the present system
involves paramagnetic grains, the study may also have
relevance to understanding the behavior of waves in other
systems where the particles interact via dipole interac-
tions. This may include, for example, 2D dusty plasmas
with induced electric dipole interactions (i.e., “electrorhe-
ological” dusty plasmas [22, 23]) and 2D dipolar bosonic
gases with tilted magnetic or electric dipoles [24].

The paper is organized as follows. Section II describes
the model system. Section III presents the theoretical
approach using the QLCA and discusses the MD simula-
tions. Section IV presents results for the mode dispersion
relations. Section V gives a summary.

II. MODEL SYSTEM

The model system is a quasi-2D layer in a har-
monic trap, composed of charged superparamagnetic
dust grains of uniform size and material properties in
a plasma immersed in a constant, homogeneous external
magnetic field B. Each grain has a mass md, a negative
electric charge Q and an induced magnetic dipole mo-
ment M along B. The dust areal density in the layer
is given as nd = 1/πa2, where a is the Wigner-Seitz ra-
dius. It is assumed that the grains are strongly coupled
in the liquid phase. The dust layer is centered in the
x − y plane, with a very small but finite width in the
z-direction. The magnetic field makes an angle α with
respect to the layer. Without loss of generality, we take
the x-axis to be the direction of the projection of B in the
plane, so that the magnetic moment of each dust grain
lies in the x−z plane, as shown in Fig. 1. In our analysis,
we will consider waves that propagate in the x− y plane,
with the direction of propagation being defined by the
angle χ between the wavevector k and the x-axis.

The grains interact via Yukawa and magnetic dipole-
dipole potentials. The Yukawa interaction energy be-
tween two grains with charge Q separated by a distance
r is

φY =
Q2

r
e−r/λD , (1)

k
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FIG. 1. (a) The dust layer is centered in the x − y plane,
and the magnetic moment M of each grain lies in the x − z
plane, at an angle α with respect to the x-axis. (b) The angle
between the wavevector, which lies in the x−y plane, and the
x-axis is χ.

where λD is the plasma Debye screening length. The
magnetic dipole-dipole interaction energy is [13, 25]

φM =
MµMν

r3

(
δµν − 3

µν

r2

)
, (2)

where µ, ν = x, y, z. It is assumed that the only effect of
the magnetic field on the dust grains is via the induced
dipole-dipole force, that is, that the grain motion is not
affected by Lorentz forces.

The Yukawa force between the like-charged particles,

FY (r) = −∂φY
∂r

r

r
=
Q2

r2
e−r/λD

(
1 +

r

λD

)
r

r
, (3)

is always repulsive. However, the magnetic dipole-dipole
force for the system shown in Fig. 1,

FM (r) =
3M2

r4

[
r

r

(
1− 5

(x cosα+ z sinα)2

r2

)
+ 2m

(x cosα + z sinα)

r

]
. (4)

can be repulsive or attractive depending on the relative
positions and orientations of the grains. In (4), the vector
m = (cosα, 0, sinα) is the unit vector pointing along the
direction of the dipole.

In addition to these two forces, it is assumed that the
dust layer is confined in the z-direction by a harmonic po-
tential whose strength is characterized by the parameter
t,

Vz =
t2z2

2
ω2
pdmd , (5)

leading to the confinement force

FCz = −t2ω2
pdmdz , (6)

where ωpd is the dust plasma frequency, given by ω2
pd =

2πQ2nd/mda.
The effect of the confining potential is to counteract

the tendency of the grains to escape from the layer. In
addition, the magnetic dipole-dipole force can become at-
tractive for certain combinations of α and displacements
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in the z-direction, resulting in possible instabilities. In
this analysis we wish to avoid such situations, and will
only consider the parameter space where we expect the
magnetic dipole-dipole force would be repulsive.

To get an idea of this parameter space, we consider
the system shown in Fig. 1 in cylindrical co-ordinates
where x = ρ cos θ and y = ρ sin θ, where θ is the polar
angle in the dust layer plane, measured from the x-axis.
We expect FM would be softest in the x − z plane (i.e.,
θ = 0) since this is the plane of M. When r is purely in
the x-direction, the x component of the magnetic dipole
force is FMx = (3M2/r4)[1 − 3 cos2 α]. For α smaller

than a threshold angle αth = cos−1(1/
√

3) ≈ 54.74o,
the magnetic dipole force becomes attractive in this di-
rection. Thus, as in paper I we restrict the analysis
to magnetic tilt angles larger than αth. Now, when
r has a small component z (� x) in the z-direction,
we have FMx ≈ (3M2/r4)[(1 − 5f2) + 2f cosα], where
f ≈ cosα + (z/r) sinα. This leads to a condition on
z/r in order that FMx remains repulsive. For example,
when α = 60o, the condition for FMx > 0 is roughly that
z/r < .067. It may be noted that when z/r is small, the
z-component of the magnetic dipole force FMz is repul-
sive and tends to increase in magnitude as α decreases
toward αth. The requirement that the particle displace-
ment in the z-direction is small compared to the spacing
in x − y plane may be controlled by the strength t2 of
the confining potential, as will be discussed in the next
section.

The model system is thus described by a set of pa-
rameters that characterize the Yukawa interaction, the
magnetic dipole interaction, and the confining potential.
The Yukawa interaction is characterized by the Coulomb
coupling parameter Γ = Q2/akBTd and a screening pa-
rameter κ = a/λD (here kB is the Boltzmann constant,
and kBTd is the thermal or kinetic energy of the grains).
We use the quantity η = M/QλD as a measure of the
strength of the magnetic dipole-dipole compared to the
electrostatic Yukawa interaction. Finally, the parameter
t2 characterizes the strength of the confining potential.

III. THEORETICAL/COMPUTATIONAL
APPROACH

The theoretical methodology uses the QLCA combined
with MD simulations, which has been successfully applied
to describe waves in various strongly coupled Yukawa sys-
tems in the liquid phase [26, 27], including recently waves
in 2D superparamagnetic dusty plasma liquids [16]. Here,
we use a reformulated QLCA which can treat dipole in-
teractions [19–21]. For our system, we take the mag-
netic dipole-dipole and Yukawa interactions to be addi-
tive. We allow the grains to have small oscillations in the
z-direction under the influence of the confining potential
and the forces originating from the other particles in the
layer.

The QLCA mode dispersion relations are given by (see

I) ∣∣∣∣∣∣
ω2 − Cxx Cxy Cxz
Cyx ω2 − Cyy Cyz
Czx Czy ω2 − Czz − t2ω2

pd

∣∣∣∣∣∣ = 0 , (7)

where Cµν(k) is the QLCA dynamical matrix,

Cµν(k) = − n

md

∫
d2r dθ g(r, θ)[exp(ik · r)− 1]∂µ∂νφTot .

(8)
Here, g(r, θ) is the equilibrium 2D pair correlation func-
tion between the particles in the layer projected onto the
center plane, and φTot is the sum of the Yukawa potential
(1) and the magnetic dipole-dipole interaction potential
(2). The term t2ω2

pd in the zz element of the matrix in (7)
comes from harmonic motion of the dust in the confining
potential, (see eq. 6), which leads to what we will call a
“trap frequency” due to the confining potential, given by
ωt = tωpd.

In the theoretical treatment it is assumed that the vec-
tor r between grains in the dust layer of finite width is
well approximated by its projection onto the center plane
and is given by r = ρ(cos θ, sin θ, 0). That is, we as-
sume that the dust layer is of negligible thickness and
that the precise structure of the density profile along the
z-direction would not affect the dispersion. In a more
faithful model one would retain r as a 3-dimensional vec-
tor and would integrate along the z-direction, using the
measured density profile (cf. Fig. 10). Due to the small-
ness of the width of the layer, the approximation we use
should not not lead to a significant error in the calcula-
tion.

We write the components of the dynamical matrix us-
ing the the quantities k̄ = ka, r̄ = r/a (with µ̄, ν̄ = x̄, ȳ
as discussed in the previous paragraph), κ̄ = a/λD and
η = M/QλD. With the angle between k and the x-axis
taken as χ, the angle between k and r is given by (χ−θ).
Then Cµν , which is a function of parameters α, Γ, κ, η
and t, can be written as

Cµν(k) =
ω2
p

2π

∫
dθ

dr̄

r̄2
g(r̄, θ)[exp(ik̄r̄ cos(χ− θ))− 1]

×
{

exp(−κ̄r̄)
[
(1 + κ̄r̄)

(
δµν − 3

µ̄ν̄

r̄2

)
− µ̄ν̄

r̄2
κ̄2r̄2

]
+

3η2

κ̄2r̄2

[(
δµν − 5

µ̄ν̄

r̄2

)
− 5 cos2 α cos2 θ

(
δµν − 7

µ̄ν̄

r̄2

)
−10 cosα cos θ

(
mµ

ν̄

r̄
+mν

µ̄

r̄

)
+ 2mµmν

]}
. (9)

The elements of the dynamical matrix Cµν are given ex-
plicitly in the Appendix.

We will solve (7) using (9) to obtain the QLCA mode
dispersions for arbitrary wavenumber k for waves propa-
gating in the x− y plane. To evaluate (9) requires input
of the equilibrium pair correlation function g(r, θ) which
is obtained by MD simulations.

Our molecular dynamics code is an extended ver-
sion of the code that we have used for our studies of
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two-dimensional superparamagnetic dusty plasma liquids
[16]. Here we also simulate the motion ofN = 5000 point-
like particles within a square box (with a side length of
approximately L = 125 a) with periodic boundary condi-
tions. Now, small displacements of the particles in the z
direction are also allowed, but constrained by a parabolic
confinement potential. The spatial fast decay of the in-
teraction forces makes it possible to introduce a cutoff
distance, beyond which the interaction of particle pairs
can be neglected when the forces acting on the parti-
cles are calculated. For our conditions rcutoff

∼= 30 a.
The integration of the equations of motion is performed
with the velocity-Verlet scheme. At the initialization of
the simulations the positions of the particles are set ran-
domly around the center plane, but according to a canon-
ical distribution function for the system in the confining
potential along the z-direction, corresponding to a spec-
ified system temperature. The initial velocity vectors
are sampled from a Maxwellian distribution correspond-
ing to the same system temperature. During the first
phase of the simulations particle velocities are rescaled
in each time step, in order to reach the desired tempera-
ture. This procedure is stopped before the data collection
takes place, where the stability of the simulation is con-
firmed by monitoring the temperature as a function of
time. In the measurement phase of the simulation data
are collected for the pair correlation function and for the
spatial Fourier components of the microscopic currents in
different directions in the x−y plane, as well as in the per-
pendicular, z-direction, which yield, after an additional
Fourier transform in the time domain, the spectra of the
current-current correlations.

Due to the peculiarities of the magnetic dipole interac-
tions and to the excursions of the particles from the x−y
plane no absolute stability of the system is guaranteed as
certain particle arrangements result in strong attraction
and diverging forces between certain pairs. In reality a
softening of the potential at small distances, or a finite
size for the particles would prevent the development of
this instability. Since neither of these features is intro-
duced in the model, the simulation cannot handle these
cases. At reasonably strong confinement potentials, how-
ever, the occurrence of such scenarios is very rare, and
long times can be simulated without issues of stability.

IV. RESULTS

In this section we present results for the wave disper-
sion relations using the QLCA and compare the QLCA
results with the mode dispersions obtained from the fluc-
tuation spectra generated by the simulations.

Figure 2 shows polar diagrams of the equilibrium 2D
pair correlation functions g(r̄, θ) along with the corre-
sponding g(r̄) in the x, y and diagonal directions for a
dust layer with κ̄ = 1, Γ = 100, α = 60◦ and combina-
tions of η and the trapping frequency parameter t. Since
η is finite, the pair correlation functions are anisotropic

FIG. 2. (Color online) Equilibrium 2D pair correlation func-
tion g(r̄, θ) in the dust layer and corresponding g(r̄) in the
x-direction (purple, solid curve), the θ = 45◦ diagonal di-
rection (green, dashed curve) and y-direction (blue, dotted
curve). Parameters are κ̄ = 1, Γ = 100 and α = 60◦, with
(a-b) η = 0.2, t = 1 (c-d) η = 0.2, t = 2, (e-f) η = 0.4, t = 2
and (g-h) η = 0.7, t = 6. Note the remarkable weakening of
correlations along the diagonal direction.

in the plane, though only mildly so for small η = 0.2 in
Figs. 2(a-b) and 2(c-d). As can be seen by comparing
the latter two sets of figures, there is very little effect
on g(r̄, θ) due to the confining potential. The effect of
increasing η can be seen by comparing Figs. 2(c-d) and
2(e-f) at fixed t, which shows that as η increases, the to-
tal interaction potential becomes more anisotropic in the
plane. Because the magnetic dipole interaction is most



5

FIG. 3. (Color online) Wave dispersions for the in-plane longitudinal and out-of-plane transverse modes, for several propagation
angles for a system with Γ = 50, κ = 1, α = 60o, η = 0.2. The trap frequency is ωt = ωpd in (a-c) and ωt = 0.9ωpd in (d-f).
The color maps are the in-plane longitudinal and out-of-plane transverse fluctuation spectra generated by the simulations. The
curves are the QLCA wave dispersion relations for the corresponding modes obtained from eq. (7) as a function of ka for these
parameters. (a, d) χ = 0◦, (b, e) χ = 30◦, (c, f) χ = 90◦. Note the hybridization of the two modes for the weaker trapping
frequency.
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FIG. 4. (Color online) Wave dispersion for the transverse
in-plane mode. The color map is the in-plane transverse fluc-
tuation spectrum generated by the simulations for a system
with the same parameters as in Fig. 3(a). The curve is the
QLCA wave dispersion relation for this mode obtained from
eq. (7) as a function of ka.
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FIG. 5. Polarization of the three QLCA eigenmodes ob-
tained from diagonalizing (9). Parameters are the same as
in Fig. 3(a). Green corresponds to the out-of-plane mode
(ω1), red to the in-plane longitudinal mode (ω2) and blue to
the in-plane transverse mode (ω3). (a) The 3 QLCA modes
vs. ka. Polarization vectors of the 3 modes at (b) ka = 0.1,
(c) ka = 1.9 and (d) ka = 4.0.

repulsive in the y-direction, the dust particle spacing in-
creases in this direction. Since the dust areal density
is constant, the dust particles rearrange themselves so
that spacings in the x-direction decrease somewhat in
the η = 0.4 case compared to the η = 0.2 case. This ef-
fect is more pronounced in Figs. 2(g-h) which show a case
with η = 0.7, with t = 6 the structure here has a ten-
dency to develop stripe-like density distributions along
the x direction, with a remarkable emptying effect along
the diagonal. (This behavior may be compared with the
similar behavior exhibited by the 2D layer [I, Fig. 2]).

With the dust grains allowed to have small oscillations
perpendicular to the dust layer under the influence of the
confining potential, a new out-of-plane polarized trans-
verse mode appears, in addition the two in-plane modes
considered in our prior paper I. The out-of-plane mode

has been analyzed for a quasi-2D pure Yukawa liquid by
Donko et al. [18]. This mode has a finite frequency at
k = 0, which we refer to as the trap frequency ωt = tωpd,
which corresponds the entire layer oscillating in unison
in the potential well [26]. In the k →∞ limit, the mode
frequency becomes the Einstein frequency for this polar-
ization, i.e., the oscillation frequency of a single parti-
cle in the frozen environment of the rest of the system.
The Einstein frequency is always lower than the trap fre-
quency: the difference is due to the depolarizing effect of
the grains (i.e., the grains generate a field which opposes
the trapping field). Our earlier comment concerning the
density profile along z should be, however, kept in mind:
the depolarization effect predicted here would be altered
by a self-consistent calculation based on the measured
density profiles (Fig. 10). The following will consider the
behavior of the three modes in this system.

Figure 3 shows the behavior of the wave dispersions
as a function of propagation angle χ, for an anisotropic
system with α = 60◦, Γ = 50, κ = 1, η = 0.2, and
trap frequency ωt = ωpd (top row) and ωt = 0.9ωpd (bot-
tom row). In each figure, the upper curve corresponds
to the QLCA out-of-plane transverse mode, while the
lower curve corresponds to the QLCA in-plane longitu-
dinal mode. The QLCA modes are superimposed on the
longitudinal in-plane and transverse out-of-plane fluctu-
ation spectra generated by the simulations. Figure 4
shows just the transverse QLCA in-plane mode super-
imposed on the transverse in-plane fluctuation spectra
generated by the simulations for the same parameters as
in Fig. 3(a).

As can be seen from Fig. 3, there is a tendency for the
hybridization of the out-of-plane transverse wave with
the in-plane longitudinal wave at a certain interval of
ka values as the predicted dispersion curves approach
each other. In fact, the simulation data show a complete
merging of the two modes in this interval. Because the
maximum frequency of the longitudinal mode increases
as χ increases (due to an increase of strength of the re-
pulsive magnetic dipole interaction in the plane, see I),
this effect becomes more pronounced at χ = 90◦.

The eigenvectors of the dynamical matrix Cµν deter-
mine the polarization of the 3 modes. Figure 5 shows
the corresponding polarization vectors for the parame-
ters of Fig. 3(a), for propagation angle χ = 0◦, at par-
ticular wavenumbers ka. As pointed out above, in the
hybridization region at ka = 1.9, the polarizations of the
out-of-plane (ω1) and longitudinal in-plane (ω2) modes
become mixed, with polarization vector components in
both x and z-directions. On the other hand, the trans-
verse in-plane (ω3) mode remains largely transverse with
polarization vector in the y-direction. As discussed in our
prior paper I, the polarizations of the in-plane modes can
also become mixed at larger ka where the frequencies of
these modes approach each other, although in general,
the respective longitudinal and transverse polarizations
prevail for small k [28, 29].

Figure 6 shows how the relative strength of the mag-
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FIG. 6. (Color online) Wave dispersions for the in-plane longitudinal and out-of-plane transverse modes, showing the effect of
the magnetic field, with η = 0 (a-c) and η = 1 (d-f) for a system with parameters Γ = 25, κ = 1, α = 90◦, χ = 0◦, and trap
frequency ωt = 10ωpd. The color maps in (a) and (d) are the in-plane longitudinal and out-of-plane transverse fluctuation
spectra generated by the simulations, and the curves are the QLCA wave dispersion relations for the corresponding modes
obtained from eq. (7) as a function of ka for these parameters. The color maps in (b) and (e) [(c) and (f)] are the in-plane
longitudinal [transverse] fluctuation spectra, and the curves are the QLCA dispersion relations for the corresponding modes.
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FIG. 7. (Color online) Equilibrium pair correlation functions
showing the effect of the magnetic field, for the same param-
eters as in Fig. 6, and for (a) η = 0 and (b) η = 1.

netic dipole interaction, characterized by η, affects the
mode dispersions for a system with Γ = 25, κ = 1,
α = 90◦, χ = 0◦ and trap frequency ωt = 10ωpd.
Figures 6(a-c) show results for η = 0 corresponding to
the Yukawa liquid, while Figures 6(d-f) show results for
η = 1. In Figure 6(a) and 6(d), the QLCA curves for the
corresponding modes are superimposed on the fluctua-
tion spectra for the in-plane longitudinal mode and the
out-of-plane transverse mode generated by the simula-
tions. The QLCA dispersion curves for the correspond-
ing in-plane polarized modes are superimposed on the
fluctuation spectra for the in-plane longitudinal mode in
Fig. 6(b) and 6(e), and the in-plane transverse mode in
Fig. 6(c) and 6(f). It can be seen from Fig. 6 that for η
different from zero, the maximum frequencies of the in-
plane longitudinal and transverse waves increase because
the magnitude of the total repulsive inter-grain potential
increases. In addition, the difference in the maximum
frequency and first dip in the dispersion of the in-plane
longitudinal mode is more pronounced for finite η. The
effect of the magnetic dipole interaction is also reflected
in the behavior of the pair correlation function shown
in Figure 7, which shows a stronger localization of the
particles owing to the stronger repulsive potential as η
increases.

A comparison of the dispersion curves in Figures 8 and
9 illustrate how the tilt angle α of the external magnetic
field influences the wave dispersion relations in a sys-
tem with Γ = 25, κ = 1, η = 1, and trap frequency

FIG. 8. (Color online) Wave dispersions for the in-plane longi-
tudinal and out-of-plane transverse modes, showing the effect
of a strong trap, with trap frequency ωt = 20ωpd, for a sys-
tem with parameters Γ = 25, κ = 1, α = 90◦, χ = 0◦, and
η = 1. The color maps in (a) are the in-plane longitudinal and
out-of-plane transverse fluctuation spectra generated by the
simulations, and the curves are the QLCA wave dispersion
relations for the corresponding modes obtained from eq. (7)
as a function of ka for these parameters. The color map in
(b) is the in-plane longitudinal fluctuation spectra, and the
curve is the QLCA dispersion relation for this mode.

ωt = 20ωpd. Figure 8 shows results for α = 90◦ while
Figure 9 shows results for α = 60◦. Since the mode dis-
persions do not depend on the propagation angle χ when
α = 90◦, only the case of χ = 0◦ is shown in Fig. 8.
Figure 8(a) shows QLCA curves for the corresponding
modes superimposed on the fluctuation spectra for the
in-plane longitudinal mode and the out-of-plane trans-
verse mode generated by the simulations. Figure 8(b)
shows the QLCA dispersion curves for the in-plane lon-
gitudinal mode superimposed on the fluctuation spectra.
Figure 9 shows similar mode dispersion graph formats as
in Fig. 8, but for several different propagation angles for
the anisotropic case when α = 60◦.

Comparing Fig. 8(b) with Fig. 9(b) for χ = 0◦, it
can be seen that the maximum frequency of the in-plane
modes propagating in this direction decreases as α de-
creases, which may be due to the softening of the in-
teraction in the x-direction as α decreases. The maxi-
mum frequency of the modes also varies with χ for the
anisotropic case shown in Fig. 9. Here the maximum fre-
quency of the in-plane longitudinal (transverse) mode de-
creases (increases) as χ increases. This effect was shown
also in Fig. 5 of our previous paper [16] for a purely 2D
system with the same parameters. As suggested in the
latter paper, owing to the reduced inter-grain spacing in
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FIG. 9. (Color online) Wave dispersions for the in-plane longitudinal and out-of-plane transverse modes at several angles of
propagation for a system in a strong trap (cf. Fig. 3) with parameters Γ = 25, κ = 1, α = 60◦, trap frequency ωt = 20ωpd and
η = 1. The color maps in (a-d) are the in-plane longitudinal and out-of-plane transverse fluctuation spectra generated by the
simulations, and the curves are the QLCA wave dispersion relations for the corresponding modes obtained from eq. (7) as a
function of ka for these parameters. The color maps in (e-h) are the in-plane longitudinal fluctuation spectra, and the curves
are the QLCA dispersion relations for the corresponding modes. Propagation angles χ = 0◦ (a,e), χ = 30◦ (b,f), χ = 60◦ (c,g),
and χ = 90◦ (d,h).
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FIG. 10. (Color online) The density distribution of dust
grains along the z-direction from the MD simulations, show-
ing the effect of the magnetic field, for a system with Γ = 25,
κ = 1. In (a) the trap frequency is 20ωpd, η = 1 for α = 90◦

and α = 60◦, and η = 0. In (b) the trap frequency is 2ωpd,
η = 0.2 for α = 90◦ and α = 60◦, and η = 0. Note the dra-
matic sharpening of the distribution in the case of a strong
trap at the tilt angle α = 60◦.

the x direction and increased spacing in the y direction
for α = 60◦ [see e.g., Fig. 2(h)] the second derivative of
the total interaction potential φTot can be larger in the
x direction than in the y direction. Since the restoring
force acting on a particle for the longitudinal mode is
proportional to the second derivative of φTot along the
direction of propagation, it is larger for χ = 0. Thus the
maximum frequency of the longitudinal mode decreases
as χ increases. On the other hand, the restoring force
acting on a particle for the in-plane transverse mode is
proportional to the second derivative of φTot in the in-
plane direction transverse to the propagation direction,
and would be larger for χ = 90◦. Thus the maximum
frequency of the in-plane transverse mode increases as χ
increases.

Figure 10 shows the measured density profiles along
the z-direction. When the trap frequency is large, as in
Figs. 8 and 9, the dust layer is very thin in the z direc-
tion as shown in Figure 10(a). In this case, we would
expect that the 2D and quasi-2D wave dispersions would
be similar. However, we find in comparing Fig. 9 with
Fig. 5 in I for a 2D system with the same parameters,
there appear to be some small differences in the mode
dispersion, more prominently in the χ = 30◦ case. These
differences may be related to the tendency of the trap
potential to affect g(r̄, θ) slightly as mentioned in rela-
tion to Fig. 2. It can be seen in Fig. 10(a) that compared
to the magnetic field free case (η = 0), for η 6= 0 the

distribution sharpens, as expected, since the dipole in-
teraction softens the repulsive force along z. This effect
is even more pronounced for α = 60◦ where the thickness
of the dust layer is significantly smaller than for α = 90◦.
We speculate that this may occur because the excursion
of a particle in the z direction can soften FMx more when
α = 60◦ than when α = 90◦. This may limit the excur-
sion in z more for α = 60◦ in order that FMx remain
positive. However further work is needed to investigate
this effect. We note from Fig. 10(b) that when the trap
frequency and η are small, it appears that the dust layer
thickness has very little dependence on α.

V. SUMMARY AND DISCUSSION

We have investigated the behavior of a quasi-2D sys-
tem of particles in a harmonic potential trap and inter-
acting via Yukawa and magnetic dipole potentials. The
Yukawa potential is commonly used for the isotropic
interaction potential between charged dust grains (al-
though modifications at long range have been measured
in certain experiments [30]), while the magnetic dipole
potential results from induced magnetic dipole moments
on the grains. The model system comprises a layer of
charged superparamagnetic grains in a plasma in an ex-
ternal, uniform magnetic field B and confined by a po-
tential in the direction perpendicular to the layer. The
induced magnetic dipole moments of the grains lie along
B, and as the magnitude and direction of B is varied and
B becomes tilted with respect to the layer, the interac-
tion between the grains becomes anisotropic. There is a
threshold tilt angle below which the interaction between
the grains becomes attractive: the studies in this paper
are confined to angles α between B and the layer which
are above this threshold angle. Furthermore, the studies
in this paper are for confining potentials large enough
to constrain the interaction between grains to remain re-
pulsive even outside the layer: this allows the system
to remain quasi-stable. By quasi-stability we mean that
within the timespan of the simulation (several thousand
plasma oscillation times) a “head-to-tail” collapse does
not occur. (Of course one cannot guarantee that at much
longer time scales such a collapse would not occur). The
equilibrium 2D pair correlation functions are obtained
from MD simulations, and they show more pronounced
anisotropic structures as the magnetic field strength and
tilt angle are increased, culminating in a stripe-like den-
sity distribution. In order to study wave propagation we
apply as a theoretical approach the reformulated QLCA
that can treat dipole interactions; the theoretical analy-
sis is paralleled by MD simulations. The QLCA requires
input of the pair correlation functions which are also pro-
vided by the MD simulations. The QLCA dispersion
relations show reasonable agreement with the dispersion
relations obtained from the fluctuation spectra generated
by the MD simulations.

With the grains having small displacements in the z-
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direction under the influence of a confining potential, an
out-of-plane transverse mode arises, in addition to the in-
plane longitudinal and transverse modes already found
for a 2D system in our prior paper I. This mode has its
analog in a quasi-2D Yukawa liquid [26]. The mode has
a finite frequency, the trap frequency, at k = 0 which
is determined by the strength of the confining potential.
For k → ∞ it goes to the Einstein frequency, which is
lower than the trap frequency: the difference is due to
the depolarizing effect of the grains. In general, the dis-
persion properties of the in-plane polarized longitudinal
and transverse waves appear to be similar to those ob-
tained for a 2D system in paper I. The wave dispersion
relations depend on the angle of propagation, and the
degree of anisotropy characterized by the magnetic tilt
angle α and the relative strength of the magnetic dipole
to Yukawa interaction characterized by η. For a fixed
angle of propagation χ, both the sound speed at small k
and the maximum frequency of the longitudinal in-plane
mode increase as η increases, reflecting the fact that the
magnitude of the total repulsive interaction potential in-
creases as η increases, so the mode becomes harder.

The transverse out-of-plane mode can affect the po-
larization properties of the longitudinal in-plane mode
at specific ka intervals where the frequencies of the two
modes approach each other and the two modes hybridize.
This can occur generally when the trap frequency is rela-
tively low, on the order of ωpd. Low trap frequencies,
however, allow only systems having smaller η values,
because it appears that systems with large η can only
be quasi-stably attained with large confining potentials.
Thus, in an experiment with large η, one might expect
to observe a correspondingly large frequency difference
between the out-of-plane polarized transverse wave and
the two in-plane polarized modes.

We have examined finally the effect of the magnetic
field on the density distribution along the direction per-
pendicular to the layer. Compared to the magnetic field-
free distribution, at 90◦ tilt angle the added dipole inter-
action seems to result in a slight narrowing of the distri-
bution for a system with large η and large trap frequency.
However, as the tilt angle is reduced to 60◦ a dramatic
further narrowing takes place. More work is needed to
understand the details of this phenomenon.

If experiments on such 2D paramagnetic dusty plasma
systems could be done, that could also have implications
for the understanding the behavior of waves in other 2D
systems where the particles interact via anisotropic po-
tentials. This includes 2D electrorheological dusty plas-
mas [23], as well as 2D dipolar bosonic gases with tilted
dipoles [24]. Because a discussion of possible experi-
mental parameters was given in I, here we briefly sum-
marize some points and refer the reader to I for more
details. For a grain of radius R and magnetic perme-
ability µ, the induced magnetic dipole moment is [14]
M = R3B(µ− 1)/(µ+ 2). Then the quantity η is

η =
M

QλD
∼ 0.03

R2(µm)B(G)

|φs(V)|λD(µm)

(
µ− 1

µ+ 2

)
.

From this expression, it can be surmised that in order
to attain a particular value of η, the required value of
B decreases as R gets larger and as the magnitude of
the grains’ surface potential φs gets smaller. Thus for
example, in a thermal plasma with low temperature
Te ∼ Ti ∼ 0.2 eV and density ni ∼ 4 × 108 cm−3, and
for a system of grains with R ∼ 5 µm and µ = 4, η
can be ∼ 0.5 for a relatively low magnetic field strength
of B ∼ 100 G. Such a system may be better suited to
microgravity conditions, however, owing to challenges
with levitating grains with small charge-to-mass ratios
in terrestrial experiments. For a terrestrial experiment,
using the same dust parameters, but assuming an rf or
dc plasma with Te ∼ 2 eV and ni ∼ 109 cm−3, and
taking |φs| ∼ 5 V and λD ∼ λDe in the sheath, we
find that η ∼ 0.5 implies B ∼ 2000 G. This value of B
is attainable in current experimental devices (see e.g.
[12]) but there could be complications associated with
magnetized ions, such as forces on the dust arising from
ion flows (e.g. [31]), as well as effects on charging and
shielding (e.g., [32]). In addition, while we have assumed
uniform B, the agglomeration of dust grains has been
observed in experiments using nonuniform B to levitate
the dust [13]. In this paper we have assumed a confining
potential (5) to counteract the tendency of the grains to
escape from the layer.
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Appendix: Elements of dynamical matrix

These are the elements of the dynamical matrix in the
model geometry used in this paper.

Cµν =
ω2
p

2π

∫
dθ
dr̄

r̄2
g(r̄, θ)[exp(ik̄r̄ cos(χ− θ))− 1]Φµν .

Here

Φxx = exp(−κ̄r̄)
[
(1 + κ̄r̄)

(
1− 3 cos2 θ

)
− cos2 θκ̄2r̄2

]
+

3η2

κ̄2r̄2

[
1− 5 cos2 θ + cos2 α(2− 25 cos2 θ + 35 cos4 θ)

]
,

Φyy = exp(−κ̄r̄)
[
(1 + κ̄r̄)

(
1− 3 sin2 θ

)
− sin2 θκ̄2r̄2

]
+

3η2

κ̄2r̄2

[
1− 5 sin2 θ − cos2 α cos2 θ(5− 35 sin2 θ)

]
,
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Φxy = Φyx =

exp(−κ̄r̄)
[
(1 + κ̄r̄) (−3 cos θ sin θ)− cos θ sin θ κ̄2r̄2

]
+

3η2

κ̄2r̄2

[
cos θ sin θ(−5− cos2 α(10− 35 cos2 θ))

]
,

Φzz = exp(−κ̄r̄) [(1 + κ̄r̄)]

+
3η2

κ̄2r̄2

[
1− 5 cos2 α cos2 θ + 2 sin2 α

]
,

Φzx = Φxz =
3η2

κ̄2r̄2

[
sinα cosα(2− 10 cos2 θ)

]
,

Φzy = Φyz =
3η2

κ̄2r̄2
[−10 sinα cosα sin θ cos θ] .
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