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The confinement provided by a glass box is proving ideal for the formation of vertically aligned 

structures and a convenient method for controlling the number of dust particles comprising these dust 
structures, as well as their size and shape. In this paper, the electronic confinement of the glass box is 
mapped and the particle interactions between the particle pairs inside the glass box are measured. The 
ion-wake field is shown to exist within the glass box and its vertical and horizontal extent are 
measured. 
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I Introduction: 
A dusty plasma [1] is best described as a weakly ionized gas containing electrons, ions, neutral atoms 
and small solid particles, usually consisting of micron-size spheres. Due to the high thermal speed of the 
electrons, these micro particles are usually negatively charged [2, 3]. The charge on any single particle 
can vary from a few hundred to several million elementary charges [4], depending on particle size and 
plasma conditions. In an experimental setting on the earth, the particles can be levitated against the 
force of gravity in the plasma sheath near the powered electrode by a self-induced electric field. 
Depending on the external confinement, one-dimensional (1D) to three-dimensional (3D) dust 
structures can be formed [5-8]. Placing a glass box on the lower electrode is a common method for 
providing such confinement and is used to create dust clusters with different numbers of particles, from 
one to several dozens, by tuning the RF power. Once established, transitions from 1D to 2D zigzag, 2D 
to 3D helical structures and helical structures to layered structures [9] are easily obtained.  

 
Particles also interact directly with one another through screened Coulomb repulsion and indirectly by 
altering the ion flow, which determines the plasma screening and ion-wake field. The ion-wake effect 
has been studied both theoretically [10-17] and experimentally [18-21]. Research has shown that 
charged dust particles tend to align with the ion flow [11, 14]. Upstream particles focus the ions at a 
point beneath them, and downstream particles are attracted by the positive space charge region created 
due to this ion focusing. A nonreciprocal interaction [10, 20] between the upstream and downstream 
particles is a signature property of the ion-wake effect. In this case, upstream particles dominate the 
motion of downstream particles, while the reverse effect is so small that it can often be considered 
negligible. Recent simulation studies [22] also indicate that the downstream particles can become 
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discharged by this interaction between the upstream and downstream particles.  
 
As noted, a glass box confinement has proven ideal for the formation of vertically aligned 1D, 2D and 
3D structures, which are difficult to obtain under other types of confinement. However, no study of the 
role the ion-wake effect plays within such a confinement or whether the ion-wake field exists at all in 
this environment has been conducted to date. Given the strong confinement produced by the glass box 
and the direct interaction between the particles, an investigation of the ion-wake effect has long been 
ignored, leaving a proper explanation of the underlying physics sorely needed.  
 
In this paper, under the confinement created by a glass box, the interaction between the particles and 
the ion-wake field as it pertains to vertically aligned single particle chains is examined. Section II 
provides a short description of the experimental setup employed, while Section III shows data collected 
mapping both the accelerations provided by the confining forces within the glass box as well as the 
mutual particle accelerations as a function of the particles’ locations relative to each other. A 
discussion of this data, which shows the existence of the wake field，is given in Section IV, with 
conclusions presented in Section V. 
         

II Experimental Setup 
The experiment described here was performed in a modified gaseous electronics conference (GEC) 
radio-frequency (RF) cell, filled with argon at a pressure of 6.67 ±0.10 Pa. An RF electrical field was 
produced by a pair of capacitively-coupled electrodes 8 cm in diameter, situated one above the other, and 
separated by a distance of 2.54 cm. The upper electrode was grounded, while the lower electrode was 
powered by a RF generator at a constant frequency of 13.56 MHz. The amplitude of the input RF signal 
was 2 W. An open- ended glass box of dimension 1.27 cm × 1.07 cm × 1.07 cm (height × width × length) 
with 2 mm wall thickness was placed at the center of the lower electrode. Melamine formaldehyde 
spheres having a manufacturer-specified mass density of 1.514 g/cm3 and diameter of 12.00 ± 0.09 μm 
were used. A dust dropper was employed to introduce the particles into the glass box, where they were 
illuminated by a vertical sheet of laser light. The particles’ positions were recorded at 500 or 1200 frames 
per second (fps) using a side-mounted, high-speed CCD (Photron) camera and a microscope lens. In 
order to manipulate isolated particles, optical radiation from a Coherent Verdi V-5 laser was introduced 
into the chamber using an adjustable optical system. The power supplied to the laser was user controlled 
and held between 0.01 ~ 1.50 W. In previous experiments conducted at CASPER [33], an electron 
temperature of 5 eV and a plasma bulk density of 2×1015 m-3 was measured under the same operating 
conditions. 
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Fig.1 Experimental setup. The top electrode is grounded while the bottom electrode is powered. The separation distance 

between the electrodes is 2.54 cm. The open-ended glass box shown has outer dimensions of 1.27 cm × 1.07 cm × 1.07cm. 

A Coherent VERDI V-5 laser is employed to perturb individual particles, the motion of which is then captured using a 

Photron CCD high speed camera (side view). 

 

III Data Collection and Results  
1. Confinement 
It is difficult to measure the particle-particle interaction inside a glass box due to the unknown nature of 
the confinement. Since dust particles are levitated in either the sheath or pre-sheath region within the 
small volume of the glass box, common diagnostic methods cannot in general be employed due to the 
perturbations they create. For example, introducing a probe into this environment changes both the 
electric field inside the box as well as the charge on the dust particles. As such, only techniques 
producing very small perturbations may be employed to measure the plasma environment around the 
dust particles. In this case, a free-falling-particle technique was applied to measure the confinement 
produced by the glass box. In this technique, the dust particle itself is used as a probe to measure the 
forces affecting the particles and create a map of the overall confinement. In our experiment, a few 
hundreds of dust particles were dropped from the dust dropper located above the upper electrode into 
the glass box, with individual particle motion recorded at 1200 fps. A MATLAB-based algorithm [34] 
for particle detection was employed to identify the particles in each frame of the data collected, which 
were then linked using the Hungarian algorithm [22]. The detail of this algorithm can be found in the 
Appendix. 
 
The resulting particle trajectories were examined to eliminate any faulty data. Trajectories exhibiting 
discontinuities in their calculated accelerations were removed, as were trajectories exhibiting minimal 
particle movement, since both of these are usually associated with noise falsely interpreted as particles. 
Particle-particle interactions were managed by establishing a minimum allowable distance between 
detected particles. For this case, it was 1 mm. Sample valid particle trajectories are shown in Figure 2. 
These trajectories were taken from different drops. The particle trajectories were fit by a third order 
polynomial, and the first and second order difference quotients were used to determine the velocities 
and accelerations in both the vertical ( , ) and horizontal ( , ) directions. 
 
 
 
 
 
 
 
 
  
Figure 2.  Sample trajectories for three different particles (indicated by red, green, purple and blue 
lines).   
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Assuming that only gas drag, confining electrostatic forces and gravity are acting on the particles, the 
equations of motion are given by  
                                                         (1) 
                                                               (2) 
where  is the mass of the dust particle,  is the gas drag coefficient, g is the acceleration due to 
gravity (9.81 m/s2),  is the charge on the dust particle, and  and  are the electric fields in the 
vertical and horizontal directions. In this case, the drag is considered to be due to collisions with the 
neutral gas particles, with the gas drag coeffienct  defined as 

                                                                 (3) 

where  is the radius of the dust particle, N is the neutral gas number density,  is the mass of the 
neutral gas atoms (Argon), and the coefficient  accounts for the microscopic mechanism governing 
collisions between the gas atom and the surface of the dust particle. For this experiment, with 
melamine formaldehyde (MF) particles and Argon gas,  has been determined to be 1.44 as reported 
in Ref [25,26]. Finally,  is the thermal speed and given by 

                                                                        (4) 

where k is the Boltzmann constant and T is the temperature. For the given experiment, Eqs. (3) and (4) 
yield a value for  = 9.26×10-12 N m-1 s. This coefficient was also measured experimentally [28], 
giving  = (9.77 ± 2.56)×10-12 N m-1 s, in good agreement with the analytical value. The analytical 
value was used in all following calculations. 
 
In the sheath, ions in general have a large velocity directed towards the lower electrode, allowing 
estimation of the ion drag force using [24] 

.                                                                            (5) 
Obtaining the ion density and velocity from a numerical fluid model of the plasma sheath for similar 
operating conditions [35], the force due to ion drag is found to be 0.2% - 1.5% of the force due to 
gravity over the range of the particle heights. It indicates that the ion drag force is at least one order of 
magnitude smaller than the confinement force and therefore may be considered negligible here. 
Meanwhile, since no external thermal gradient is applied to the system, the thermophoretic forces may 
be also considered negligible [25] and are not included.  
 
The components of acceleration due to the confinement, /  and / , are found by 
subtracting the calculated acceleration due to drag from the measured acceleration (and subtracting the 
acceleration due to gravity in the vertical direction). These calculated particle accelerations were 
mapped as a function of position within the box. Since this paper focuses on 1-D vertically aligned dust 
particle structures confined at the center of a glass box, only acceleration maps for the central region of 
the glass box were generated as shown in Figs. 3(a) and (b).  This figure covers the horizontal and 
vertical range of all recorded particle trajectories with the vertical displacement measured from the top 
of the glass box and the horizontal displacement measured from the center of the box. The mapping 
used a grid spacing of 0.1 mm, and the acceleration at each grid point was calculated as the average 
acceleration for all data points within a radius R = 0.05 mm of each grid point. To minimize effects due 
to particle interactions, only data points from particles at least 1mm away from any other particle were 
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included.  
 
Fig. 3(a) shows the horizontal acceleration of the dust particles. This acceleration is always directed 
toward the center of the box, with the greatest acceleration of approximately 0.5 g observed at the top 
edge. As shown, in the central region of the box (-1 mm ≤ x ≤ 1 mm, -2 mm ≤ z ≤ -6.5 mm) the 
horizontal confinement force can be treated as a linear force with a restoring constant of -0.11±0.01 md 

g mm-1.  
 
Fig. 3(b) shows the vertical acceleration map for the dust particles. Particles can only levitate in the 
region where their vertical acceleration is greater than or equal to the acceleration due to gravity. In 
contrast to the conditions within the plasma sheath formed without a box, under the experimental 
parameters shown, the vertical confinement force inside the glass box does not increase monotonically 
as a particle approaches the lower powered electrode. A maximum vertical acceleration in magnitude of 
~1.05g is found at the middle of the box (-2 mm ≤ x ≤ 2 mm), with an extended vertical region (5.5 mm 
≤ z ≤ 9 mm) where the acceleration is approximately -1g. As such, a 1D dust string consisting of more 
than two particles can only be formed in such a region. For the operating parameters used to generate 
the data shown in Fig.2, the longest particle chain observed consisted of 11 particles spanning a vertical 
region of 9.7 mm. It should be noted that unlike the case without a box, where the radii of the particles 
within such a vertical structure are often different, a particle chain formed inside the box consists of 
nearly identically sized particles.  
 
The vertical levitation region is highly dependent on the system’s operating parameters. For example, 
decreasing the RF power decreases both the extent of the region as well as the magnitude of the 
confining force until at some critical points, particles can no longer be levitated and those closest to the 
lower electrode are removed. Thus, the number of particles comprising a vertically aligned particle 
chain can be controlled using the RF power.  
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Maps of the horizontal (a) and vertical (b) accelerations due to the electrostatic forces measured within the box. 

Experiments shown were run at 6.67 Pa Argon gas pressure and 2 W RF power. Particle acceleration is given as a multiple of g 

and the negative sign indicates upward acceleration. In the vertical direction, the distance is measured from the top of the glass 

box. In the horizontal direction distance is measured from the center of the box.  

 

2. Particle-Particle Interaction within a Two-Particle-Chain 
With a proper measurement of the accelerations due to the confinement of the glass box, it is possible to 
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investigate the particle-particle interactions inside the box. To accomplish this, a Coherent VERDI G5 
laser was employed to perturb individual particles in a two-particle vertical chain, and their subsequent 
motion was recorded using a high-speed camera running at 500 fps. In the simplest case, a particle pair 
was formed and an individual particle was pushed horizontally using a pulsed laser beam of 100 ms 
duration with 10 mW power. The diameter of the beam spot was approximately 50 μm and the particles 
were initially aligned vertically with an interparticle separation distance of 0.80 ± 0.05 mm. Due to the 
short heating time, low laser power, and small diameter of the beam as compared to the interparticle 
distance, each particle could easily be perturbed separately. Fig. 4 shows the experimental data as well 
as a cartoon of the particle motion while separately perturbing the top or bottom particle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 Perturbed motion of particles within a particle pair. Blue represents the top particle of the pair while green represents the 

bottom particle. The experimental data (a) and representative cartoon (b-e) when only the top particle is disturbed; the 

experimental data (f) and representative cartoon (g-j) when only the bottom particle is disturbed. The vertical axis and horizontal 

axis in (a) and (f) represent the distance to the top and the middle of the box, respectively. 

 

As shown in Fig. 4(b-e), pushing the top particle to the left (Fig. 4b) causes the bottom particle to move 
upwards and slightly to the left (Fig. 4c). As the horizontal displacement of the top particle increases, 
the confinement produced by the box eventually forces it back toward equilibrium (Fig. 4d), resulting 
in the bottom particle returning to its original position (Fig. 4e). Perturbation of the bottom particle in 
an analogous manner is illustrated in Fig. 4(g-j). Once the bottom particle is removed from its 
equilibrium position, it immediately moves upwards as shown in Fig. 4(h). During this time, the top 
particle remains stationary until the interparticle distance is smaller than 550 μm, at which point it is 
repelled slightly upwards and to the right. Once the bottom particle returns to its equilibrium position 
(again due to the horizontal confinement), it drops quickly beneath the top particle, as seen in Fig. 4(i). 
Finally, in Fig. 4(j), the particle pair resumes its stable configuration after a short time of exhibiting 
damped oscillations.  
 
The total force acting on the particles once the laser beam is removed consists of the confinement force, 
the neutral drag force and the particle-particle interaction force 
                                                         (6)                             

since for the reasons described earlier, the ion drag force and the thermophoretic force can be 
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considered negligible. The total force is calculated by tracking the motion of particles. Therefore, the 
particle-particle interaction force can be calculated by using the total measured force and subtracting 
the confinement force (as determined above) and the neutral drag force, which is assumed to be of the 
form 

,                                          (7) 
 
Fig. 5 shows the displacement (Fig. 5(a)(c)) and the calculated acceleration (Fig. 5(b)(d)) of both 
particles due to the particle-particle interaction force in the horizontal direction. Negative quantities 
represent movement directed toward the left, while positive numbers represent motion to the right. 
Note that the negative acceleration of the illuminated particle persists for some time after the laser is 
turned off. This is assumed to be due to the photophoretic force caused by particle heating [29]. As 
shown, when the top particle is perturbed from its equilibrium position (Fig. 5(a)), the bottom particle 
follows in the same direction over a short range (100μm) before reversing direction to oscillate about 
its equilibrium position. 
 
 
  
                             
 
 
 
 
 
 
Fig. 5 Particle motion and acceleration due to the particle-particle interaction force in the horizontal direction. (a) Motion and (b) 

acceleration for perturbation of top particle and (c) Motion and (d) acceleration for perturbation of the bottom particle for the 

conditions described in the text.  The shaded region indicates the time during which the laser illuminated the particle. Vertical 

lines indicate the positions and accelerations of particles at corresponding times. 

 

When the bottom particle is pushed to left, as shown in Fig. 5(c), the top particle remains at its original 
position before being repelled slightly to the right. This phenomenon confirms the assumption that the 
initial motion observed for the bottom particle when the top particle was pushed (see the trajectory 
during the first 0.1 s in Fig. 5(a)) was not caused by the laser. The damped particle oscillation also 
allows the neutral gas drag coefficient  to be calculated using [30],   
                               0                                (6) 
where X is the horizontal displacement from equilibrium position and  is the natural frequency of 
the horizontal potential well. The value of  determined in this manner is (8.97±1.15)×10-12 N m-1 s, 
also in agreement with analytically calculated results. 
  
Figs. 5(b) and (d) show the acceleration created by the force imparted by the laser and resulting 
interparticle interactions. In the first case, the top particle was initially given an acceleration of 0.3 m/s2 
to the left by the laser. The bottom particle followed the top particles, was displaced to the left and 
experienced a maximum acceleration of 0.05 m/s2. As the particles returned to oscillate about their 
equilibrium positions after 0.3 s, it can be seen that the acceleration of the top particle was almost zero, 
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while the bottom particle still had a maximum acceleration of 0.04 m/s2 directed toward the top particle, 
as indicated by the vertical lines showing the correlation between the positive force for a negative 
displacement. Upon perturbation of the lower particle, Fig. 5(d), the top particle was repelled, moving 
to right for the first 0.2 s during the time that the bottom particle approached it from below and left. By 
the time the bottom particle returned to its equilibrium position, the interaction force acting on the top 
particle was almost negligible, although the bottom particle continued to exhibit an attractive 
interaction, again indicated by the vertical lines. 
 
Using the perturbation method described, acceleration maps for the interparticle interaction between the 
top and bottom particles were generated by separately perturbing particles with varying laser powers 
between 0.01W to 0.50W. The region where the data was collected was overlaid with a grid with spacing 
of 0.1mm and the average acceleration was calculated for all data points within a radius of 0.05mm of 
each grid point. Accelerations were calculated only for regions containing at least five data points. In all 
cases, the coordinate origin was centered on the position of the top particle, indicated by blue dot, while 
the y-axis and the x-axis represent the vertical and horizontal interparticle separations respectively. At 
equilibrium, the bottom particle is located at [0, 0.79], indicated by the green dot, measured with respect 
to the location of the top particle.  
 
In Fig.6 (a) and (c), positive values indicate horizontal acceleration to the right, while in Fig. 6 (b) and 
(d), positive values represent downward vertical acceleration. Fig. 6(a) and (b) provide interaction maps 
for the force of the top particle acting on the bottom particle, (generated by perturbing the top particle) 
while the data shown in Fig. 6(c) and (d) were obtained by perturbing the bottom particle and show the 
force exerted on the top particle by the bottom particle at the specific separations. Taken together, these 
provide the interparticle interactions between the bottom and top particles. Note that the horizontal axes 
are asymmetric in the two cases, as the bottom particle is to the right of the top particle when the top 
particle is perturbed, while the bottom particle is to the left of the top particle when the bottom particle is 
perturbed. The white regions out of the contours indicate lack of data.  
 
In Fig. 6(a), the horizontal acceleration of the bottom particle is shown obtained for the region where 
the interparticle distance was larger than 0.4 mm. The horizontal accelerations are always directed 
toward the midline directly beneath the top particle, indicating that the bottom particle experiences a 
horizontal attractive interparticle interaction across this region. The strongest attractive acceleration, 
-0.05 m/s2, is observed approximately 0.3 mm away from the midline beneath the top particle, which is 
in agreement with measurements made by Hebner using two particles with different mass approaching 
each other under a cutout confinement[19, 31]. As seen in Fig. 6(b), the vertical acceleration of the 
bottom particle is always downward, showing there is only a repulsive interaction from the top to the 
bottom particle. The maximum downward acceleration, 0.31 m/s2, is observed at approximately [0, 
0.79], which coincides with the particle’s equilibrium position. As shown in Fig. 6(c), the horizontal 
acceleration provided from the bottom to top particle is almost zero when the bottom particle is at its 
equilibrium positions. All the accelerations in the Fig. 6(c) are positive (to the right) while the bottom 
particle is at left side of the top particle. This indicates that the bottom particle repel the top particle to 
right. Note that the top particle can only be repelled by the bottom one, and that repulsive acceleration 
increases with decreasing interparticle distance. In Fig. 6(d), the bottom particle causes the top particle 
to have an upward (negative) acceleration when their vertical separation is larger than 0.2mm. In this 
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region, the repulsive interaction from bottom to top is increasing with decreasing distance with a 
maximum magnitude less than 0.1 m/s2. It is interesting to note that the top particle gains a downward 
acceleration when the bottom particle is close to it and in the same horizontal plane 
 
.  
 
                                                       
 
 
 
  
  
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Fig. 6 Maps of the acceleration due to interparticle interaction. Figures (a) and (b) show the horizontal and vertical acceleration 

of the bottom particle due to the interaction from the top particle when the top particle is perturbed. Figures (c) and (d) show the 

horizontal and vertical acceleration of the top particle due to the interaction from bottom particle when the bottom particle is 

perturbed. In all cases, [0,0] is the position of the top particle and the x- and y-axes give the horizontal and vertical displacement 

of the bottom particle from the top particle. Positive acceleration values indicate rightward and downward acceleration, 

respectively. The blue point indicates the position of the top particle at the point [0, 0], while the green circle indicates the 

equilibrium position of the bottom particle [0, 0.079]. 

IV Discussion 

As shown in Figs. 5(a) and (c), in the horizontal direction, the top particle of a vertically aligned two 
particle chain attracts the bottom particle, while the bottom particle exerts little to no force on the top 
particle at the same relative positions. Only repulsive horizontal force can be observed on the top 
particle from the bottom particle in Fig. 6(c). At the same time, Figs. 5(b) and (d) show that while both 
the top and bottom particles in the chain repel each other in the vertical direction, the acceleration of 



10 
 

the top particle is much smaller than the acceleration of the bottom particle.  The top particle exerts a 
maximum downward vertical acceleration (and therefore force) of 0.31 m/s2 on the bottom particle 
when it is at a point 0.79 mm directly below the top particle. This point coincides with the equilibrium 
position of the lower particle. The corresponding acceleration of the top particle in the equilibrium 
configuration is less than 0.01 m/s2. In other words, the interaction between the top and bottom particle 
is non-reciprocal in both the horizontal and vertical directions.  
 
This non-reciprocal attractive interaction in the horizontal direction has been previously observed in 
particle-pair experiments under similar operating conditions but without a glass box confinement 
[19,20]. It is generally explained using the ion-wake effect, where a positive ion-focusing region is 
formed beneath the upper particle due to the ion flow, as shown in Fig. 7. The positive space charge 
region, the location of which is determined by the upstream particle, can attract the downstream 
particle, while the downstream particle can only repel the upstream particle since both are negatively 
charged. The positive space charge region also causes the downstream particle to charge less negatively 
as there is an enhanced ion impact on the downstream particle. This discharging effect has been 
measured experimentally [21] as well as predicted numerically [22, 32] but again without a glass box 
confinement. Given that a non-reciprocal interaction is considered to be a primary indicator of the 
ion-wake field effect, the experiments here prove the existence of an ion-wake field within the box.  
 
 
 
 
 
 
 
 
 
 
 
                           Fig. 7Scheme of the ion wake. The blue circles is the dust particle 

 
It is interesting to note that due to the strong confinement provided by the box, an attractive interaction 
can only be observed close to the midline beneath the top particle, which in these experiments spans a 
horizontal region -0.3 mm ≤ x ≤ 0.3 mm. Outside this region, the horizontal confinement produced by 
the glass box is much larger than the observed attractive effect, which may explain why the existence 
of the ion-wake effect within a glass box has remained in question for such a long time. In the vertical 
direction, the wake field effect is much more apparent. As shown in Fig. 6(b) and (d), the bottom 
particle always experiences a downward interaction while providing only a small interaction 
acceleration on the top particle, particularly at vertical distances larger than 0.7 mm. This implies that 
the non-reciprocal interparticle ratio (i.e., the interaction between the upstream and downstream 
divided by the interaction between the downstream and upstream particle) may be quite large 
(approximately 5-60). This is interesting since for experiments without a glass box, this ratio is much 
smaller (approximately 5-10) [21]. The largest value found for this ratio in there is R = 60, observed 
when particles are near their equilibrium positions (top particle at [0, 0] and bottom particle at [0, 
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0.79]). The downward acceleration gained by top particle when the bottom particle is close to the top 
particle maybe due to the resolution of our mapping technique.   
 
The largest source of uncertainty for this particular series of experiments is due to the variation in particle 
size and mass. The manufacturer provides a standard deviation value for each particle size, but our 
measurements show a larger range than is reported. For example, for the batch of 8.89 µm particles used 
in this experiment (with a manufacturer stated standard deviation of 0.09 µm) the measured size range as 
determined by SEM is [7.1-9.8] µm.  

 
In the first experiment, the horizontal confinement measured at a specific point of 0.1g (0.981m/s2) 
results in an uncertainty of ± 0. 02 m/s2, while in the vertical direction, a measured value of 1.05g (10.305 
m/s2) has an uncertainty of ± 0. 01 m/s2. The error caused by the mass variation is on the order of 10-2 
m/s2. Due to the small velocity (10-4 m/s) involved, the error in the calculation of the neutral drag is on 
the order of 10-3 m/s2, on the same order as the error caused by the uncertainty in the position 
measurements due to the size of the image pixel size (7 µm).. Therefore, the main source of error should 
be due to the mass variation. In order to minimize this error these experiments were designed to average 
over a large number of trajectories (40 drops for each parameter). 
 

V Conclusions     
A particle free-fall technique has been employed to map the confinement produced by a glass box 
placed on the lower powered electrode of a GEC rf reference cell. Interaction maps between the top 
and bottom particle and the bottom and top particle of a two-particle chain were generated employing a 
laser beam to perturb each individual particle. A non-reciprocal particle interaction was observed in 
both the horizontal and vertical directions, confirming the existence of an ion-wake field within the 
glass box. It was shown that for this case, the predicted attractive horizontal non-reciprocal 
phenomenon can only be observed near the midline of the box due to the existence of the strong 
inherent confinement forces produced by the box while in the vertical direction, the non-reciprocal 
ratio is much greater than that observed without a glass box confinement. This explains why the 
existence of an ion-wake field in a glass box has long been in question; the horizontal attractive 
interaction between a particle and the ion-wake field  is much smaller than that provided by the 
confinement force for most regions within the box. However, at the midline of the box, these become 
comparable and in the vertical direction, the effect of the ion-wake field can become large enough 
to play an integral role in determining the position of the downstream particle.  A representative 
example of this is the extended levitation region observed where dust particles experience an upward 
electrical force approximately equal to that of the gravitational force. This ‘flat’ confinement region is 
the key factor for forming long 1D vertically aligned dust particle structures.  
 
The above shows that additional confinement data will be required in order to enhance the overall 
resolution and provide a more detailed interaction map. Once completed, this will allow investigation 
of the interaction between the ion-wake and particle structure formation. This research is currenetly 
underway and will be reported in a future publication. 
 

Appendix 
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Appendix 

The image analysis method used here is based on the Matlab program “Simple Tracker” by Jean-Yves Tinevez.  
 
Particle tracking consists of re-building the trajectories of one or more particles as they move in time. This requires 

the particles to be identified and tracked from frame to frame. The Hungarian algorithm has long been used to 

solve this assignment problem. It was developed and published in 1955 by Harold Kuhn [23], who gave it the 

name "Hungarian method" because the algorithm was largely based on the earlier works of 

two Hungarian mathematicians: Dénes Kőnig and Jenő Egerváry [23]. 

 

In this method, links are created among particle pairs having the smallest Euclidean distance.  A maximal value 

for particle links is also specified by the user: two particles will not be linked (even if they are the remaining 

closest pair) if their distance is larger than this value. The Hungarian algorithm ensures that the sum of the pair 

distances is minimized over all particles between two frames. The following steps outline how to apply the 

Hungarian method.    

 
Step 0:  Create an n×m matrix (the cost matrix) in which each element represents the distance from one of n 

particles in one frame to one of m particles of the next frame.  Trasnpose the matrix, if necessary, so that there are 

at least as many columns as rows and let k = min(n,m). 

Step 1:  For each row of the matrix, find the smallest element and subtract it from every other element in its row.   

Step 2:  Find a zero (Z) in the resulting matrix.  If there is no previously starred zero in the row or column, star Z. 

Repeat for each element in the matrix.  

Step 3:  Cover each column containing a starred zero.  If k columns are covered, the starred zeros describe a 

complete set of unique assignments.  In this case, Go to DONE, otherwise, proceed to Step 4. 

Step 4:  Find a noncovered zero and prime it.  If there is no starred zero in the row containing this primed zero, 

Go to Step 5.  Otherwise, cover this row and uncover the column containing the starred zero. Continue in this 

manner until there are no uncovered zeros left. Save the smallest uncovered value and Go to Step 6. 

Step 5:  Construct a series of alternating primed and starred zeros as follows.  Let Z0 represent the uncovered 

primed zero found in Step 4.  Let Z1 denote the starred zero in the column of Z0 (if any). Let Z2 denote the primed 

zero in the row of Z1 (there will always be one).  Continue until the series terminates at a primed zero that has no 

starred zero in its column.  Unstar each starred zero of the series, star each primed zero of the series, erase all 

primes and uncover every line in the matrix.  Return to Step 3. 

Step 6:  Add the value found in Step 4 to every element of each covered row, and subtract it from every element 

of each uncovered column.  Return to Step 4 without altering any stars, primes, or covered lines. 

DONE:  Assignment pairs are indicated by the positions of the starred zeros in the cost matrix.  If C(i,j) is a 

starred zero, then the element associated with row i is assigned to the element associated with column j. 
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