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We study the evolution of binary mixtures far from equilibrium, and show that the interplay between phase

separation and hydrodynamic instability can arrest the Ostwald ripening process characteristic of non-flowing

mixtures. We describe a model binary system in a Hele-Shaw cell using a phase-field approach with explicit

dependence of both phase fraction and mass concentration. When the viscosity contrast between phases is large

(as is the case for gas and liquid phases), an imposed background flow leads to viscous fingering, phase branch-10

ing and pinch-off. This dynamic flow disorder limits phase growth and arrests thermodynamic coarsening. As a

result, the system reaches a regime of statistical steady state in which the binary mixture is permanently driven

away from equilibrium.

PACS numbers: 47.55.N-, 47.15.gp, 47.20.Gv, 47.51.+a

Spinodal decomposition is the process by which a thermo-15

dynamically unstable mixture separates into two phases. The

signature feature of this process is coarsening: the character-

istic length scale of phase separation grows algebraically with

time [1–3]. Thermodynamic coarsening—first studied in the

context of solid alloys [2, 4]—can be fundamentally altered in20

fluid mixtures by means of hydrodynamic effects that lead to

more complex dynamics. For instance, hydrodynamic coales-

cence due to curvature-induced pressure differences can en-

hance the coarsening rate [5, 6]. Under uniform shear flow, a

highly anisotropic layered phase ordering appears in the mix-25

ture [7–9]. Under turbulent flow, experiments [10, 11] and

numerical simulations [12, 13] have shown that coarsening is

suppressed due to vigorous stirring, a result that is also ob-

served when a chaotic flow is imposed [14].

These observations arise from the coupling of a phase-30

ordering process (promoting coarsening) to a velocity field

with externally imposed strong disorder (suppressing coars-

ening) [14]. The paradigmatic model used to investigate this

process is the advective Cahn–Hilliard equation coupled to

the incompressible Navier–Stokes equations [12–15]. In this35

case, the Navier–Stokes equations contain a capillary term

that embodies gradients in chemical potential, and thereby a

feedback from the phase-evolution equation. This term alone,

however, is insufficient to suppress coarsening—on the con-

trary, the main observation is that, in an unstirred fluid, do-40

main growth of the phase-separating field is enhanced [12].

In this letter, we set to elucidate whether thermodynamic

coarsening can be arrested by the coupling between phase-

ordering and hydrodynamics in the absence of external me-

chanical forcing. We study spinodal decomposition of a bi-45

nary fluid mixture driven by Darcy flow, such as flow in a

Hele-Shaw cell (a thin gap between two parallel plates) or

porous media. Our interest is in systems that naturally phase-

separate into phases of very different viscosity (as is typical

of liquids and gases). Under these conditions, two relevant50

effects set in. On one hand, there is strong feedback between

phase ordering and fluid velocity via a phase-dependent mix-

ture viscosity. On the other, the well-known viscous fingering

hydrodynamic instability [16–19] induces phase branching,

splitting and pinch-off [20–22]. While many aspects of vis-55

cous fingering have been studied—including its role on fluid

mixing [23–25] and ensuing chemical reactions [26–28]—its

impact on phase separation of a fluid mixture remains unex-

plored.

A complicating factor in fluid binary mixtures is that mis-60

cibility can change appreciably with the ambient conditions,

which often introduces compositional effects to two-phase

problems. In previous studies of spinodal decomposition cou-

pled to flow, fluid phase is inferred from composition, and

not independently described [6, 9, 12–15]. The free en-65

ergy of such mixtures is formulated as a functional of molar

fractions and their gradients and, in its simplest setting, the

coarsening dynamics is described by a Cahn–Hilliard equa-

tion [29]. Here, in contrast, we consider partially miscible

systems—components can exchange between the two phases70

and, therefore, fluid concentrations evolve independently from

the phase variable. During spinodal decomposition, our mix-

ture phase-separates into domains with different composi-

tions, accompanied by redistribution of composition between

phases. Describing such mixture requires having separate75

evolution equations for phase and concentration, and defin-

ing a free energy that is a function of both variables. Anal-

ogous two-field approaches have been extensively adopted in

the simulation of solidification of binary alloys [30–33]. By

adopting this more general framework, we investigate the two-80

way coupling between thermodynamics (compositional phase

behavior and phase ordering) and hydrodynamics (viscously

unstable Darcy flow), and find that the system reaches a sta-

tistical steady state in which viscous fingering not only arrests

phase growth, but also drives the mixture away from compo-85

sitional equilibrium permanently.

Without loss of generality, we study a binary mixture rep-

resentative of a CO2–water system. The two fluids, which

we denote gas (g) and liquid (l), have different viscosities,

µl ≫ µg . When in contact, the two-component system natu-90

rally evolves towards compositional equilibrium through mu-

tual component exchange, resulting in a CO2-rich gas phase
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and a water-rich liquid phase. We introduce two variables de-

fined point-wise in the domain: the gas volume fraction, φ,

and the CO2 molar fraction, c. Within a vapor bubble, φ=1;95

within the liquid phase, φ=0.

We adopt a phase-field modeling approach, which has

proved effective at describing immiscible two-phase flow in

confined geometries like Hele-Shaw [22, 34–41] or porous

media [42]. Our model describes incompressible, isothermal,100

two-phase flow with two-component transport in a Hele-Shaw

cell. The gap-averaged dimensionless governing equations

are:

∇ · u = 0, u = −
1

µ(φ)
∇P, (1)

∂φ

∂t
+∇ · (uφ) +

1

Ca
λ
δF

δφ
= 0, (2)

∂c

∂t
+∇ · (uc)−

1

Pe
∇ ·

[

λ∇

(

δF

δc

)]

= 0. (3)

Equations (1) are the continuity equation for an incom-

pressible mixture, where u is the mixture velocity described105

by Darcy’s law, P is a kinematic pressure, and µ is the mixture

viscosity, assumed to follow an exponential dependence on

phase fraction, µ=µg exp(R(1 − φ)), where R=log(µl/µg)
is the viscosity contrast.

Under the context of phase-field modeling, we under-110

stand φ also as a phase variable that interpolates smoothly

between the two bulk phases over a well-resolved, dif-

fuse interface. Time evolution of φ simulates gas dissolu-

tion/exsolution [Eq. (2)]. In the presence of flow, it is a re-

laxation process towards a minimum of a free energy func-115

tional, F (φ, c,∇φ,∇c) [43]. The direction of steepest en-

ergy descent, obtained by taking the variational derivative

of F with respect to φ, δF/δφ=∂F/∂φ − ∇ · [∂F/∂(∇φ)],
drives phase transformation under Allen–Cahn dynamics [44].

In Eq. (2), Ca=(ucb)/(λcǫ
2

φT/b
2) plays the role of a cap-120

illary number—ratio between time scales associated with

phase change and advection—where uc is the characteris-

tic flow velocity, λc the characteristic mobility, T the tem-

perature, b the gap thickness, ǫ2φT/b is the interfacial ten-

sion, and λ=0.01+c(1 − c) is the regularized dimension-125

less mobility. The evolution of c is described by a non-

linear advection–diffusion equation Eq. (3), where the com-

ponent diffusion is driven by gradients in chemical po-

tential, Ψ≡δF/δc=∂F/∂c−∇ · [∂F/∂(∇c)]. In Eq. (3),

Pe=(ucb)/(λcωmixT ) plays the role of a Péclet number—ratio130

between rate of advection and diffusion—where ωmixT is the

energy (per unit volume) associated with mixing.

The free energy functional, F , plays a central role in the

thermodynamic behavior our binary mixture. Following the

classical Cahn–Hilliard formulation for a binary system [29],135

our F subsumes interfacial and bulk energy contributions:
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FIG. 1. (Top) The common tangent construction (blue line) on the

bulk free energy of pure phases yields the equilibrium concentrations

(green circles) within gas and liquid. For parameters αl=1, βl=500,

αg=200, βg=2×10−4, the equilibrium compositions are ceq

l ≈0.304
and ceq

g ≈0.828. (Bottom) Zoomed-in snapshots of c illustrate the

process of spinodal decomposition of a domain that is initially filled

with supersaturated liquid (t=0). The progression shows vapor bub-

bles (high c, red-colored) that nucleate and coarsen out of the liquid

phase (low c, pink-colored).

F (φ, c,∇φ,∇c) =

∫

V

{

1

2
(∇φ)2 + ǫ

1

2
(∇c)2 +

1

Ch
W (φ)

+
1

Ma
[fl(c)(1 − g(φ)) + fg(c)g(φ)]

}

dV.

(4)

The first two terms in Eq. (4) capture the interfacial energy

associated with phase and compositional boundaries. The

characteristic interfacial energy per unit volume associated140

with φ and c are ǫ2φT and ǫ2cT respectively. We introduce

ǫ=ǫ2c/ǫ
2

φ as the ratio between the two energy scales. The third

term is the part of the bulk free energy responsible for phase

separation, where W (φ)= 1

4
φ2(1 − φ)2 adopts the shape of

a double-well, determining the two stable states of W : φ=0145

or φ=1. The parameter Ch=(ǫ2φ/b)/ω is the Cahn number,

where ωT is the energy (per unit volume) associated with the

double-well energy. The last term, known as the bulk mix-

ing energy, is the part of the bulk free energy responsible

for partially miscible behavior; it scales with the inverse of150

Ma=(ǫ2φ/b)/ωmix, which plays the role of a solutal Marangoni

number. We adopt a form for mixing energy that is commonly

used in the field of binary alloy solidification [30], where the

energy is an interpolation in φ between liquid and gas excess

energies (fl and fg), which are functions of c only. The inter-155

polation function g(φ)=−φ2(2φ− 3) satisfies that the system

approaches the stable states φ={0, 1} with zero slope, which

ensures positivity of the phase variable [30]. The excess free

energy of each phase are due to compositional effects; here we

adopt the Wilson model [45]: fl(c)=c log c+(1 − c) log(1 −160
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FIG. 2. Snapshots of c (top) and φ (bottom) illustrating the Ostwald

ripening process in a system with a small and a large vapor bubble,

in an liquid bath that is initially at local equilibrium.

c)−c log(c+αl(1− c))−(1− c) log(1− c+ βlc) for the liq-

uid, and fg(c)=c log c+(1− c) log(1− c)−c log(c+ αg(1−
c))−(1−c) log(1−c+βgc) for the gas. The equilibrium con-

centrations within each phase are then obtained by the com-

mon tangent construction of fl and fg [3, 46] (Fig. 1, top).165

We conduct high-resolution numerical simulations of this

compositional phase-field model. We solve Eqs. (1)–

(3) sequentially: first obtaining the velocity using the

streamfunction-vorticity formulation [47, 48]; then updating c
and φ using a Fourier pseudo-spectral discretization and us-170

ing a biharmonic-modified time stepping [49]. Our simula-

tions are on a bi-periodic square domain of size 160×160
and parameter values Ca=2, Pe=128, Ch=1/400, Ma=1/40
and ǫ=8 (and parameters of the Wilson model given in Fig. 1,

top). The domain is initially filled with liquid phase that is175

supersaturated: φ(x, y,t=0)=0, c(x, y,t= 0)=0.36±0.1. We

perturb the initial concentration field with random uncorre-

lated noise to promote nucleation of gas bubbles. The super-

saturated liquid is thermodynamically unstable and undergoes

spinodal decomposition almost immediately, where the do-180

main phase-separates into vapor bubbles surrounded by liquid

(Fig. 1, bottom).

Ostwald ripening is an out-of-equilibrium process in which

large phase domains grow at the expense of smaller ones, by

virtue of minimizing interfacial energy [2, 4]. To illustrate185

the ability of our model to reproduce this well known phe-

nomenon, we simulate two vapor bubbles of different sizes

in a liquid bath, and initialize the system to be at composi-

tional equilibrium locally within each phase: cl=ceq

l , cg=ceq
g

(Fig. 2). Despite the initial local-equilibrium configuration,190

the smaller bubble dissolves into the liquid phase, leaving a

patch of excess concentration that diffuses into the larger bub-

ble, expanding its size (the larger bubble, in turn, develops a

rim of undersaturated liquid around it). Over the entire pro-

cess, the total gas volume fraction in the domain is unchanged.195

It is well known that, as a result of Ostwald ripening, an

initially nucleated domain will coarsen continuously (Fig. 3,

top; see Video 1 [50]) until it consists of a single large bubble

(not shown here), thereby minimizing the system’s interfacial

energy and chemical potential gradients. Here, we define r200

as the square root of the area of an individual vapor bubble.

t = 150t = 40 t = 350 t = 500

FIG. 3. Snapshots of c at t=40, 150, 350 and 500, under no flow

(top) and with periodic left-to-right flow imposed at t>40 (bottom).

See Video 1 [50].

We obtain information on individual bubbles through image

segmentation of the φ-field and compute 〈r〉 as the average

length scale associated with a given domain image. We find

a power-law scaling of the coarsening dynamics: 〈r〉∼t1/3205

(Fig. 4a), indicative of diffusive-growth regime. The bubble-

size distribution, f(r), is time-independent when scaled by

〈r〉 (Fig. 4b). Both observations are in agreement with the

Lifshitz–Slyozov–Wagner theory [51–54] of Ostwald ripen-

ing in 2D. We have confirmed with additional simulations (not210

shown here) that the power-law scaling holds for other values

around Ma = 1/40, when the system is still dominated by

interfacial dynamics. In the limit of Ma → 0, the mixture be-

haves as fully miscible, and the LSW theory does not apply.

Given the ability of our model to simulate thermodynamic215

coarsening, we now turn our attention to the impact of hydro-

dynamics on the coarsening process. To investigate this effect,

we perform a simulation that is identical to the one just de-

scribed, but introducing periodic left-to-right background flow

with unit velocity at t>40 (Fig. 3, bottom; see Video [50]).220

The unfavorable viscosity contrast between liquid and gas

(µl/µg=20.9) leads to viscous fingering, a hydrodynamic in-

stability when a low-viscosity fluid displaces a high-viscosity

fluid [16–19]. This leads to phase branching and tip split-

ting [20, 21], which in our case destabilize the leading edge225

of gas bubbles and induce pinch-off events [22, 39]. As a

result, vapor bubbles undergo persistent breakup and coales-

cence. The dynamic disorder in the phase field feeds back

to the flow field through a phase-dependent viscosity Eq. (1),

leading to the intrinsic emergence of a dynamic and highly230

heterogeneous flow field. By virtue of this interplay, coarsen-

ing is arrested immediately, and the system enters a statistical

steady state characterized by a relatively constant arrest length

scale (Fig. 4a) and a time-independent bubble-size distribu-

tion f(r); the new distribution is more skewed, featuring a235

dominant presence of smaller-than-average bubbles (Fig. 4c).

We have confirmed with additional simulations (not shown

here) that the emergence of an arrest length scale is not ob-

served in a fully miscible system under similar flow dynamics

[23], and that the effect of Korteweg stress [55, 56] alone is240
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FIG. 4. (a) 〈r〉3 vs. t for simulations without flow (dashed red line)

and with background flow after t = 40 (solid black line), emphasiz-

ing arrest of thermodynamic coarsening in the presence of flow. In-

set: 〈r〉 vs. t in log-log scale, emphasizing algebraic growth of spin-

odal decomposition (〈r〉∼t1/3) in the absence of flow. (b–c) Normal-

ized distribution of r/〈r〉 at sampling times for simulations without

flow (b) and with flow introduced at t = 40 (c). (d) 〈r〉 vs. Ca for

different Pe. (e) 〈r〉 rescaled with Pe−0.078 vs. Ca. Inset: 〈r〉 vs. Pe

for different Ca.

insufficient to retain an arrest length scale in fully miscible

mixtures.

We study the dependence of the emerging characteristic ar-

rest length scale 〈r〉 (time-averaged 〈r〉 during the statistical

steady state) on Ca and Pe. The fundamental observation is245

the strong power-law decay of 〈r〉 with Ca, and a weaker de-

cay with Pe (Fig. 4d). Filtering the dependence ∼Pe−0.078

(Fig. 4e, inset) allows us to robustly collapse the data as a

function of Ca, 〈r〉∼Ca−0.443 (Fig. 4e). This power-law be-

havior indicates that in the regime dominated by interfacial250

dynamics (Ca>1), the dependence of the emerging length

scale on Ca is congruent with the one predicted by linear

stability analysis of classical immiscible viscous fingering,

∼Ca−0.5 [19]. We postulate that the discrepancy in the ob-

served exponents is due to thermodynamic coarsening effects.255

The interplay between the hydrodynamic instability (vis-

cous fingering) and thermodynamic coarsening (Ostwald

ripening) in partially miscible mixtures turns out to have

surprising macroscopic consequences. Let 〈cl〉=
∫∫

c(1 −

0 500 1000 1500 2000
0.3

0.31

0.32

0.33

0.34

t

〈cl〉

  no flow with flow equil. liquid saturation

t = 104 t = 108 t = 116 t = 117

FIG. 5. Evolution of the averaged liquid-phase concentration 〈cl〉
for systems without background flow (red solid line) and with back-

ground flow after t=40 (black solid line). The gray dashed line indi-

cates equilibrium liquid-phase concentration from the common tan-

gent construction [Fig. 1(top)]. Insets: zoomed-in snapshots of c.

The circle highlights pinch-off of a small bubble that quickly dis-

solves into the liquid—the colormap range is (0.3, 0.35) to empha-

size concentration variations around the ceq

l ; see Video 2 [50].

φ)dxdy/
∫∫

(1−φ)dxdy be the domain-averaged liquid phase260

concentration and compare 〈cl〉 vs. t for both simulations

(Fig. 5). In the absence of background flow, 〈cl〉 approaches

the theoretical saturation of ceq

l ≈0.304 from the initial super-

saturation level of 〈cl〉=0.36. The ultimate steady state, where

〈cl〉=ceq

l , is only reached when Ostwald ripening culminates265

the coarsening process in a single vapor bubble (not shown

here). Under background flow, in contrast, the approach to-

wards compositional equilibrium is interrupted as soon as flow

is introduced, and 〈cl〉 fluctuates about a steady state value

that, surprisingly, is above the local-equilibrium concentra-270

tion: 〈cl〉≈0.312>ceq

l .

We propose the following mechanism to explain the ob-

served supersaturation in the liquid (Fig. 5, insets; see

Video 2 [50]). The viscous instability leads to recurrent pinch-

off of small bubbles from large patches of vapor. A newly275

formed small bubble is quickly consumed by surrounding

larger bubbles due to Ostwald ripening. This is achieved, as

shown in Fig. 2, by small bubbles first dissolving into the liq-

uid. The mass transfer into large bubbles is limited by dif-

fusion, implying that if the rate of bubble shedding is large280

compared with the rate of diffusive mass transfer through the

liquid, this disparity will result in an excess dissolved concen-

tration. Therefore, the interplay between hydrodynamic insta-

bility and thermodynamic coarsening results in a liquid phase

that is, on average, always supersaturated. In other words, the285

emergence of flow disorder from viscous fingering drives the

mixture out of compositional equilibrium permanently.
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[20] A. Arnéodo, Y. Couder, G. Grasseau, V. Hakim, and

M. Rabaud, Phys. Rev. Lett. 63, 984 (1989).

[21] E. Lajeunesse and Y. Couder, J. Fluid Mech. 419, 125 (2000).

[22] L. Cueto-Felgueroso and R. Juanes, J. Fluid Mech. 758, 522

(2014).325

[23] B. Jha, L. Cueto-Felgueroso, and R. Juanes, Phys. Rev. Lett.

106, 194502 (2011).

[24] B. Jha, L. Cueto-Felgueroso, and R. Juanes, Phys. Rev. Lett.

111, 144501 (2013).

[25] C.-Y. Chen, Y.-C. Huang, Y.-S. Huang, and J. A. Miranda,330

Phys. Rev. E 92, 043008 (2015).

[26] A. De Wit, Phys. Rev. Lett. 87, 054502 (2001).

[27] Y. Nagatsu, Y. Ishii, Y. Tada, and A. De Wit, Phys. Rev. Lett.

113, 024502 (2014).

[28] F. Haudin, J. H. E. Cartwright, F. Brau, and A. de Wit, Proc.335

Natl. Acad. Sci. U.S.A. 111, 17363 (2014).

[29] J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958).

[30] A. A. Wheeler, W. J. Boettinger, and G. B. McFadden, Phys.

Rev. E 47, 1893 (1993).

[31] A. Karma, Phys. Rev. Lett. 87, 115701 (2001).340

[32] W. J. Boettinger, J. A. Warren, C. Beckermann, and A. Karma,

Annu. Rev. Mater. Res. 32, 163 (2002).

[33] R. Folch and M. Plapp, Phys. Rev. E 72, 011602 (2005).

[34] D. M. Anderson, G. B. McFadden, and A. A. Wheeler, Annu.

Rev. Mater. Res. 30, 139 (1998).345

[35] R. Folch, J. Casademunt, A. Hernández-Machado, and

L. Ramirez-Piscina, Phys. Rev. E 60, 1724 (1999).

[36] R. Folch, J. Casademunt, A. Hernández-Machado, and

L. Ramirez-Piscina, Phys. Rev. E 60, 1734 (1999).

[37] A. Hernández-Machado, M. Lacasta, E. Mayoral, and350
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