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A detailed systematic derivation of a logarithmically discretized model for two dimensional tur-
bulence is given, starting from the basic fluid equations and proceeding with a particular form of
discretization of the wave-number space. We show that it is possible to keep all or a subset of the
interactions, either local or disparate scale, and recover various limiting forms of shell models used
in plasma and geophysical turbulence studies. The method makes no use of the conservation laws
even though it respects the underlying conservation properties of the fluid equations. It gives a
family of models ranging from shell models with non-local interactions to anisotropic shell models
depending on the way the shells are constructed. Numerical integration of the model shows that
energy and enstrophy equipartition seems to dominate over the dual cascade, which is a common
problem of two dimensional shell models.

I. INTRODUCTION

Turbulence is one of the most complex problems in
the nature. It is an ubiquitous phenomenon involving a
multitude of scales, and a variety of behaviors, yet, with
clear underlying regularities. The self-similar turbulent
cascade of conserved quantities such as energy, helicity,
enstrophy etc. in different kinds of physical problems are
prime examples of such underlying order. Study of tur-
bulence therefore focuses on simplifying its description
using such regularities in order to improve our overall
understanding of its important features. The field of tur-
bulence is abound with different approaches to this end,
from analytical simplifications to complex modeling ef-
forts.

Numerical simulations provide an important tool for
the study of turbulence. Using massive parallelization,
and innovative numerical schemes, one can simulate a
wide range of scales. However some interesting problems
in nature require such a large range of scales between the
injection and the dissipation that they may fall out of
the reach of modern computing capabilities.

If such a problem can be reduced to a single dimen-
sion, by making some reasonable assumptions about the
resulting spectral form, or the nature of the turbulence, it
can be approached by using a logarithmic grid. This can
enhance the available wave-number range considerably.
This is commonly done, for example in the study of weak
wave turbulence using wave kinetic equation (e.g. [1] for
weak MHD turbulence), since in that case, one can link
the frequency and the wave-number using the dispersion
relation. It is also employed in closure calculations such
as computations with the direct interaction approxima-
tion or the eddy damped quasi-normal Markovian closure
[2? , 3], differential approximation models [4–6], where
isotropy and local interaction assumptions lead to the
transformation of the integro-differential equation in k-

Figure 1. A cartoon of all possible triads with k and p fixed,
such that k > p. Note that the minimum and maximum
values that q can take are qmin = k − p and qmax = k + p.
Note that if instead k < p, the minimum value would be
qmin = p− k.

space, to a simple differential equation. However extend-
ing the concept of logarithmic grid to higher dimensions,
and still being able to compute convolution integrals in k-
space in an effective way is nontrivial [7]. Here we present
one such logarithmically discretized model (LDM), to-
gether with its detailed derivation for two dimensional
turbulence [8, 9].

It is also notable that in the spirit of simplified models,
the process of turbulent cascade is sometimes described
using shell models (see for example Ref. 10). Shell mod-
els have been proposed and used in various physical con-
texts from basic fluid turbulence [11] to magnetohydro-
dynamic turbulence [12], to convective turbulence [13],
to drift wave turbulence in plasmas [14], to rotating tur-
bulence [15] to superfluid turbulence in Helium II [16]
etc. More generally, such reduced models have been im-
portant historically, either for numerical reasons or for
providing a theoretical insight into the phenomenology
of turbulence [17–19]. In particular they have had great
success in either obtaining results which were inconceiv-
able from microscopic theory, functional analysis or di-
rect numerical simulations.

A shell model consists of a set of ordinary differen-
tial equations that are nonlinearly coupled to represent
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the cascade process. In its basic form, it is a differen-
tial approximation model with built in logarithmic dis-
cretization and arbitrary coefficients multiplying the in-
teraction terms. In fact, one can recover smooth differ-
ential approximation models in the continuum limits of
these models [20–22]. A shell model usually takes only
a subset of the total number of possible interactions into
account, but by choice of the interaction coefficients, it
respects the conservation laws of the fluid system it rep-
resents. Shell models are usually, simply “written” using
these conservation laws, and not derived through a rigor-
ous procedure starting from the initial equations. Earlier
attempts at their derivation involves the establishment of
their connection to other classes of reduced models called
dyadic models [23, 24]. In general, the reduction of a
continuous system to only a finite number of modes [25],
which are chosen to respect the self-similar structure of
the original equations has been studied for earlier high
resolution simulation efforts [26] and has been extended
to pseudo-spectral formulation [27].

One interesting, maybe puzzling aspect of shell mod-
els is the fact that while they rely on a strong trunca-
tion of the original system to only local interactions, they
manage to preserve both the spectrum and the intermit-
tent character of the fluctuations [28–30], even though
the detailed mechanism is probably different [31]. As a
side effect of the derivation of the LDM, here we pro-
vide a derivation procedure for the shell model for two
dimensional turbulence. The advantage of the system-
atic derivation procedure is that it also allows a multi-
tude of models in between the simple GOY model and
a direct k-space discretization of the fluid equations to
be obtained. It also allows for derivation of such models
for more complicated systems consisting of multiple fields
(reduced MHD, rotating convection, simplified ressistive
drift wave turbulence etc.).

Recent work on turbulence on fractal decimated
Fourier space [32, 33] show the role and the importance
of equipartition in reduced Fourier space and its connec-
tion to cascades. In general if a binning is used, one that
contains equal number of modes per bin gives the same
equipartition solution as the original system [27]. Since
the LDM, uses logarithmic spacing, the equipartition in
the LDM, similar to shell models is expected to be un-
physical.

Indeed, numerical integration of the LDM shows that
energy and enstrophy equipartition among shells seem
to dominate over the dual cascade, at least for the in-
verse energy cascade range as discussed by Aurell et al.
[34] for two dimensional shell models. However since the
derivation allows generalization of the shell model ap-
proach, and since two dimensional shell models are used
as elements in multi-shell models [35] or hierarchical tree
models [36], the findings presented in this paper remain
useful. Furthermore, new developments on turbulence re-
duction using helical decomposition may actually make
it possible to model inverse cascade using shell models
[37] and probably by LDMs as well, without resorting to

tree models.
It is also important to note that a system with intrin-

sic linear instability, such as the barotropic instability
in geophysical fluid dynamics (GFD) or drift instabili-
ties in magnetized fusion, can not be overwhelmed by
unphysical shell-equipartition as easily as a driven Eu-
ler system. For instance, repeating the derivation pre-
sented below for density and plasma vorticity, assuming
finite parallel electron conductivity one can derive a gen-
eralization of the shell model for the Hasegawa-Wakatani
system described in Ref. 38. This approach also allows
the derivation of an LDM as well as a shell model for

any two dimensional fluid system regardless of its con-
servation laws. This is particularly important since the
derivation proposed here can be used in any quasi-two
dimensional fluid problem as a foundation. While such
an approach for the two dimensional Navier-Stokes tur-
bulence discussed below is probably unnecessary with to-
day’s computational capabilities, it may be essential for
other potential applications.

Consider for instance the equation for the advection of
a scalar:

(
∂

∂t
+ v · ∇

)

h = F −D , (1)

where h can be a passive scalar such as tracer density,
or it can be defined in terms of the velocity field as
in the case of vorticity for the Euler equation or -more
interestingly- potential vorticity for plasma and geophys-
ical turbulence. Here, F and D are some generic forcing
and dissipation terms. Considering two dimensional tur-
bulence, the velocity field can be defined in terms of the
stream function v = ẑ × ∇Φ, where ẑ is the direction
perpendicular to the plane of motion. Both the E × B
drift velocity and the quasi-geostrophic flow velocity can
be written this way. Taking the Fourier transform of (1),
we obtain:

∂

∂t
h (k) =

1

(2π)
2

ˆ ˆ

(ẑ× p · q)Φ∗ (p) h∗ (q)

× δ (k+ p+ q) d2pd2q

+ F (k)−D (k) . (2)

The integral is computed over all possible combinations
of triangles with sides k, p and q as shown in figure
1. Using polar coordinates k2 = k2x + k2y, and αk =

tan−1 (ky/kx), we can write this as (see also appendix
A):

∂

∂t
h (k, αk) = F (k, αk)−D (k, αk)

+
1

(2π)
2

ˆ ˆ

pq sin (αq − αp) Φ
∗ (p, αp)h

∗ (q, αq)

× δ (k+ p+ q) pqdpdqdαpdαq

(3)

where Φ∗ (k, αk) = Φ (k, αk + π) since the original sig-
nal Φ (x, t) is real (similarly for h). The k-space can be
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Figure 2. The integration domain, with logarithmic dis-
cretization is shown on polar coordinates on the left, and on
a Cartesian representation of p vs. q on the right. Here the
vector k is shown in solid black with an angle α = π/6 to
the x axis (just as an example). The vector p is shown in
blue and makes an angle δαpk = αp − αk to the vector k in
the first quadrant (grey region in the left figure). Reflecting
the triangle accross the vector k we obtain another triangle
of equal surface area (but a negative sign for the product
ẑ× p · q), which makes an angle −δαpk to the vector k, this
corresponds to the fourth quadrant (blue region in the left fig-
ure). Similarly, by exchanging the vectors p and q, we obtain
the triangle in the third quadrant, which also has the same
area. Contributions from these four quadrants give the four
terms in Eqn. 4.

spanned by writing:

∂

∂t
h (k, αk) =F (k, αk)−D (k, αk)

+
1

(2π)2

ˆ ∞

0

pdp

ˆ αmax

αk

dαppq sin (αq − αp)

×
[

Φ∗ (p, αp)h
∗ (q, αq)− Φ∗ (q, αq)h

∗ (p, αp)

+ Φ∗ (q, 2αk − αq)h
∗ (p, 2αk − αp)

− Φ∗ (p, 2αk − αp)h
∗ (q, 2αk − αq)

]

,

(4)

where q and αq are to be interpreted as
q (k, αk, p, αp) = |k+ p| and αq (k, αk, p, αp) =
tan−1 ((k sinαk + p sinαp) / (k cosαk + p cosαp)) re-
spectively. This form includes the contributions from
the 4 triangles, 3 of which can be obtained by reflections
of the first one as shown in figure 2. This allows us to
cover the full k-space by varying αp from αk to an αmax ,
which is either the angle at which q = p (i.e. if p > k/2)
or αk +π (i.e. if p > k/2), and p from 0 to ∞. Note that
the contributions from the four quadrants shown in Fig.
2 give the four respective terms in (4). The continuous
form given above provides the foundation for the general
logarithmic model, which results from the introduction
of a logarithmic discretization and a reorganization of
the sums in order to exploit the underlying self-similar
structure.

The angle between p and q can be computed using the
law of cosines as cos (αq − αp) =

(
k2 − p2 − q2

)
/ (2pq),

Figure 3. Discretization of the p-q space due to a discretiza-
tion of k as kn = k0g

n. The red boxes that surround
(p, q) = (kn, kn) are the shells that are considered in the GOY-
model, which correspond to setting m = 0 in (7). The blue
boxes denote the extension as m goes from 0 to N .

and therefore:

sin (αq − αp) =
±1

2pq

√

4p2q2 − (k2 − p2 − q2)
2

=
±1

2pq

√

2q2 (k2 + p2)− (k2 − p2)
2 − q4 ,

as needed in (4), and since αq − αp for the primary tri-
angle (the upper right one in fig. 2) is always between 0
and π we can pick the positive root.

Note that for the primary triangle αp and αq can be
defined in terms of p and q via:

αp = αk + cos−1

(
q2 − k2 − p2

2kp

)

αq = αk − cos−1

(
p2 − k2 − q2

2kq

)

.

These definitions allow us to consider all possible triads
by fixing k and p and varying only q, then changing p
and repeating the procedure. Since the equation 4 is
symmetric with respect to an exchange of p and q, when
computing the sum, one can consider only the p < q part
of the domain.

II. DERIVATION OF THE

LOGARITHMICALLY DISCRETIZED MODEL

At this point, in order to derive a logarithmically dis-
cretized model (LDM), k-space can be divided into shells
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with kn = k0g
n, where g > 1 is the logarithmic spacing

factor. It is common to use g =
√
(
1 +

√
5
)
/2 , which

allows adjacent kn’s to be perpendicular. In addition one
may also divide each shell into a number of uniform seg-
ments using a regular discretization of αk of the form
αj = 2πj/Nθ , where Nθ is the number of poloidal slices,
so that hj

n ≡ hkn,αj
(see appendix A for details):

∂

∂t
hj
n =F j

n −Dj
n +





k/2
∑

p=0

k+p
∑

q=k−p

+

∞∑

p=k/2

k+p
∑

q=p



αnℓm

×
[

Φ∗j+rnℓm

ℓ h∗j−rnmℓ
m − h∗j+rnℓm

ℓ Φ∗j−rnmℓ
m

+ h∗j−rnℓm

ℓ Φ∗j+rnmℓ
m − Φ∗j−rnℓm

ℓ h∗j+rnmℓ
m

]

.

(5)

Here αnℓm is the discretization of pq sin (αq − αp) and

rnℓm =

⌊
Nθ

2π
cos−1

(
q2 − k2 − p2

2kp

)⌉

nℓm

, (6)

where the brackets ⌊·⌉ indicate rounding to the closest
integer and the sums are computed over discretized val-
ues of p = pn = k0g

n and q = qn = k0g
n. Recall also

that h∗j
n = h

j+Nθ/2
n for j < Nθ/2. In fact the super-

scripts j ± rnℓm etc. in (5) are already to be computed,
modulus Nθ, and with the additional symmetry such
that h

j+Nθ/2
n = h∗j

n . Note that for a given {n, j} there
are 4 different triads (with α

′

j = 2π (j ± rnℓm) /Nθ and

α
′′

j = 2π (j ± rnmℓ) /Nθ) that contribute to the evolution
of hj

n for each value of m and ℓ, over which we compute
the sum. As discussed in the appendix A, this reduction
is achieved by decimating the continuous Fourier space
by considering Dirac delta functions localized at logarith-
mic grid elements. The result would have an additional

weighted sum over j′, [where α
′(j′)
j = 2π

(

j ± r
(j′)
nℓm

)

/Nθ

and α
′′(j′)
j = 2π

(

j ± r
(j′)
nmℓ

)

/Nθ] if we used proper bin-

ning (e.g. Ref 27) instead of reduction using Dirac delta
functions. In fact, the derivation in appendix A suggests
that the interaction coefficients (i.e. αnℓm) should van-
ish unless the logarithmically discretized wavenumbers
can form an exact triad. However the form of the loga-
rithmic grid, does not guarantee that discretized values
of p+ q would exactly equal a k which would also be on
the grid. Thus, we use the nearest discrete element to
compute the coefficients instead. This allows us to write
(6) and introduces discretization error which is expected
to reduce with increasing angular resolution. However as
we will see later this discretization error does not lead
to energy non-conservation of the final form even for low
angular resolution.

Furthermore, it is important to note that the dis-
cretization of αnℓm and rnℓm are not unique, since k,
p and q can be picked among the possible values with
k ∈ (kn, kn+1), p ∈ (kℓ, kℓ+1) and q ∈ (km, km+1). Here
we will pick the basic combination k = kn, p = kℓ and

q = km, but alternative choices could be invoked in or-
der to maximize the range of possible interactions, which
is important if one wants to deal with disparate scale
interactions. With these aproximations:

αnℓm = k20

√

2g2m (g2n + g2ℓ)− (g2n − g2ℓ)
2 − g4m

and

rnℓm =

⌊
Nθ

2π
cos−1 (βnℓm)

⌉

,

where βnℓm =
(
g2m−n−ℓ − gn−ℓ − gℓ−n

)
/2.

At this point, one may reduce the sum, by considering
only a subset of all possible interactions. Consider for
example the reduction:

[ℓ,m] =

{

[n− 2−m′, n− 1] , [n− 1−m′, n+ 1]

, [n+ 1 +m′, n+ 2 +m′]

}

, (7)

which is described in fig. 3. Considering (5) for the
given set above and computing the values of αnℓm for
these combinations (and relabeling m′ as m), we obtain:

αn,n−2−m,n−1 = k2ng
−2m−4

√

µm (g)

αnn−1−m,n+1 = k2ng
−2m−2

√

µm (g)

and

αn,n+1+m,n+2+m = k2n
√

µm (g) ,

where

µm (g) =
(
1 + gm+1 − gm+2

) (
1− gm+1 + gm+2

)

×
(
gm+1 + gm+2 − 1

) (
1 + gm+1 + gm+2

)

and

rm ≡ rn,n−2−m,n−1 =

⌊

Nθ

2π
cos−1

(

g2m+2
(
1− g2

)
− 1

2g2+m

)⌉

sm ≡ rn,n−1,n−2−m =

⌊

Nθ

2π
cos−1

(

−g2m+2
(
1 + g2

)
− 1

2g2m+3

)⌉

ℓm ≡ rn,n−1−m,n+1 =

⌊

Nθ

2π
cos−1

(

g2m+2
(
g2 − 1

)
− 1

2g1+m

)⌉

rn,n+1,n−1−m = sm

rn,n+1+m,n+2+m = ℓm

rn,n+2+m,n+1+m = rm ,

which allows us to write (5) as:
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∂

∂t
hj
n =F j

n −Dj
n +

mmax∑

m=0

k2n
√

µm (g)g−1

{

g−3−2m

[

Φ∗j+rm
n−2−mh∗j−sm

n−1 − h∗j+rm
n−2−mΦ∗j−sm

n−1

+ h∗j−rm
n−2−mΦ∗j+sm

n−1 − Φ∗j−rm
n−2−mh∗j+sm

n−1

]

+ g−1−2m

[

Φ∗j+ℓm
n−1−mh∗j−sm

n+1 − h∗j+ℓm
n−1−mΦ∗j−sm

n+1

+ h∗j−ℓm
n−1−mΦ∗j+sm

n+1 − Φ∗j−ℓm
n−1−mh∗j+sm

n+1

]

+ g

[

Φ∗j+ℓm
n+1+mh∗j−rm

n+2+m − h∗j+ℓm
n+1+mΦ∗j−rm

n+2+m

+ h∗j−ℓm
n+1+mΦ∗j+rm

n+2+m − Φ∗j−ℓm
n+1+mh∗j+rm

n+2+m

]}

, (8)

where mmax is the largest integer m for which µm is pos-
itive.

Eqn. 8 is the general, non-local, anisotropic “shell
model”, and is the final result of this paper. As a matter
of fact, (8) is in between a full logarithmic discretization
of the initial fluid system as in (5) and a shell model,
since it makes no assumption about isotropy and it con-
tains meaningful phase information -unlike a shell model-
but it selects only a subset of all possible interactions,
even though that subset includes both local and nonlo-
cal interactions. This model can be reduced to various
limiting forms to obtain more standard shell models and
their generalizations.

A. Conservation Laws:

The original system as written in 1 conserves only H =
´

h2dS. The discretization above (i.e. Eqn. 8) conserves

H =
∑

n,j

|hn|2 .

This can be shown by multiplying (8) by h∗j
n = h

j+Nθ/2
n

and summing over j and n:

d

dt
H =

∑

n,j

h∗j
n

∂

∂t
hj
n = P −D +

0
︷ ︸︸ ︷
∑

n,j

T j
n . (9)

Here P =
∑

j,n h
∗j
n F j

n is the total production and
D =

∑

j,n h
∗j
n Dj

n is the total dissipation of H due
to injection and dissipation of h. Conservation of
H means that the total transfer due to the nonlin-
ear term vanishes: i.e.

∑

n,j T
j
n = 0. This can be

seen by considering the triads: {n− 2−m,n− 1, n},
{n− 1−m,n, n+ 1}, {n, n+ 1 +m,n+ 2 +m}, num-
bering the nonlinear terms in each triad from 1 to 4
(in the order they appear in Eqn. 8), and by letting
n′ = n−1 in the first triad and n′ = n+1+m in the last
one, in order to write all the triads in the form of the sec-
ond one, and finally using rm = −sm−ℓm (modulus Nθ).
First of all since k2ng

−1−2m = k2n+1g
−3−2m = k2n−1−mg,

the coefficients of the considered elements of the sum
from each triad are the same. It is also easy to see that,
when written in this way, the first and the last terms of
the first triad are cancelled by the last and the first terms
of the second triad, the second and the third terms of the
first triad are canceled by the first and the last terms of
the third triad and finally the second and the third terms
of the second triad are canceled by the third and the sec-
ond terms of the last triad, giving

∑

n,j T
j
n = 0 already.

Similarly, multiplying (8) by Φj∗
n and summing over j

and n, we find that:

∑

j,n

Φj∗
n

∂

∂t
hj
n = Pφ −Dφ +

0
︷ ︸︸ ︷
∑

n,j

T j
φ,n , (10)

where P =
∑

j,n Φ
∗j
n F j

n , D =
∑

j,n Φ
∗j
n Dj

n and
∑

n,j T
j
φ,n = 0. Same tricks can be used as in the demon-

stration of the conservation of H , but different terms
cancel this time (i.e. the first and the last terms of the
first triad are canceled by the second and third terms of
the third triad, the second and the third terms of the first
triad are canceled by the third and the second terms of
the second triad and the first and the last terms of the
second triad are canceled by the last and the first terms
of the last triad). This turns into an actual conservation
law when one defines hj

n in terms of Φj
n either explicitly

or using an evolution equation for Φn.
For example hj

n = −k2nΦ
j
n turns (9) and (10) into con-

servation of enstrophy and energy respectively. Similarly
hj
n =

(
1 + k2n

)
Φj

n can be used (as potential vorticity)
to transform (9) and (10) into conservation of potential
enstrophy and energy etc.

III. REDUCTION TO SIMPLER MODELS

A. Generalized GOY model

It is tempting to start from (8), and make some of
the usual assumptions of shell models, (such as setting
mmax = 0, and assuming isotropy) to arrive at a shell
model. However it is important to note that if one as-
sumes isotropy of the variables hj

n and Φj
n, the nonlinear
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term in (8) vanishes. This may seem confusing, but it
underlines the important difference between shell models
and actual discretizations of fluid systems, namely the
loss of phase information in shell models.

In other words since the shell model has no information
about the phases, we have complete freedom in choosing
the Nθ ×N phases that are defined by hj

n = eiθ
j
nhn and

Φj
n = eiθ

j
nΦn. And a particular choice leads to a partic-

ular shell model. For instance if we choose:

θj+rm
n−2−m + θj−sm

n−1 + θjn = θj−ℓm
n−1−m + θj+sm

n+1 + θjn

= θj+ℓm
n+1+m + θj−rm

n+2+m + θjn = 0

(11)

for large enough Nθ, this involves Nθ ×
[3 + 2× (mmax + 1)] equations for Nθ ×
[5 + 2× (mmax + 1)] unknowns, and therefore has
many possible solutions. This means that all the
phases θjn can be obtained in terms of a set of 2 × Nθ

fixed reference phases, such as θjn and θjn−2−mmax
or

θjn−2−mmax
and θjn+2+mmax

for example. Assuming that
the reference phases are random, averaging over these
random phases, we obtain the following generalized shell
model:

∂

∂t
hn =Fn −Dn +

mmax∑

m=0

k2n
√

µm (g)g−1×
{

g−3−2m
(
Φ∗

n−2−mh∗

n−1 − h∗

n−2−mΦ∗

n−1

)

− g−1−2m
(
Φ∗

n−1−mh∗

n+1 − h∗

n−1−mΦ∗

n+1

)

+ g
(
Φ∗

n+1+mh∗

n+2+m − h∗

n+1+mΦ∗

n+2+m

)
}

.

Here we assumed a slow phase for the complex ampli-
tudes and used the “standard” choice for the phase rela-
tions, which results in the conjugation choice consistent
with the GOY model. This choice is actually arbitrary
in shell models.

Taking h as the vorticity (i.e. hn = −k2nΦn), we ob-
tain:

∂tΦn =Fn −Dn +

mmax∑

m=0

k2n
√

µm (g)g−1×
[
(
g2 − g−2m

)
g−7−2mΦ∗

n−1Φ
∗

n−2−m

−
(
g4 − g−2m

)
g−3−2mΦ∗

n+1Φ
∗

n−1−m

+
(
g2 − 1

)
g2m+3Φ∗

n+2+mΦ∗

n+1+m

]

, (12)

which can be seen as a particular generalization of the
GOY model for the two dimensional Navier-Stokes equa-
tion, and has the same exact solution

Φn ∝
{

k−2
n , k−4/3

n

}

corresponding to the Kraichnan-Kolmogorov spectra of
2D turbulence. The generalization in (12) is effectively
the same model as that discussed, and extended to the
MHD case by Plunian [39] apart from the fact that the
extent of the sum (i.e. mmax) and the nonlinear inter-
action coefficients, can be computed explicitly here. It
is interesting to observe that the extended interactions
of this model (in contrast to the GOY model) can be
obtained systematically by our approach.

B. Anisotropic 2D Shell model

Considering g >
√
(
1 +

√
5
)
/2, and Nθ = 8, and

mmax = 0 in (8), we get rm = 3, sm = 3 and
ℓm = 2. Choosing the phases as in (11) and proceed-
ing as in the previous section leads to elimination of the
phase information. Assuming reflection symmetry along
x and y axes allows reducing the number of variables to
nα = Nθ/4 + 1, and therefore defining h(x) as the slice
[−π/8, π/8], h(0) as [π/8, 3π/8] and h(y) as [3π/8, 5π/8]
and their reflections. In terms of these, the shell model
can be written as follows:

∂th
(x)
n = k2n

√

µ (g)g−1

[

g−3
(

Φ
∗(0)
n−1h

∗(0)
n−2 − Φ

∗(0)
n−2h

∗(0)
n−1

)

− g−1
(

Φ
∗(0)
n+1h

∗(y)
n−1 − Φ

∗(y)
n−1h

∗(0)
n+1

)

+ g
(

Φ
∗(0)
n+2h

∗(y)
n+1 − Φ

∗(y)
n+1h

∗(0)
n+2

) ]

(13a)

∂th
(y)
n = k2n

√

µ (g)g−1

[

g−3
(

Φ
∗(0)
n−1h

∗(0)
n−2 − Φ

∗(0)
n−2h

∗(0)
n−1

)

− g−1
(

Φ
∗(0)
n+1h

∗(x)
n−1 − Φ

∗(x)
n−1h

∗(0)
n+1

)

+ g
(

Φ
∗(0)
n+2h

∗(x)
n+1 − Φ

∗(x)
n+1h

∗(0)
n+2

) ]

(13b)

∂th
(0)
n =

1

2
k2n
√

µ (g)g−1×
{

g−3

[

Φ
∗(x)
n−1h

∗(y)
n−2 − Φ

∗(y)
n−2h

∗(x)
n−1 +Φ

∗(y)
n−1h

∗(x)
n−2 − Φ

∗(x)
n−2h

∗(y)
n−1

]

− g−1

[

Φ
∗(x)
n+1h

∗(0)
n−1 − Φ

∗(0)
n−1h

∗(x)
n+1 +Φ

∗(y)
n+1h

∗(0)
n−1 − Φ

∗(0)
n−1h

∗(y)
n+1

]

+ g

[

Φ
∗(x)
n+2h

∗(0)
n+1 − Φ

∗(0)
n+1h

∗(x)
n+2 +Φ

∗(y)
n+2h

∗(0)
n+1 − Φ

∗(0)
n+1h

∗(y)
n+2

]}

(13c)

letting hn = −k2nΦn, we get the shell model described in
Ref. 40.

In fact writing equation 8 directly with Nθ = 8 gives a
model similar to the one above, but with 4 equations
and meaningful phase information (i.e. the phases of
the discrete variables hm

n ’s are not arbitrary as in shell
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models). It seems that this model, which is not much
more complicated than the three equation model above
should be preferable for most applications.

C. The GOY model

Setting mmax = 0 in (12) or assuming isotropy in (13a-
c), we obtain:

∂tΦn = k2n
√

µ (g)g−1
(
1− g2

)
[

g−7Φ∗

n−2Φ
∗

n−1

− g−3
(
1 + g2

)
Φ∗

n−1Φ
∗

n+1 + g3Φ∗

n+1Φ
∗

n+2

]

,

which is the standard 2D version of the GOY model.

D. Disparate scale interactions

The model in (12), can in principle include both lo-
cal and non-local interactions. However mmax as defined
during the derivation of (8), is the largest possible value
of m that gives µm (g) > 0. One weakness of this ap-
proach is its inability to handle truly disparate scale in-
teractions, due to a loss of resolution as n increases. This
is seen in figure 3, at the smallest scales (largest k) that
are visible in the domain. As the centers of the box fall
outside the band, their contributions would be excluded.
This becomes clear if one derives a disparate scale inter-
action shell model directly from (8), by taking h0 (and
Φ0) to represent a dominant large scale mode, and as-
suming that the energy in k0 is sufficiently large such
that interaction with k0 for any scale is more important
than the interaction with k1, k2 etc. This gives:

∂th0 =
∑

m

k20
√

µm (g)

[
(
Φ∗

2+mh∗

1+m − h∗

2+mΦ∗

1+m

)
]

(14)

∂thn = k20

[√

µ(n−2) (g)
(
Φ∗

n−1h
∗

0 − h∗

n−1Φ
∗

0

)

−
√

µ(n−1) (g)
(
Φ∗

n+1h
∗

0 − h∗

n+1Φ
∗

0

)
]

+ Cloc ,

(15)

where Cloc denote local interactions. The model is some-
what reminiscent of the one discussed in Ref. [21], and
assuming h is potential vorticity, it conserves potential
enstrophy between disparate scale interactions. However,
it is flawed in that it excludes interactions between h0 and
small enough scales for which µm becomes negative. One
way to fix this would be to define µm using a point within
the triangular region that remains within the interaction
domain (see figure 4). Taking q2 ≈ p2, for the equation
for the large scale mode (i.e. k), and k2 ≈ p2 for the

Figure 4. Disparate scale interactions, and the points at which
the coefficient sin (αp − αq) etc. are be computed.

equation for small scale mode when computing the angle
gives:

∂thq =
1

2

N∑

m=0

√

4k2mq2 − q4

×
(
Φ∗

m+1h
∗

m − h∗

m+1Φ
∗

m

)

∂thn =
1

2

√

4k2n−1q
2 − q4

[

Φ∗

n−1h
∗

q − h∗

n−1Φ
∗

q

]

− 1

2

√

4k2nq
2 − q4

[

Φ∗

n−1h
∗

q − h∗

n−1Φ
∗

q

]

,

which becomes exactly the system given in Ref 21. In
the case hq = q2Φq and hn =

(
1 + k2n

)
Φn, the ex-

act solution becomes Φn ∝ k
−1/2
n /

(
1 + k2n

)
, which gives

|Φk|2 ∝ k−3/
(
1 + k2

)2
as discussed in Refs. 21, 41 and

42.

E. Further generalization

Consider (8). It describes a certain type of “nonlocal”
interaction with a certain range mmax, with the overall
interaction coefficient αm =

√

µm (g)g−1. On the other
hand Eqns. (14) and (15) describe very non-local inter-
actions but with a different interaction coefficient, since
the area of the region describing these nonlocal interac-
tions are smaller as shown in fig 4. In more general sense
the equation can be written symbolically as:

∂

∂t
hj
n =F j

n −Dj
n +

N∑

w=0

w∑

m=0

k2nα
w
m {Φ, h}j±rwn±1,n±2,m

n±1,n±2,m ,

where {Φ, h}j±rwn±1,n±2,m

n±1,n±2,m represents the complicated in-
teraction term inside the curly brackets in (8) [with rm,
sm and ℓm replaced by rwn±1,n±2,m etc.]. Here the vari-
able w plays the role of mmax for the second sum. Notice
that µw

m as well as rwn±1,n±2,m depend on the choice of
p, q and k within each box shown in figures 3 and 4.
Therefore the sum over w can be interpreted as a sum
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m rm sm ℓm µm

case 1: 0 14 15 3 2.50

case 2:

0 45 50 33 6.35
1 46 53 29 9.85
2 47 56 25 14.18
3 49 59 20 17.94
4 53 61 14 16.07

Table I. Values of rm, sm, ℓm and µm for the two cases that
are considered.

over subgrid elements. This generalization allows us to
consider different interaction coefficients for different in-
teraction ranges. This form corresponds to extending
the sum in (8) to N instead of mmax, and introducing
weights for each term in the sum. If the weight function
is simply αw

m = δmmax,w
√
µm , we go back to the original

system. When the weight function is smoother and more
extended, it can represent the ratio of importance of local
vs. nonlocal vs. disparate scale interactions. This for-
mulation corresponds roughly to replacing the original
integral in k-space by a particular quadrature in a loga-
rithmically discretized space. The coefficients of such a
quadrature may be computed uniquely for a given dis-
cretization. The details of such a calculation however is
out of scope of this paper.

IV. NUMERICAL RESULTS

The general logarithmically discretized formulation of
the initial fluid system as given in (8) is not very diffi-
cult to implement numerically. It is not very easy to run,
however, since the result is a stiff set of ordinary differ-
ential equations (ODEs) on an exponantially coarse grid.
It is essentially similar to a shell model with non-local in-
teractions, but with important differences. Namely, that
it can handle anisotropy, it has phase information and
it includes a range of interactions which is automatically
defined via the coarse graining resolution. The phase dy-
namics of the model depends on the existence of poloidal
slices in k-space. Therefore the numerical model must
have a minimum poloidal resolution of about Nθ = 8.

In order to implement (8) numerically we choose Dj
n =

(
νk4n + νLk

−6
n

)
hj
n, define hj

n = −k2nΦ
j
n, (i.e. vorticity in

two-dimensional Navier-Stokes equation). The forcing is
implemented as

F j
n = f0e

[

−
1

2σ2

(

j−
Nθ
4

)

2

+i2πξ

]

(
δn,nf

+ δn,nf+1

)
,

which has an amplitude f0, and is localized on the ky axis
at shells nf and nf + 1 with a poloidal width σ. Here ξ
is a uniform random number between 0 and 1, and is up-
dated every 105 time steps. The model was implemented
with a standard, fixed time step, 4th order Runge-Kutta
solver using a c++ ODE library called odeint [43]. It is

Figure 5. Energy spectral density E (kn) ∼= 2π

Nθ
kn

∑

j

∣

∣Φj
n

∣

∣

2

as function of kn for the low resolution local model , i.e. case
1 (blue) and the high resolution nonlocal model, i.e. case
2 (red) discussed in the text. Notice that, while the for-
ward enstrophy cascade range gives E (k) ∝ k−3 as expected
by Kraichnan-Kolmogorov spectrum, the inverse energy cas-
cade seems to be not correctly represented by logarithmically
discretized model (as with shell models), yielding a “shell-
equipartition” result of En = |Φn|

2 k2

n = KT or E (k) ∝ k−1.

important to note that in order for µm to be positive one
has to choose g < (1 +

√
5)/2, which is one of the com-

mon values selected for shell models. The results for the
case (we call it the case 1) g = 1.56, N = 40, Nθ = 32,
f0 = 0.01, nf = 20, σ = 0.4, ν = 10−25 and νL = 103,
where we can use a timestep of h = 10−6, are presented in
figure 6. This choice of g, gives µ0 ≈ 2.5 and mmax = 0.
So for this choice of parameters the model is anisotropic
but actually only has local interactions.

The second case corresponds to the parameters g =
1.26, N = 80, Nθ = 128, nf = 40 with the rest being the
same, where we had to use a timestep of h = 10−7. This
case basically covers the same k-range but with a finer
resolution. This choice gives mmax = 4, and in order
to have unique values for rm, sm and ℓm (see table I,
we had to increase the poloidal resolution to Nθ = 128.
Having sufficient resolution to distinguish these angles
seems to be an important aspect for numerical stability.
The results for

∣
∣Φj

n

∣
∣
2

are given in 7.
The spectral energy density E (k) is defined via

the basic relation
´

E (k) dk =
∑

n E (kn)∆kn =
∑

n k
2
n

2π
Nθ

∑

j

∣
∣Φj

n

∣
∣
2
, and since in a logarithmic discretiza-

tion ∆kn ∝ kn, we can write E (kn) = kn
2π
Nθ

∑

j

∣
∣Φj

n

∣
∣
2

as
the spectral energy density corresponding to the logar-
itmically discretized model. The results for the spectral
energy density are basically the same for the two cases
considered, as can be seen in figure 5. While the forward
enstrophy cascade range gives E (kn) ∝ k−3

n as expected
by Kraichnan-Kolmogorov prediction (even though the
“cascade” aspect of this result is also questionable), the
inverse energy cascade seems to be not correctly repre-
sented by logarithmically discretized model (as is the case
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Figure 6. Turbulence wave number spectrum in two dimen-
sions for case 1 (i.e. lower resolution, mmax = 0).

Figure 7. Turbulence wave number spectrum in two dimen-
sions for case 2 (i.e. higher resolution with mmax = 4).

with shell models), yielding a “shell-equipartition” result

of En ∝∑j

∣
∣Φj

n

∣
∣
2
k2n = KT or E (kn) ∝ k−1

n . This is al-
ready well known in shell models, and it seems that one
needs a hierarchical-tree model to get around this issue
[34, 36].

Note that, the fixed time step Runge-Kutte implemen-
tation can become numerically unstable for different pa-
rameters. It also seems rather difficult to parallelize (an
initial attempt to parallelize using openmp lead to seri-
ous degradation of performance). However the aim here
is not to present a competetive numerical implementa-
tion of the model, but rather a proof of principle that
demonstrates the feasibility of its numerical implementa-
tion.

V. RESULTS AND CONCLUSION

We have developed, what we call an LDM, a model
which uses logarithmic discretization of the wavenum-
ber magnitude similar to shell models, while allowing for
anisotropy and phase dynamics via poloidal discretiza-
tion in k-space, for 2D turbulence. Even though the
model includes only a reduced subset of all possible in-
teractions, it can account for nonlocal interactions up
to a finite range. Such a model can resolve an inertial
range of many decades, with a reasonable resolution in
the poloidal direction (see figures 6 and 7) on a single
cpu over a few days.

While in this paper, we considered the basic two di-
mensional Navier-Stokes equation, variations of such a
model (with additional linear terms) can be used for dif-
ferent physical problems such as geophysical turbulence,
turbulence in strongly rotating fluids, rotating convec-
tion and turbulence in strongly magnetized plasmas. The
derivation outlined in this paper is applicable to those
systems simply by replacing h with corresponding fluid
quantities, and in particular the potential vorticity.

For the two dimensional Navier-Stokes equation, the
model gives isotropic 2D turbulence spectra, even when it
is forced anisotropically. The results seemed to agree well
with the Kraichnan-Kolmogorov spectrum of E (k) ∝
k−3 for the forward enstrophy cascade range, while a
shell-equipartition energy spectrum was observed for the
large scales in the form of E (k) ∝ k−1 instead of the
inverse energy cascade in accordance with the results of
Ref. 34, suggesting that the model is useless as it is, for
a direct study of turbulence in 2D fluids. While this is
rather discouraging, such models are being used as un-
derlying elements in various more complex models, such
as multi-shell models [35] or hierarchical tree models [36],
as well as models that rely mainly on disparate scale in-
teractions [21]. The derivation and the numerical im-
plementation given here, is therefore very useful for the
development of such tools in cases where anisotropy may
be an important feature. Also a similar approach based
on a particular discretization of the Fourier space (i.e.
for example a discretization using regular dodecahedron-
icosihedron compounds instead of spherical shells [44])
may provide the possibility of extending the current for-
mulation to three dimensions in the future, where the
problem of shell-equipartition overwhelming the nonlin-
ear cascade should not exist.

We have also shown that the LDM can be reduced un-
der some assumptions to various generalized shell mod-
els which were previously written based on conservation
laws. In particular, it was shown that the nonlocal shell
model of Plunian [39], the anisotropic 2D shell model of
Gurcan and Grappin [40] and the GOY model and its
variations can all be obtained as limiting cases of the
LDM discussed in this paper. It was also shown that
disparate scale interactions can be added, and a general-
ization of the LDM can be proposed where another sum
can be introduced over interaction ranges, with different



10

weights for each interaction range.
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Appendix A: Logarithmic Discretization and Fourier

Transforms

Logarithmic discretization is introduced and used in
the main text without mathematical rigor. Here we at-
tempt to demonstrate that it corresponds to a change of
variables of the form k = k0e

aκ, where κ becomes the
variable of integration in the Fourier transform and es-
tablishing the connection to the concept of logarithmic
fourier transform.

Consider the Fourier transform in two dimensions

h (k) =

ˆ

h (x) e−ik·xd2x

=

ˆ

h (r, θ) e−ikr cos(θ−α)rdrdθ (A1)

together with its inverse transform:

h (r, θ) =
1

(2π)
2

ˆ

h (k, α) eikr cos(α−θ)kdkdα . (A2)

Substituting:

h (k) = (2π)
2
∑

n,m

hkn,αm

δ (k − k0g
n)

k
δ

(

α− 2π

Nθ
m

)

(A3)
we obtain the logarithmic discretization of h (k). Notice
that it is actually based on the transformation k = k0e

κ,
with a linear discretization in κ → κn = n ln g and α →
αm = 2πm/Nθ. Apparently one can obtain the real field
on a logarithmically discretized radial coordinate using a
particular inversion algorithm[45].

Note that by taking the continuous Fourier transform
of (1):

∂

∂t
h (k, t) =F (k)−D (k)

+
1

(2π)2

ˆ

d2p

ˆ

d2q (ẑ× p · q)

×δ (k+ p+ q)Φ∗ (p, t) h∗ (q, t) , (A4)

substituting (A3) for h and Φ in (A4) and integrating
over one grid element, we obtain the general form:

∂

∂t
hkn,αm

=
∑

∆

pq sin (αq − αp)Φp,αp
hq,αq

+ Fk −Dk

where the notation ∆ for the sum indicates sum over
triangles as discussed in the main text. While this has
the same form as the discrete sum that results from a
bounded system, it already implies a logarithmic grid.

Finally, in order to obtain the real field, we have to
compute the inverse Fourier transform. If we substitute
(A3) into (A2)

h (r, θ) =
∑

n,m

hm
n eiknr cos(αm−θ)

which we can compute directly using the coefficients hm
n

of the model. This can then be plotted on a regular
spatial grid of desired resolution.
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