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Multiphase flows in porous medium systems are typically modeled at the macroscale by applying
the principles of continuum mechanics to develop models that describe the behavior of averaged
quantities, such as fluid pressure and saturation. These models require closure relations to produce
solvable forms. One of these required closure relations is an expression relating the capillary pres-
sure to fluid saturation and, in some cases, other topological invariants such as interfacial area and
the Euler characteristic (or average Gaussian curvature). The forms that are used in traditional
models, which typically consider only the relationship between capillary pressure and saturation,
are hysteretic. An unresolved question is whether the inclusion of additional morphological and
topological measures can lead to a non-hysteretic closure relation. Relying on the lattice Boltz-
mann (LB) method, we develop an approach to investigate equilibrium states for a two-fluid-phase
porous medium system, which includes disconnected non-wetting phase features. A set of simu-
lations are performed within a random close pack of 1,964 spheres to produce a total of 42,908
distinct equilibrium configurations. This information is evaluated using generalized additive models
to quantitatively assess the degree to which functional relationships can explain the behavior of
the equilibrium data. The variance of various model estimates is computed, and we conclude that,
except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed
as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid
phases, and the Euler characteristic. This work is unique in the methods employed, the size of
the data set, the resolution in space and time, the true equilibrium nature of the data, the param-
eterizations investigated, and the broad set of functions examined. The conclusion of essentially
non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous

medium systems models.

I. INTRODUCTION

Multiphase systems arise routinely in subsurface en-
vironments. Examples include geologic carbon seques-
tration [1-3], vadose zone hydrology, and oil and gas re-
covery [4]. Engineered systems such as fuel cells are also
multiphase porous medium systems [5-8]. The challenges
associated with multiphase flow through porous media
are widely recognized, and sustained efforts have been
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made to better understand the physics of these flow pro-
cesses [9-16]. Mathematical models that describe trans-
port phenomena in these systems are routinely used to
test understanding, predict future states, and support
design and management decisions. Models must capture
essential multiscale physics that determine system behav-
ior. Because natural porous medium systems must often
be described at length scales that are long compared to
the natural length scale, which corresponds to a grain
diameter or a characteristic length or aperture of a frac-
ture, macroscale models are commonly used. Macroscale
models are posed in terms of averaged properties over a
length scale that yields an averaging domain containing
representative extents of all of the entities (phases, in-
terfaces, and common curves). Physical processes that
occur at small length scales must be represented ade-
quately within the macroscale description. Multiscale
theories and models that formalize the connection be-
tween the microscale and the macroscale can be used to
methodically advance understanding, and are of funda-



mental importance within this context.

Fundamental study of transport phenomena in porous
medium systems is often undertaken at the microscale,
where the morphology and topology of the phase dis-
tributions are resolved in space and in time. The
physics of multiphase transport phenomena are relatively
well understood at the microscale as compared to the
macroscale. Methodologies designed to directly access
microscale information as a way to advance macroscale
understanding have become widespread [17-25]. Such
studies have yielded many enhancements to our under-
standing of pore-scale transport mechanisms involved in
multiphase flow [26-29]. Unfortunately, macroscale mod-
els are often posed directly at the macroscale and lack
a rigorous connection to the microscale. Consequently,
quantities that are known to be important at the mi-
croscale (such as contact angles, interfacial tensions, cur-
vatures, and areas, and common curve properties) do not
appear explicitly in common macroscale model formula-
tions. Closure relations relating fluid pressures to fluid
saturations are required, but depend on the physical pro-
cesses that lead to a particular system state. This so-
called hysteresis has been posited to result from an im-
plicit representation of the underlying microscale physics
in empirical model forms and coefficients used to close
macroscale equations [30]. Efforts to describe capillary
pressure within macroscale models is an active research
area [e.g. 31, 32].

The thermodynamically constrained averaging theory
(TCAT) provides a systematic approach to construct
mathematical models of multiscale transport phenomena
in which thermodynamics are used to constrain the al-
lowable form of closure relations. The TCAT approach
has been applied to produce macroscale models for sev-
eral types of porous medium systems [30]. A major con-
tribution of the method is that a consistent upscaling
procedure is applied such that all macroscopic variables
are concretely defined in terms of averaged forms of mi-
croscale quantities. This is significant because the pre-
cursor conservation equations and thermodynamics are
well-understood at the microscale, from the standpoint of
continuum mechanics, classical thermodynamics, and ki-
netic theory. Macroscopic definitions of thermodynamic
quantities such as pressure, temperature, and entropy
are derived precisely from microscale quantities to ensure
that the macroscopic models that are produced observe
the laws of thermodynamics [30]. Similarly, the condi-
tions that must apply at equilibrium at the macroscale
for multiphase systems have also been derived using vari-
ational methods and rigorous upscaling from the mi-
croscale. TCAT naturally incorporates essential compo-
nents from thermodynamics, conservation principles, and
fundamental geometric relationships.

To describe the thermodynamics of a multiphase sys-
tem, it is necessary to account for the thermodynamics
of phases, the interfaces where two phases meet, and the
common curve where all three phases are present. This
is true because the total energy of the system includes

contributions from each of these entities (phases, inter-
faces, and common curves). Interfacial areas are impor-
tant extensive properties of a multiphase system that are
associated with a non-negligible fraction of the system en-
ergy at equilibrium. Traditionally, these energy contribu-
tions have been ignored in macroscopic models of multi-
phase porous medium systems. More recently, interfacial
areas have been posited to be an important state vari-
able needed to describe fluid states in a two-fluid-phase
porous medium system that must be accounted for to re-
duce or eliminate hysteresis observed in the macroscale
relationship between capillary pressure and fluid satura-
tion [33]. Technologies such as micro-computed tomogra-
phy (#CT) have made it possible to observe directly the
three-dimensional microstructure of real porous media,
including the interfacial configurations [34—42]. Numeri-
cal simulation tools can also provide this information [43—
47]. As information about the interfacial behavior has
become more accessible, many authors have undertaken
experimental and numerical efforts to incorporate inter-
facial areas into closure relations for multiphase porous
medium systems [e.g. 30, 48-50]. A large number of equi-
librium states must be considered to assess whether or
not these relationships are truly unique, and careful the-
oretical analysis is required to deduce a representation of
the relationship among state variables.

The presence of disconnected non-wetting phases has
received sustained study, including investigations focused
on the statistical distribution of disconnected phases and
their role in macroscopic equilibrium relationships [51-
57]. Entrapped non-wetting phases are routinely present
in multiphase porous medium systems, with important
ramifications for both the equilibrium state and trans-
port phenomena [51, 58]. Regions of non-wetting phase
become trapped, and disconnected, with a particular cap-
illary pressure; pressure gradients will not be transmitted
between different disconnected regions of the non-wetting
phase. Accounting for disconnected phase regions is es-
sential to properly account for both the equilibrium state
and dynamic behavior of multiphase systems [47, 59, 60].
Efforts to adequately account for the connectivity and
topology of the multiphase fluid configurations is there-
fore of great potential importance to develop a more
comprehensive understanding of these complex transport
processes [42, 61].

In a general sense, a macroscopic equilibrium relation-
ship must account for the possible microscale equilibrium
states of a system and describe the internal energy that
results from those states. In subsurface porous medium
systems, many different physical processes can influence
the microscale state. Examples include changes in tem-
perature or pressure, phase changes, chemical reactions
and mechanical stimulation from acoustic or seismic ac-
tivity. It is essential to consider all possible microscale
states that may arise as a consequence of these processes
if one wishes to develop a general macroscale closure re-
lation.

Exploration of the range of possible equilibrium states



is not possible from standard experimental setups in
which fluid distributions are controlled through manipu-
lation of boundary conditions of the system alone. In
standard experiments, fluid saturations and pressures
are measured based upon boundary conditions, yet fluid
pressures measured at the boundary of a system do not
account for the pressures of any fluids that are not con-
nected to that boundary. Examples of processes affecting
fluid configurations that are inaccessible from standard
experiments are evaporation and transpiration, which
can lead to wetting phase saturations that are lower than
the so-called “irreducible saturation” frequently observed
in traditional experimental setups [62-66]. These states
occur routinely, suggesting that alternative approaches
should be developed to better account for a more com-
plete range of equilibrium states [67].

It has also been observed that changes in wettability
can occur dynamically within multiphase porous medium
systems [68, 69]. Dissolution of an entrapped non-wetting
phase is a key mechanism to sequester carbon dioxide
in the subsurface. As individual features dissolve, their
size decreases and the resulting equilibrium state must
also change. Such processes invariably lead to multiphase
fluid configurations that are not observed during tradi-
tional drainage and imbibition experiments based on es-
tablished experimental procedures. Nevertheless, a com-
plete thermodynamic description of a multiphase system
must be capable of describing the state of a system irre-
spective of the system history. To be fully general, one
must consider all possible microscale states; it is not suf-
ficient to consider only a subset of these states, such as
those that arise from a particular flow process or experi-
mental design.

The overall goal of this work is to characterize the equi-
librium behavior of two-fluid-phase porous medium sys-
tems. The specific objectives of this work are as follows:

1. to develop a theoretical framework to analyze mi-
croscale states in the context of phase connectivity;

2. to advance an efficient computational approach to
generate independent realizations of possible mi-
croscale states in multiphase porous medium sys-
tems;

3. to evaluate the macroscale states that correspond
to the generated microscale equilibrium states; and

4. to evaluate the uniqueness of various parameteriza-
tions of capillary pressure.

II. THEORY

We consider averages for a two-fluid-phase porous
medium system within a domain 2 with boundary T'.
Three phases are present, denoted with a correspond-
ing index for the wetting phase (w) the non-wetting
phase (n) and the solid (s). Each of the phases occu-
pies a three-dimensional subset of €2, denoted by £,

Q,, and (g, respectively. The corresponding closed do-
mains, which include the boundaries, are Q,, = Q,, UT,
Q, =Q,UTl,, and Q, = Q, UT,. Since three phases
are present, three interface types are possible, each of
which occupies a two-dimensional subdomain within €.
These include the interface between the wetting and non-
wetting fluids, denoted by £2,,,,, the interface between the
wetting fluid and the solid, 2,5, and the interface be-
tween the non-wetting fluid and the solid, ,s. Finally,
a common curve can exist where all three phases meet,
which is a one-dimensional subdomain within {2 denoted
by Quns. The complete set of entities for the two-fluid
phase system includes all phases and interfaces in ad-
dition to the common curve, which together comprise
the index set of entities, I = {w, n, s, wn,ws, ns,wns} =
Jp UJr UJc, where Jp is the index set of phases, Jy is the
index set of interfaces, and J¢ is the index set of common
curves. It will also be convenient to refer to J¢, which is
the index set of fluid phases expressed as Iy = {w,n}.
The corresponding domain occupied by the fluid phases
is denoted by €2¢. For the interfaces and common curve
the order of phase indexes comprising an entity index is
not important. For example, ., and §2,, both refer
to the same wetting phase-non-wetting phase interfacial
domain.

Macroscale TCAT models involve the systematic up-
scaling of microscale thermodynamic relations as well as
conservation and balance equations to the macroscale us-
ing averaging operators and theorems [30]. An element
of this procedure is the upscaling to the macroscale of
microscale thermodynamic equilibrium conditions, which
can be derived using variational methods. Of special in-
terest are macroscale state equations that are needed for
a closed model and which express a posited functional
from among macroscale variables. Meeting the objectives
of this work requires an examination of certain averaged
quantities arising from upscaling from the microscale to
the macroscale.

The macroscale averages of concern herein are com-
puted using an averaging operator of the form

Pd
Plaws, =5 g
Qp

where P is a microscale property and 2, and Qg are
domains of integration. Averages of interest include ex-
tent measures for each entity in the system, such as fluid
volume fractions, specific interfacial areas, and the spe-
cific common curve length. These extent measures are
computed as

= <1>Qa,Q

where the double-barred superscript denotes a specially
defined macroscale variable. Eq. (2) defines a volume
fraction when « € Jp, a specific interfacial area when
« € J1, and a specific common curve length when o = J¢.
The fluid saturations are determined as

s* = (Dg, o, foraecl. (3)

foraed, (2)



The intrinsic macroscale averaged fluid-phase pres-
sures are computed as intrinsic volume averages over the
respective phases as

(0%

p* = (Pala, 0, forael, (4)

where p,, is the microscale fluid pressure.

The nature of the equation of state relating capillary
pressure, fluid saturations, and specific interfacial areas
is of essential importance. The macroscale capillary pres-
sure between the wetting and non-wetting fluid phases is
defined as

wn

p = _<'7wan>Q ’ (5)

where v, is the microscale interfacial tension between
the two fluid phases, J,, = V’-n,, is the mean microscale
curvature of the interface, and n,, is the outward unit
normal vector from the w phase. The negative sign ac-
counts for the convention that capillary pressure is a non-
negative quantity, and the curvature of the interface be-
tween the wetting and non-wetting fluids is measured by
the surface divergence of the outward normal vector from
the wetting phase.

The Euler characteristic is an invariant topological
measure that is linked to the connectivity of an object.
Along with the volume, surface area, and integral of
mean curvature, the Euler characteristic is one of four
invariant topological measures that is used to character-
ize three-dimensional objects based on integral geometry
[70-72]. The results of integral geometry have been ap-
plied broadly to characterize the microstructure of porous
materials [73-77]. The Euler characteristic x is most
often computed by counting the number of vertices V,
edges F, and faces F' on the surface of a closed object

(pwn>9

wnQwn wn wn

X=V-E+F. (6)

Equivalent definitions for x are well-known within the
field of topology. The Euler characteristic can also be
computed from the Betti numbers, which relate the defi-
nition of x to the connectivity of an object. For a three-
dimensional object, the Euler characteristic can be writ-
ten as

X:BO_Bl+B2~ (7)

Each of the Betti numbers has a physical interpretation:
By is the number of connected components; B is the
number of redundant pathways (or tunnels); and By is
the number of cavities [78]. This interpretation ties the
Euler characteristic of an object to invariant aspects of
the connectivity of that object. For a fluid phase, con-
nectivity will clearly influence transport within the phase
since this aspect of topology determines the flow paths
and energetic states that are accessible.

A third theoretical result relates the Euler characteris-
tic of an object to the integral curvature over the bound-
ary of that object. This definition allows the Euler char-
acteristic of a phase to be expressed as an average in

4

the general form of Eq. (1). Based on the Gauss-Bonnet
theorem, the normalized FEuler characteristic per unit vol-
ume of the domain relates to the average of the Gaussian
curvature K, over the closed phase boundary T’y

= 1
X* = g(K@me : (8)

In practice, an approximation to x® can be obtained
by constructing a numerical approximation to €2, using
the marching cubes algorithm and counting the vertices,
faces and edges [79]. The computed Euler characteristic
is then normalized by dividing by the total volume of the
domain.

In two-fluid-phase porous medium systems, the fluid
phases can become disconnected because of the inter-
play among capillary, viscous, and gravitational forces,
which can lead to mechanisms such as non-wetting phase
snap off and unstable displacement patterns. To account
for these well-known physical phenomena, we consider
the implications of such fluid distributions on macroscale
variables and thermodynamic equilibrium conditions. To
do this, we decompose the domain for a fluid phase 2,
into connected regions. The connected regions are a set
of subdomains €, where j € Ny = {1,2,..., Ny}, where
N, is the total number of connected components for the
« fluid phase. The subdomains satisfy the equations

Qo = UN2Q,, . (10)

That is, the connected subdomain regions ,, do not
intersect with other members of the set of connected re-
gions, and the union of the domains of all members of
the set of connected regions yield the entire domain of
the respective fluid phase. The number of connected re-
gions of a phase is the zeroth Betti number Bg, which is
also the cardinality of the set N.

An example two-dimensional system illustrating the
subdivision of phases within a two-fluid system is shown
in Fig. 1. In this case, the wetting phase (blue) can
be sub-divided into three connected regions, denoted as
Quy , Qo and Q.. The intersection between any two of
the three wetting-phase regions is the null set, since the
boundary of each sub-region touches only non-wetting
phase (red) or solid (black). Likewise, the non-wetting
phase can be sub-divided into two connected regions, €2,
and 2,,. Mechanical equilibrium can only be achieved
if a balance of forces exists for each interfacial region.
Laplace’s law relates the curvature of an interface to the
pressure difference between two adjoining phases. Based
on this, different pressures may be obtained within each
connected region, subject to mechanical equilibrium cri-
teria for each region of the interface. For example, the
interfacial region identified in yellow and green may have
different interfacial curvatures at equilibrium. To de-
scribe the equilibria in general, we must sub-divide the
interfacial regions based on the underlying phase connec-
tivity.
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FIG. 1. Phase regions within an example porous medium
(black): both the wetting (blue) and non-wetting (red) phases
can be sub-divided into connected regions. The interfaces
between fluids can also be sub-divided based on connectivity.
For example, the fluid interface region labeled in yellow is
formed as Quwyn; = Quw, N Oy, , while the region formed in
green is formed as Quwony = Quwy N Py

Subsets can be determined for the interfacial regions
by considering the intersection of the closed domains of
two phases such that

Qa.p, =Qa, N, fora,felp,a#p. (11)
The identification of sub-regions of the interface based
on the phase connectivity is illustrated in the example
system of Fig. 1. Common curve regions associated with
the intersection of the closed domains of three phases can
be identified as
Qa,;ﬁj’yk :Qai mQﬁij'yk for avﬁv’YGJPaa#ﬁ#’}/v
(12)
where i, j, and k are indices for a phase region.

Let the set N, for o € J; contain all pairs of phase
region indices that result in a domain with a non-zero
extent. For common curves, let N, for a € Jo contain
all triples of phase region indices that result in a domain
with a non-zero extent. The resultant domains account
for regions of space occupied by that part of the interface
or common curves that are associated with the intersec-
tion of the respective phase region domains, respectively.
Certain phase regions might not intersect, so some com-
binations of phase regions will yield a domain with an
extent measure of zero.

If an index of a phase qualifier is omitted, then sum-
mation is implied. For example, it follows that

Z Qaiﬁj ) (13)

€N B
=l

Qa,ﬂ = Qag N Qm =

which is the fraction of the total 2,5 interface formed
by an intersection with the closed phase region Q,,. It
follows that when both indices are contracted that

Qaﬁz Z Q@zﬂj’ (14)

ij€ENag

which is the total af interfacial domain. Similarly, the
fraction of a common curve domain formed by an inter-
section involving a closed phase region is

Z Qaiﬂj’m ) (15)

iTkENG gy

1=l

QUCZB’Y = QQB’Y N Qal =

and the fraction of a common curve domain formed by
an intersection involving two closed phase regions, or an
interface, is

Qa,8my = Qapy N Qaz N Q/im = Z Qaiﬁj'}’k . (16)
iTREN G 3~

i=l,j=m
It follows that when all indices of a common curve are
contracted that

Z Qaiﬂj'yk ) (17)

ijkEN(xB'y

Qaﬂ’v =

which is the total afy common curve domain. Be-
cause all order combinations of an entry in an index set
No,a € J1 UJq are equivalent, the definitions given by
Egs. (13) — (17) define all fractional domains associated
with a specific closed phase region(s).

The averaging operator can also be applied over regions
of a domain and summed to yield the overall macroscale
averages, which can be written for a phase as

<P>QQ,QN = Z <P>Qai,Q,€

1€Ny

for o € Jp (18)

for an af interface as

(Pa.s0. = Z (P)g, .0, fora,felp, (19)
1€N4

and for a common curve as

Z <P>Qni,ﬂm9~ for a, B,v € Ip
1ENq

<P> Qapy e

(20)

= Z <P>Qa,v By for 057/877 € j1:’ )
€N o
JENg

Py, 0.

(21)
where Q,, C Q.
Specifying P = 1, the entity extent measures can be
decomposed for a phase as

=3 (g, o= ¢ foracle, (22

i€N, 1€N,



for an af interface as

&l

€

=y Do po = > e fora,pep, (23)

i€N, i€N,

and for the a8y common curve as

P = Z Do, ,.0= Z P for a, B,y € Ip

€N, 1€N,
(24)
or
60‘57 = Z <1>Qaiﬂjv’vaﬂ = Z 60‘1‘75].77 for avﬁa’}/ €lp.
1€EN g i€ENg
JENg JENg
(25)

The intrinsic macroscale fluid pressure over a region
can be written as

P = Pa)q, g, foracl, (26)

17 (3
and the overall macroscale fluid pressure can be written
in terms of averages over regions as

1 e
= (Palq,, 0. = = e*ip™

e
i€Nq 1€N,

for € J¢ .

(27)

Similarly, the intrinsic macroscale capillary pressure

can be obtained for an individual fluid-phase region by

averaging over a subset of the interface 24,3, which can
be formulated as

o

p*if = _<’ywan>Qai[€aniﬁ for o, € Jp, a0 £ B, (28)
and the macroscale capillary pressure can be recovered
from the sum over all regions as

po‘ﬁ = ;
eaB

Tiﬁpaiﬁ for o, 8 €T, £ B . (29)
i€Nq

Eq. (29) allows for the computation of the macroscale
capillary pressure as a function of the macroscale capil-
lary pressure of the component regions associated with
a specified set of regions for either of the fluid phases.
This approach is useful for the case where either of the
fluid phases becomes disconnected and forms multiple
connected regions, which can result for example from fin-
gering or snap off of the non-wetting phase.

Variational methods can be used to derive a set of con-
ditions that must hold at equilibrium in a microscale two-
fluid-phase system [30]. A capillary pressure condition
resulting from this analysis can be written as

DPuwn + Pw — Pn + PunBwnDw =0 for x € Qupn , (30)

where x is a position vector that is restricted to lie on
the wn interface, pyy, is the density of the wn interface,
and g,,,, is a body force acceleration acting on the wn

interface. In the limiting case of a massless interface, Eq.
(30) reduces to

Dwn +Dw —Pn =0 for x € Oy, . (31)

The macroscale equilibrium condition can be determined
by applying an averaging operator to Eq. (31) yielding
<pwn + Pw — pn>Q =0 ; (32)

wn wn

which can also be written as

<_'7ume + Pw — pn>Q =0 ) (33)

wn>Qwn

or in terms of macroscale variables after evaluating the
averaging operator as

P+t —pnt =0, (34)

where p*" = (—yunJuw)q
and p™ = (Pn)g, q..-

Just as the overall intrinsic macroscale average of phase
pressures can be decomposed into intrinsic averages over
regions, the capillary pressure can be written in terms
of regional interface averages as well. Decomposition of
interfacial quantities are more complicated because of the
potential for the existence of multiple regions of each fluid
phase. The microscale equilibrium condition given as
Eq. (31) can be averaged over a region of a fluid phase
yielding the regional macroscale equilibrium condition for
capillary pressure given as

Qu. Pet = Pw)a,, qu.s

wn S lwn wn S éwn

(Pw — Pn +pw">9aiﬁ,9ai@ =0 fora,B€d,a#p,
(35)
or evaluating the averaging operator as

pif —p2if i — 0 for a,f €T, a# B, (36)

where the subscript denotes the microscale quantity be-
ing averaged, and the superscript denotes that the aver-
aging is computed over the fraction of the wn interface
corresponding to an interaction with the closed domain
of the i*" region of the « fluid phase.

Eq. (36) is an equilibrium condition that applies to
a specified fluid region, forming an additional set of
macroscale equilibrium constraints in addition to Eq.
(34). However, the equilibrium conditions given by Eq.
(36) will in general not agree term for term with Eq.
(34). Put another way, the capillary pressure of the wn
interface can vary from region to region. For example,
such variation is expected for the case of disconnected re-
gions of a non-wetting phase, which may form due to by-
passing and snap-off processes and each region may then
equilibrate at its own distinct rate. The resulting equi-
librium capillary pressure of a region is thus affected by
conditions under which the disconnected phase formed.

Note that in Eq. (34) and Eq. (36) the fluid phase
pressures are averaged over a boundary of the phase. Un-
der dynamic conditions and for irregularly shaped distri-
butions of fluids for systems with significant gravitational



effects, these interface averaged pressures can be differ-
ent from their volume averaged counterparts. When such
conditions do not exist, the capillary pressure averaged
over the interfacial domain ,,,, can be approximated
as

P 4 ptt = p" =0. (37)

The volume averaged region pressures may also be good
approximations for certain dynamic equations involving
capillary pressure, because phase pressures equilibrate
much more quickly than the interfacial curvature equi-
librates [80].

Eq. (34) can be related to the set of conditions given
by Eq. (37) according to

pwn +pw 7pn — ; Z Wiy (pwz‘nj +pwi ,pnj) ,
1§ E€ENwn

wn

(38)
where recall that each entry in N, is an index pair cor-
responding to regions of each fluid phase, respectively.
The particular weighting chosen ensures correspondence
between the respective terms on each side of the equa-
tion.

In this work, we assume that the wetting phase is con-
nected and focus on the connectivity of the non-wetting
phase. In this case, Eq. (37) simplifies to an equilibrium
condition for each component of the non-wetting phase:

pti 4t —pt =0 (39)

This expression reflects that each individual component
of the non-wetting phase reaches equilibrium indepen-
dently of the others based on the local pore geometry.
The equilibrium conditions are therefore determined in-
dependently for each individual feature. The removal of
any individual non-wetting phase component does not
alter the equilibria of the remaining components. It is
natural to consider how changing the number of regions
would affect the overall macroscale equilibrium state.
Based on a particular realization of a multiphase equi-
librium state, we can consider those equilibrium states
that would arise if some fraction of the regions of a fluid
phase were removed from the system and replaced by the
region of the other fluid phase bounding the removed re-
gion. Since each non-wetting phase feature reaches it’s
equilibrium state independently, the removal of one fea-
ture will not effect the equilibria of the remaining fea-
tures.

Given a non-wetting phase configuration that is com-
posed of multiple components, multiple equilibrium
states can be deduced based on the removal of compo-
nents. That is, we may generate additional equilibrium
states by considering subsets C,, C N,,. If some features
are removed, then Bf will attain a new value equivalent
to the cardinality of €,. The strategy is to manipulate
directly the topology based on the equilibrium conditions
and to consider the consequences for the macroscopic
equilibrium relationships. Since the resulting configu-
rations satisfy all relevant equilibrium conditions, they

represent valid equilibrium states. The values of relevant
macroscale quantities can be obtained from partial sums
for a subset C,:

By (Cn) = [Cnl (40)
€'(C,) = Z €, (41)
i€C,
(C) = D (42)
i€Cp
) =Y (43)
1€Cp
X(C) =) X", (44)
1€Cy
€75 (€,) = Z €S (45)
1€Cy,
1 —
p"(Cr) = = evip™ | and (46)
€"(Cp) ieze:n
1
pwn(en) S €wnipwn7¢ ) (47)
€ (Cn) z;:n

The wetting phase properties must also be updated to re-
flect the removal of non-wetting phase components. The
equilibrium pressure p* remains unchanged based on the
equilibrium conditions. The volume fractions and spe-
cific interfacial areas are updated as

C) =T+ D e, (48)

€(Cy) = € + Z €"® | and (49)

(50)

III. RESULTS AND DISCUSSION

Equilibrium configurations were generated for a two-
fluid-phase system within a periodic random close pack
of 1,964 equally-sized spheres. The cubic computational
domain was discretized to 900% and wetting and non-
wetting phases were randomly distributed within the
pore space to match a desired saturation. Equilibrium
states were thereby explored by fixing the fluid satura-
tions and allowing the fluid pressures and interfaces to re-
lax until an equilibrium state was reached. The evolution
of the multiphase system was computed at the microscale
using a multiphase implementation of the lattice Boltz-
mann method. Full details on the implementation of the
two-fluid-phase flow scheme are provided by McClure et
al. [81, 82]. Further details, including a demonstration
that the method is able to recover dynamic behavior of
the interface and common curve from the microscale, and
a resolution study for flow in porous media, are also avail-
able in the literature [83]. Once an equilibrium state was



achieved, the macroscopic state of the system was eval-
uated based on the results of the previous section. The
connected components of the non-wetting phase were de-
termined numerically, then averaged properties of each
connected component of the non-wetting phase were then
evaluated by numerically reconstructing the relevant do-
mains to perform averaging for the phases, interfaces,
and common curves [84].

Two approaches were used to initialize fluid satura-
tions in an attempt to influence the connectivity of the
non-wetting phase. For the first approach, blocks of
wetting phase were randomly inserted into a domain
that was initially saturated with a fully-connected non-
wetting phase. The second approach considered the in-
sertion of blocks of non-wetting phase into a system ini-
tially saturated with wetting phase. We find that either
initialization procedure can be used to generate two-fluid
configurations as needed to capture the relationships ex-
plored in this work. In both cases cubic blocks of phase
were added to the system until a specified wetting phase
saturation was achieved. The three dimensional position
of the inserted blocks was determined randomly. The
size of the individual blocks was 323. Any portion of an
inserted block that overlapped with the solid phase re-
mained as solid phase. Note that no attempt was made
to generate physically probable initial configurations for
the phase locations; we simply sought to explore a wide
range of possible equilibrium states. Thus, the objective
was to sample the space of possible microscale states and
evaluate the corresponding macroscale state.

Based on the initial phase configurations, a range of
different microscale equilibrium states were reached. The
connectivity of a phase determines the energetic states
that are possible. Molecules within a particular com-
ponent of the non-wetting phase can only explore the
energetic states that are accessible locally, which is con-
strained by the topology. To account for this, it is natural
to consider the Euler characteristic as a way to quantita-
tively account for the role of topology at the macroscale,
since it is the relevant topological invariant that accounts
for the connectivity of an object. Due to the discrete
width of the interfacial region in the LBM, a fully con-
nected wetting phase is obtained for each of the cases
considered.

The set of simulations performed included 46 equi-
librium configurations distributed across 0 < s% < 1.
We consider possible states by generating a sequence of
subsets for each realization. Given a particular multi-
phase configuration, the non-wetting phase components
were indexed based on their volume fraction such that
€ > €2 > ... > ¢"Ne., We then defined a sequence
of subsets G%k), such that all non-wetting components
1 < k are included in Gglk). Non-wetting components
with ¢ > k were removed from the system. Macroscopic
states were evaluated by applying Eqgs. (41) — (50) based

on G%k) for k=1,2,...,Bj. This approach allowed equi-
librium states to be generated in a very computationally

efficient manner. Since fluid saturations were initialized
randomly, arbitrarily many configurations could be sim-
ulated in parallel. Furthermore, when the non-wetting
phase was comprised of multiple connected components,
additional macroscopic states could be generated based
on the results of the previous section. Applying this ap-
proach yielded a total of 42,908 macroscopic states from
the set of 46 initial fluid configurations. The resulting
dense set of equilibrium points was used to evaluate the
uniqueness of the relationships p“"(s%), p“"(s%,€"™),
and pYn(s%, "™, x™).

The equilibrium relationship between the macroscale
capillary pressure, fluid saturation, specific interfacial
area, the FEuler characteristic, and the specific com-
mon curve length as a function of By is explored in
Fig. 2. Quantities are plotted in non-dimensional form
based on the sphere diameter D = 83.67 dx and inter-
facial tension v*™ = 30 mN/m, where the lattice length
was 6z = 1.0 pm. To obtain an equilibrium configu-
ration using the lattice Boltzmann method, 1.8 x 106
time steps were required. The simulation was continued
until the macroscopic value of the interfacial curvature
stabilized. Based on the results of previous study, the
timescale required for the curvature to reach an equi-
librium state is longer than the time required for other
macroscopic variables of interest to equilibrate, in partic-
ular the fluid pressures [80]. The error associated with
the curvature measurement was estimated by computing
gy = [pl" —pln — A" JUT| | a quantity that is identically
zero at equilibrium. This error is plotted in Fig. 3 De-
viations from zero are considered to be numerical errors
associated with the measurement of the interfacial cur-
vature. The mean error is 1.58% over all configurations.
Significantly larger errors are encountered when the in-
terfacial curvatures are high. These errors are most ap-
parent at very low wetting phase saturations. As the cur-
vature increases, the radius of curvature decreases. For
example, when p*™ = 10 the mean radius of curvature is
13.3 dx, p*™ = 20, the mean radius of curvature is only
6.67 dx. The interfacial width in the LBM is ~ 3 dzx, so
a decrease in accuracy is inevitable at high curvatures.
When the capillary pressure is high, measurements of the
interfacial curvature will tend to underestimate the true
value as a result.

The value of p*™ is plotted as a function of fluid sat-
uration in Fig. 2(a). This relationship demonstrates
similar features as compared to experimentally deter-
mined relationships. Nevertheless, it is important to
distinguish the capillary pressure-saturation data plot-
ted in Fig. 2(a) and the capillary pressure-saturation
data generated from standard experiments. In experi-
ments the capillary pressure is typically determined from
the difference between the phase pressures measured at
the boundary of the system. At equilibrium, this will
match the capillary pressure of the non-wetting compo-
nent that is connected to the boundary. The capillary
pressure of trapped non-wetting is not taken into con-
sideration. However, the volume of these features do

wn

w1



254
209 . .
Ioglo ( Bo )
§>_ 15+ 3
B %
LY
E Se. 2
o 104 “ow
1
5 0
0 o
0.00 0.25 0.50 0.75 1.00
SW
(a)
1.0+
log1o ( BB )
0.5-
3
a)
0.0-
I, & 2
> ) - &
1
L4
-05- R
P 0
r
-10- .
4
4
0.00 0.25 050 0.75 1.00
¥

0.8-
0.6 : logso (By)
a :
Ic
g, 0.4+
0.2+
0.0+
0.00 025 050 0.75 1.00
SW
(b)
124 .
% %
. L]
d e LY
9 N 10910 ( BS)
\
o 3
o |-
o
E °7- 2
w
1
31 0
0 -
0.00 0.25 050 0.75 1.00
7

FIG. 2. Equilibrium quantities plotted in non-dimensional form as a function of the wetting phase saturation s” and the
number of features By: (a) capillary pressure; (b) specific interfacial area per unit volume; (c) Euler characteristic per unit

volume; and (d) specific common curve length per unit volume.
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FIG. 3. Relative error for the interfacial curvature for equi-
librium configurations generated from the lattice Boltzmann
method. The mean error is 1.5 %; significantly higher errors
are encountered when the interfacial curvature is large.

contribute to measured values of saturation, since these
are also determined from the boundary—if the results

are not represented in terms of a transformed saturation.
Thus, the two variables may be measured in a fundamen-
tally inconsistent way. In Fig. 2(a), the capillary pres-
sure is determined as an average over the entire interface
Qun, weighting each feature according to the amount of
interface—it is simply the average capillary pressure of
the system.

The specific interfacial area per unit volume and spe-
cific length of the common curve per unit volume are
plotted in non-dimensional form in Fig. 2(b) and Fig.
2(d), respectively. While the length of the common curve
can be reasonably approximated as a function of the fluid
saturation, the specific interfacial area can take on mul-
tiple values for a given value of s¥ > 0.25. The pos-
sible values are clearly associated with the number of
non-wetting phase components in the system, with the
minimum interfacial area corresponding to a small num-
ber of features. This is the case because a larger and
more well connected non-wetting phase has the tendency
to minimize the global surface energy. This global mini-



mum is inaccessible from fluid configurations with a large
number non-wetting phase components.

FIG. 4. Data points for the relationship between the fluid
saturation, specific interfacial area, capillary pressure, and
Euler characteristic.

Previous studies have focused primarily on the devel-
opment of empirical functional forms to predict the cap-
illary pressure. Among these forms are traditional rela-
tionships between the capillary pressure and fluid satu-
ration, p*“"(s%), such as those defined by Leverett, [85],
van Genuchten [86], and Brooks and Corey [87]. More
recently, efforts have focused on studying the role of in-

terfacial area as an additional state variable. [48, 88-92].

wn

While neither p*™ nor €“™ are a unique function of the

wn ( U) um.)

fluid saturation, it has been suggested that p ,€
is a unique function. In this context, the data plotted in
Fig. 2(a) and Fig. 2(b) result from the projection of a
three-dimensional system onto a two-dimensional plane.
Many authors have continued the tradition of empiri-
cally constructing analytic functional forms to approx-
imate trends observed from data [45, 49, 93-97]. In this
work, we consider a very dense set of points that can be
used to quantitatively evaluate the uniqueness of the rela-
tionship between capillary pressure and other geometric
variables. The set of data points generated are shown
in Fig. 4, with the Euler characteristic plotted in color.
The surface shows that the possible values for the inter-
facial area are constrained to a ribbon, with the width
of this ribbon increasing when a relatively large number
of non-wetting phase components are possible. For low
wetting phase saturations where the non-wetting phase
is almost entirely connected, the interfacial area tends to
take on only a single value for a given fluid saturation.
For s > 0.5, many possible configurations are possi-
ble due to the fact that the non-wetting phase is divided
into a large number of components that occupy differ-
ent parts of the pore space. Since the connectedness of

the non-wetting phase is directly related to X%, the Euler

10

characteristic is likely to be important to characterize the
average behavior of these microstates.

An important aspect of the analysis of the data pre-
sented in Fig. 4 is the method used to assess the unique-
ness of multi-dimensional relationships. If we consider
PP (sP), pn(s%, e™™), and p*™(s™, €™, x™) as a hierar-
chy of macroscopic approx1mat10ns designed to capture
the essential information from the microscopic states,
we must then develop a consistent approach to assess
how well these various approximations perform. While
the data should be smooth if a unique function ex-
ists, constraining the fits to a posited specific particular
functional form introduces additional errors that can be
avoided if more general relationships are considered. In
order to assess the impact of additional variables, errors
must be assessed in a consistent way for higher dimen-
sional data sets. Generalized additive models (GAMs)
provide a straightforward means to address the challenges
of evaluating smooth relationships for multi-dimensional
data sets, and estimating the associated errors. GAMs
are routinely applied to produce locally-smooth spline
approximations for general data. We rely on the GAM
implementation available in the mgcv package within the
R software distribution. A complete description of the
procedure used to produce the GAM fits for this paper
is provided by Wood et al. [98-100]. A predictor is con-
structed from a sum of smooth basis functions, with coef-
ficients that are automatically determined from the data
based on principles of maximum likelihood. Fits are de-
termined using generalized cross-validation (GCV) with
tensor product smoothing penalties to ensure the surface
is smooth. The ability of the GAM to explain the vari-
ance within the data indicates the extent to which the
functional form explains the observed behavior. We gen-

erated GAM fits for each of the relationships pUn(sv),

PP (57, €7), and p*m(s”, €™, x™). The residuals for
the fits are plotted in Fig. 5. Results clearly demon-
strate that successively better approximations are ob-
tained when including the interfacial area and the Euler
characteristic. The implication is that including a mea-
sure of connectivity is important to characterize systems
where many topologically distinct microstates are possi-
ble. The Euler characteristic is especially important at
high wetting phase saturations, due to the fact that as
the non-wetting phase becomes increasingly disconnected
many configurations are possible. All three relationships
are non-unique in the immediate vicinity of s¥ = 1. This
is unsurprising, since as s* — 1, awn — 0 but p“" is
undefined in the limit. For the low non-wetting phase
saturation limit, the non-wetting fluid is trapped in a
small number of components. Depending on the pores
where these components are trapped, a different p*™ will
be obtained, and the relationships become non-unique.

The mean and median absolute relative errors were
computed based on the information plotted in Fig. 5.

These values were 15%, and 8%, p*"(s™) 1%, 0.8% for
P (s, €M), and 0.3%, 0.2% for p*"(s™, "™, ™). From
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FIG. 5. Residual for GAM fits associated with each of the re-
lationships p“™(s%), p“™(s”,e"™) and p“"(s%,"™, x™). In-
cluding the interfacial area reduces the hysteresis significantly,
and including both the interfacial area and Euler characteris-
tic eliminates nearly all hysteresis from the underlying data.

these results, it is clear that including the interfacial
area does not completely eliminate hysteresis observed
in the p“"(s%) relationship. This is attributed to the
fact that connectivity is an essential aspect of the topol-
ogy of a phase, which constrains the equilibrium states
that are accessible to the system. The Euler character-
istic provides a quantitative measure of the connectivity
such that the microscale states can be characterized more
completely at the macroscale.

IV. SUMMARY AND CONCLUSIONS

e Theory was developed to describe interfacial equi-
librium conditions for a multiphase porous medium

11

system in which the non-wetting phase is sub-
divided into an arbitrary number of connected com-
ponents.

e An efficient approach was developed to generate
equilibrium states based on the connected non-
wetting phase components and used to evaluate di-
rectly the corresponding equilibrium states at the
macroscale.

e A dense set of 42,908 equilibrium configurations
were generated to determine equilibrium values for
the fluid saturation, phase pressures, interfacial
curvatures, specific interfacial areas, and specific
length of the common curve.

e Analysis of the equilibrium data demonstrates that
a relationship among capillary pressure, interfacial
area, and Euler characteristic removes nearly all of
the hysteresis in the capillary pressure relationship.
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