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Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many con-
texts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The
geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly
found in nature, have found application in all these systems. Several recent studies have examined
defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube
radius. Here, we study the mechanics of tubular crystals with variable tube radius, with dislocations
interposed between regions of different phyllotactic packings. Unbinding and separation of disloca-
tion pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at
the expense of another. In particular, glide separation of dislocations offers a low-energy mode for
plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by
step. Through theory and simulation, we examine how the tube’s radius and helicity affects, and
is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong
bending rigidity can alter or arrest the deformations of tubes with small radii.

PACS numbers: 61.72.Bb, 61.72.Qq, 61.72.Yx, 62.20.fq

I. INTRODUCTION

In botany, the arrangements of leaves around a stem,
seeds on a pinecone, spines on a cactus, scales on a
pineapple, etc. often follow beautifully regular spiraling
patterns that have been a subject of interest for centuries,
known as phyllotaxis (“leaf arrangement”) [1–4]. The
spirals of nearest-neighbor connections, known as paras-
tichies, form families of parallel curves characterized by
integer indices called parastichy numbers, indicating the
number of distinct spirals in the family (see Fig. 1(a) and
Fig. 2(b)). An intriguing feature of botanical phyllotaxis
is the widespread appearance of parastichy numbers that
are successive members of the Fibonacci sequence (or of
similar sequences called the double Fibonacci sequence
and the Lucas sequence [3, 4]). In Fibonacci phyllotaxis,
the divergence angle d, the azimuthal angle between con-
secutive sites (ordered by radius or height), is then ap-

proximately related to the golden mean ϕ = 1
2 (1 +

√
5)

by d ≈ 2π(1− ϕ−1) ≈ 137.5◦[1–4].

In recent decades, there has been a growing appre-
ciation of the the importance of phyllotaxis outside of
botany; it can also arise in physical systems under the
general scenario of isotropically repulsive particles self-
organizing on a compressing cylinder or a growing disc.
Levitov predicted that repulsive vortices in a Type II su-
perconductor would naturally converge toward Fibonacci
parastichy numbers [5, 6]. Fibonacci spirals were soon
thereafter observed in experiments on repulsive ferrofluid
drops in a magnetic field [7]. Recently, the dynamics of
such phyllotactic growth has been studied in a “magnetic
cactus” model of repulsive magnets on a cylinder [8, 9].

More generally, regular helical packings on cylinders
that do not necessarily follow the Fibonacci or Lucas se-
quences are widespread in biology and physics. Such sys-

tems were called “tubular crystals” by Erickson [10], who
suggested that the geometrical language of phyllotaxis,
including the parastichy number labeling, is a natural
description for such systems. He had in mind tubu-
lar assemblies in microbiology such as rod-like viruses
or bacteriophage tails, bacterial flagella, and intracellu-
lar biofilaments such as actin and microtubules. Pack-
ings of spherical particles in cylindrical capillaries or on
cylindrical surfaces also show more general phyllotactic
arrangements [11–13]. Covalently-bonded single-walled
carbon nanotubes (SWCNTs) and related materials such
as boron nitride nanotubes provide further important ex-
amples: their hexagonal unit cells form helical lattice
lines along the tube, with a traditional labeling by a pair
of integer indices in correspondence with the parastichy
numbers of phyllotaxis [14]. It is interesting to note that
connections between phyllotaxis and crystallography on a
periodic space date back to foundational work in botan-
ical phyllotaxis by the botanist Louis Bravais and his
brother, crystallographer Auguste Bravais [15].

In this paper, we study the mechanics of plastic defor-
mation of tubular crystals via the nucleation and glide
separation of pairs of dislocation defects in the tubular
lattice. The motion of these dislocations causes a paras-
tichy transition, i.e., a change in the parastichy num-
bers of the tubular crystal [16], thus providing a low-
energy mode for the release of externally imposed strain.
For maximum simplicity, we focus on triangular lattices,
which are described by an isotropic elastic tensor, and
treat the tubes as thin-sheet materials. In simulations,
we model these materials as networks of harmonic springs
with a bending rigidity. In the continuum limit, the elas-
tic interactions of dislocations on perfectly cylindrical
surfaces of fixed radius have recently been studied [17].
Here we focus on the changes in tube radius and helicity
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that accompany the parastichy transitions for a finite-
sized elastic network subject to plastic deformations.

We calculate the critical stresses required to plasti-
cally deform tubular crystals by dislocation pair nucle-
ation and glide motion. From among several possible
dislocation pair orientations, we identify the pairs that
unbind at lowest applied stress. As each defect orien-
tation possibility represents a different parastichy transi-
tion, we identify pathways of plastic deformation through
the space of parastichy numbers under successive dislo-
cation pair unbindings, both analytically and through
numerical modeling. These pathways reveal stable and
unstable crystal lattice orientations under axial or tor-
sional applied stress.

We show that a bending rigidity helps to stabilize tubu-
lar crystals against axial elongation, and we identify a
regime in which the bending rigidity destabilizes narrow
tubes with respect to spontaneous tube-widening defor-
mations. These effects of the bending energy in simula-
tion are well-described by continuum theory predictions.
Additionally, during the plastic deformation process we
find that the dislocations cause reorientations of the tube
axis, as well as non-trivial tube radius profiles in the tran-
sition regions between different phyllotactic tessellations.
We provide analytical descriptions of both geometrical
effects.

When disks are packed on a cylindrical surface of fixed
radius R, incommensurability of a perfect triangular lat-
tice with the azimuthal periodicity 2πR can cause the
ground state either to distort into a strained rhombic
lattice, such as the one depicted in Fig. 1(b) [16, 18], or
else to develop a one-dimensional, helical “line-slip” de-
fect interrupting an otherwise triangular packing like the
one in Fig. 1(c) [19]. The same is true for packings of
spheres that are constrained to lie in contact with a solid
cylinder, as the sphere centers all sit at a fixed radius
R from the center line [13, 20, 21]. The relative stabil-
ity of uniform rhombic packings versus line-slip packings
has been shown recently to depend on the softness of the
interparticle potential [13].

Our focus here is on a different kind of system: Al-
though we retain the tube topology, we remove the con-
straint of a perfectly cylindrical substrate or wall of fixed
radius, instead allowing the tubular crystal’s shape to
vary as a function of space and time. The tube shape
is determined by the energy-minimizing positions of sites
with a given bond network, possibly including defects.
By construction, in this system there are no line-slip de-
fects or extended rhombic packings. Instead, the triangu-
lar lattice topology is interrupted only by isolated dislo-
cations nucleating in pairs, as depicted in Fig. 1(d), and
moving by successive bond flips (see Fig. 4) to produce
intermediate states like the one shown in Fig. 1(e,f). The
total number of bonds in the lattice is conserved in this
process. The tube radius and the orientation of the lat-
tice on the tube both adjust in response to the passage of
a dislocation through the system, due to well-established
geometrical rules that we describe in Section II. For ex-
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FIG. 1: (Color online) (a) A triangular lattice of disks in a
cylindrical surface. The three parastichies intersecting at the
disk outlined in the purple (dark gray) ring are shown as the
magenta (solid), blue (dotted), and red (dashed) helices. (b)
A rhombic packing of disks in a cylindrical surface. (c) A
triangular packing of disks in a cylindrical surface with a spi-
ral line-slip defect or “stacking fault”. The disks in contact
with the line-slip defect have reduced coordination number (5
neighbors instead of 6) and are colored green (gray). (d) A
tubular crystal consisting of a triangular packing of spheres
interrupted by the nucleation of a dislocation pair, producing
two five-coordinated spheres labeled green (medium gray) and
two seven-coordinated spheres labeled magenta (dark gray).
(e) The dislocations nucleated in (d) are now spatially sepa-
rated. (f) A different view of the tubular crystal in (e), high-
lighting that the region between the dislocations is narrower
than the region outside the dislocations.

ample, the tubular crystal in Fig. 1(e,f) is narrower in the
region between the dislocations than in the region out-
side. Further motion of the dislocations away from each
other expands the new, narrower tessellation at the ex-
pense of the original, wider one, resulting in a plastically
deformed tubular crystal.

These considerations describe SWCNTs, where the
honeycomb lattice of hexagons can be interrupted by dis-
locations comprised of pentagon-heptagon pairs. Such
dislocations can arise and move through the lattice via
successive carbon-carbon bond rotations, called Stone-
Wales rotations, altering the tube’s radius and helicity
in the process [22]. Detailed quantum mechanical simu-
lations have been employed to study plastic deformation
of these objects by dislocation motion [23–27], and there
is experimental evidence confirming the role of defect mo-
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tion in the plasticity of strained nanotubes [28–30]. One
reason for the importance of such dislocation-mediated
deformations is that the resulting change in phyllotactic
indices alters the SWCNT’s electronic properties [22, 25].
In addition, the presence of dislocations within a SWCNT
provides a source of disorder that decreases the conduc-
tivity [29, 31].

Microtubules offer another example of helical tubular
crystals, in this case composed of tubulin proteins, where
the tube radius is determined by the crystalline network.
Microtubules are biofilaments responsible for the me-
chanics of the eukaryotic cytoskeleton, and are especially
important in cell division [32]. Here, dimers of the protein
tubulin assemble into protofilaments parallel or nearly
parallel to the tube axis, with an axial shift between ad-
jacent protofilaments giving rise to the shallower heli-
cal parastichy [33]. Microtubules have been observed to
change protofilament number along their length, strongly
suggesting the presence of dislocations [34].

Dislocation-mediated plastic deformation has also been
suggested as a mechanism for the growth of rod-shaped
bacteria such as E. coli, via circumferential climb motion
of dislocations in the peptidoglycan network of the bac-
terial cell wall, with new material added to the wall at
each climb step [35–37]. Plastic bending deformations of
growing bacteria can also be understood in the context
of this model [38].

Dislocations are, furthermore, readily apparent in
botanical phyllotaxis, where parastichies begin or end
in association with a parastichy transition as the radius
changes. In many cases, such as the prototypical example
of the sunflower head, dislocations are arranged in ring-
shaped grain boundaries to accommodate the advance-
ment of the parastichy numbers through the Fibonacci
or Lucas series, in so-called rising phyllotaxis [3, 39, 40].
On the other hand, some plants regularly possess isolated
dislocations allowing parastichy number shifts of ±1 as
the radius changes, akin to our focus in this paper. Ex-
amples of such plants include many cacti, the firmoss
Lycopodium selago, and scales on the fruit of the Raffia
palm [3, 39].

The rest of this paper is organized as follows. In Sec-
tion II we describe the phyllotactic geometry of tubular
crystals and the parastichy transformations caused by the
unbinding of dislocations. Section III gives the predic-
tions of continuum elasticity for the mechanics of plastic
deformation in tubular crystals, first without a bending
energy and then with a bending energy introduced as an
important perturbative correction. Section IV presents
results of numerical simulations modeling tubular crys-
tals as networks of harmonic springs with a bending en-
ergy, probing the critical axial tension required to unbind
and separate dislocation pairs over a wide range of tube
geometries. We also investigate reorientation of the tube
axis caused by the presence of dislocations. Finally, in
Section V we examine the change in radius of the tube
within the transition region around an isolated disloca-
tion, including an interesting oscillatory behavior of the

radius profile.

II. PHYLLOTACTIC DESCRIPTION OF
TUBULAR CRYSTALS

A. Pristine tubular crystals

In the study of phyllotaxis, the helical arrangements
of leaves, petals, etc. are described in terms of the he-
lices along directions of nearest-neighbor contacts, called
parastichies [41]. These contacts define lattice direc-
tions of an associated 2D lattice that has been rolled
into a cylinder. Each parastichy is a member of a fam-
ily of stacked parastichy helices, related by translations
along the cylinder axis. Fig. 1(a) shows three parastichies
threading through a particular lattice site in a triangu-
lar lattice, while the blue (dark gray) helices in Fig. 2(b)
comprise the parastichy family consisting of all paras-
tichies along the direction ±a2 as labeled in the figure.
Each parastichy family collectively accounts for all lattice
sites. The number of distinct members of a particular
parastichy family gives a parastichy number. If all the
lattice sites are ordered by their height along the cylin-
der’s axis and labeled with an axial index i, then two
sites neighboring along a parastichy of parastichy num-
ber q will differ in their axial indices by ∆i = q [3, 15, 41].

For a triangular lattice, there are three families of
parastichies, and the tubular crystal tessellation is de-
scribed by a triple of integer parastichy numbers (|n −
m|, n,m). If all three (positive) parastichy numbers have
a common factor k > 1, then the lattice has a k-fold rota-
tional symmetry, where k is known as the jugacy. Since
the first of the three parastichy numbers is the differ-
ence of the other two, a triangular lattice tessellation of
a tubular crystal can be uniquely labeled by an ordered
pair of parastichy numbers. We choose to use the rep-
resentation (m,n) where m is the parastichy number of
the steepest right-handed helix, and n that of the steep-
est left-handed helix. The indices are then restricted to
the range 1

2n ≤ m < 2n.
The geometry of a pristine tubular packing of

spheres or the hexagons of a carbon nanotube is well-
approximated by a triangular packing of discs in the
surface of a cylinder [10, 16], and the latter situation
is much easier to describe with precision. Consider a
triangular packing of discs in the plane, with two prim-
itive lattice vectors a1 and a2, where a2 is oriented 60◦

counterclockwise from a1 and both vectors have length
equal to the lattice spacing a. As shown in Fig. 2, we
can roll up the packing into a tube by choosing a lat-
tice vector C = c1a1 + c2a2, with c1, c2 ∈ Z, to serve
as a circumference vector (also referred to as the char-
acteristic vector), so that lattice sites separated by C in
the plane are mapped to the same site on the cylinder.
Since every step upward along the n-parastichy raises
the axial index by ∆i = n, and likewise every step down-
ward along the m-parastichy lowers the axial index by
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∆i = −m, the circumference vector can be expressed as
C = −na1 + ma2. The resultant path has a net change
of ∆i = −nm + mn = 0 in the axial index, as must be
true for a path beginning and ending at the same point
on the cylinder. The radius of the tube (Fig. 2(c)) is
therefore, to an excellent approximation in all but the
smallest-diameter tubes,

R ≈ 1

2π
|C| = a

2π

√
m2 + n2 −mn. (1)

The orientation of the lattice on the tube can be de-
scribed by the angle φ that the n-parastichy, the steep-
est left-handed helix of nearest neighbors, makes with the
cylinder axis:

tanφ ≈ 2√
3

(
m

n
− 1

2

)
. (2)

Using the n-parastichy to define φ is of course arbitrary;
in general the lattice directions make angles φ + qπ/3,
q ∈ Z, with the cylinder axis. For a pristine (defect-
free) tubular crystal in mechanical equilibrium, the pair
of “geometrical descriptors” (R,φ) is thus in one-to-
one correspondence with the pair of parastichy numbers
(m,n) that identifies the tessellation of the tubular crys-
tal. Our choice 1

2n ≤ m < 2n restricts φ to the interval
0 ≤ φ < 60◦. Figs. 2(a,b) introduce a color-code for the
six primitive lattice directions that we will use through-
out this paper. Equations 1 and 2 are exact for a packing
of disks in a cylindrical surface, and nearly exact for all
but the few smallest tubular crystals; more complicated,
implicit equations for the geometrical parameters of a
tubular crystal may be solved numerically to give R and
φ exactly [10, 16].

Two φ-values correspond to achiral packings. For
φ = 0, we have m = 1

2n and one of the parastichies
is a straight line along the cylinder axis. The “armchair”
single-walled carbon nanotube geometry has its hexagons
centered on such a lattice [14]. The other achiral config-
uration has φ = 30◦, m = n, and one of the parastichies
is a circle around the cylinder’s circumference; this corre-
sponds to the hexagon centers in the “zigzag” nanotube
geometry.

B. Geometry of plastic deformation

If a tubular crystal is to undergo plastic deformation
changing R and φ, how can we accomplish the neces-
sary parastichy transition altering (m,n)? One option,
termed “continuous contraction” by Harris and Erickson
[16], is to break contacts along one of the parastichies
uniformly throughout the lattice, thus replacing the tri-
angular packing with a rhombic one (see Fig. 1(b)), and
to distort the rhombic packing until a new set of con-
tacts is made, reestablishing the triangular lattice with
a new pair of parastichy numbers [18]. Such continuous
contractions are the basis for parastichy transitions in

botany and are essential to understanding the widespread
appearance of numbers from the Fibonacci and similar
sequences as parastichy numbers [2, 4]. Levitov studied
continuous transitions for two-dimensional lattices of re-
pulsive particles under compression, finding a physical
basis for the prevalence of Fibonacci parastichy numbers
in this scenario [5, 6]. However, in a physical context,
such transitions typically involve large energy barriers,
proportional to the length of the parastichy with broken
bonds.

Here we instead examine a much more localized (and
lower energy) type of parastichy transition: the motion
of a dislocation pair through the triangular lattice. Each
dislocation can be viewed as a pair of point disclina-
tions, a positive disclination at a five-coordinated site and
a negative disclination at a seven-coordinated site (see,
e.g., [42]). The dislocation is characterized by a Burgers
vector b = −

∮
(∂u/∂l)dl where u is the vector field of

displacements from the pristine lattice, and the integra-
tion is along a counterclockwise Burgers circuit enclosing
the dislocation [43]. From a pristine triangular lattice, a
pair of dislocations with Burgers vectors b, −b can be
created by a bond flip, transforming four six-coordinated
sites to a pair of 5-7 disclination pairs (see Fig. 4). Here
b is a two-dimensional vector, b = b1a1 + b2a2, with
b1, b2 ∈ Z.

The dislocations can then mediate plastic deformations
by moving through the lattice by either glide (along the
directions ±b) or climb (perpendicular to b) via succes-
sive local rearrangements. As the pair of dislocations
moves apart, a region of tubular crystal with a differ-
ent circumference vector C′ = C+b, grows between the
two dislocations, at the expense of the original tubular
topology C [16]. Following the “Frank criterion” [44], we
will consider only dislocations with Burgers vectors equal
to the primitive lattice vectors, b = ±a1, ±a2, or ±a3

where a3 = a2 − a1. Therefore, each parastichy transi-
tion changes each of m,n by either ±1 or 0, as given in
the following table:

b a1 a2 a3 −a1 −a2 −a3

∆m 0 +1 +1 0 −1 −1
∆n −1 0 +1 +1 0 −1

(3)

For comparison, the high-energy barrier, continuous
contraction process described above results in one
of the (usually more drastic) parastichy transitions
(∆m,∆n) ∈ {(−n, 0), (0,m), (m− n,m− n)} if m > n,
or (∆m,∆n) ∈ {(0,−m), (n, 0), (n−m,n−m)} if n <
m [16]. (If m = n then the only available continuous
contraction doubles n.)

Fig. 2(d) illustrates the plastic deformation of a tubu-
lar crystal with initial parastichy numbers (m,n) =
(15, 15), the outer yellow (light gray) region, into a new
tessellation (m′, n′) = (15, 14), the central dark gray re-
gion, by glide motion of a dislocation pair whose right-
moving dislocation has b = a1. The central dark gray
region is slightly narrower than the outer yellow (light
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gray) region (as in Fig. 1(e,f)), and the purely circum-
ferential parastichies in the outer region become a single
shallow helix in the central region. The lattice sites of
the tubular crystal are here the nodes of a discretized
surface, as simulated using the method described below
in Section IV.

We will restrict our attention to dislocation glide and
not climb. Glide is more relevant to colloidal cylindrical
crystals, provided the density of vacancies and intersti-
tials is low, and exit and entry of colloidal particles to and
from the surrounding medium are rare events. Climb dy-
namics is more natural in the context of elongating bac-
teria, where the extra material needed for climb comes
from metabolic processes inside the cell [36]. Because a
dislocation can glide either parallel or antiparallel to its
Burgers vector, we have a total of six distinct Burgers
vector pairs ±b to consider for each (m,n).

III. MECHANICS OF PLASTIC
DEFORMATION: ANALYTIC PREDICTIONS

A. Critical stresses for dislocation pair unbinding
with a stretching energy

Our goal is to understand the mechanics of plastic de-
formation in tubular crystals, as mediated by dislocation
glide. We start with the usual elastic free energy of bond
stretching and compression for isotropic two-dimensional,
planar crystals,

Fs = 1
2

∫
dA
(
2µuijuij + λu2

kk

)
, (4)

where the six-fold symmetry of a triangular lattice is suf-
ficient to ensure isotropy [43]. Here µ and λ are the
Lamé coefficients, and uij(x) = 1

2 [∂iuj(x) + ∂jui(x)]
is the strain tensor in terms of the displacement vec-
tor field u(x). The two-dimensional Young’s modulus
is Y = 4µ(µ+ λ)/ (2µ+ λ) [45].

In a stress tensor field σij(x), a dislocation with Burg-
ers vector b experiences a force

fi = bkσjkεijz, (5)

known as the Peach-Koehler force [43, 44], where εijz is
the Levi-Civita tensor. On an infinite plane (as opposed
to a cylinder), the interaction energy of two dislocations
with opposite Burgers vectors b, −b gliding apart with
separation r = rb/|b| is [44, 46]

Fs(r) = A|b|2 ln(r/a)− bkσext
jk εijzri + 2Ec (6)

where A ≡ Y/(4π), σext
jk is a constant external stress

tensor field, a is the lattice constant, and Ec is the core
energy of a dislocation. Let θ be the angle between b and
a preferred direction x̂ (this will ultimately become the
cylinder axis; see Fig. 2(a,b)). Under the Frank criterion
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FIG. 2: (Color online) Schematic illustration of the phyllotac-
tic arrangement of sites in tubular triangular crystals. (a) 2D
triangular packing of discs, with a circumference vector C
selected to roll the planar lattice into a cylinder with phyl-
lotactic indices (m,n) = (6, 5) by identifying the two dotted
lines, giving a cylinder axis parallel to the dashed line. The
six primitive lattice directions are shown as the six colored
arrows. Number labels are the axial index of the lattice sites
in order of increasing x-coordinate. (b,c) The tubular crystal
with (m,n) = (6, 5), a triangular packing of spheres approxi-
mating the cylindrical packing of discs obtained from (a), in
both side (b) and top (c) views. The geometrical parameters
φ, describing the lattice orientation, and R, the tube radius,
are shown in (b) and (c) respectively. Blue helices in (b) fol-
low portions of the 5 parastichies along a2. The ai arrow
legend in (a) and (b) identifies lattice directions in the planar
crystal with the lattice directions in the tubular crystal’s tan-
gent plane. (d) Plastic deformation of a tubular crystal from
an initial (m,n) = (15, 15) configuration in yellow (light gray)
to an (m′, n′) = (15, 14) configuration in dark gray by glide of
a dislocation pair with b = a1; the figure shows a snapshot of
the deformation process as the dislocations glide apart. Posi-
tive and negative disclinations are marked by green (medium
gray) and magenta (dark gray) spheres, respectively.

|b| = a, the elastic energy reduces to

Fs(r) = Aa2 ln(r/a) +
1

2

(
σext
xx − σext

yy

)
sar sin(2θ)

− σext
xy sar cos(2θ) + const. , (7)

where s ≡ sign [b · x̂], which is +1 (or −1) if the dislo-
cations increase their separation by gliding parallel (or
antiparallel) to their Burgers vectors. We take the Burg-
ers vector b to belong to the dislocation gliding with
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projection along the +x̂ direction. The corresponding
force along the glide direction is then

fg(r) = −Aa
2

r
− 1

2

(
σext
xx − σext

yy

)
sa sin(2θ)

+ σext
xy sa cos(2θ). (8)

At small separation r, the force is dominated by the at-
tractive stress field of the dislocation pair. At large r,
however, the dislocations can be driven apart, depending
on the signs of the components of σext and the value of
θ. In this case, the force vanishes at a maximum in the
one-dimensional energy landscape [17, 47], at separation

r∗ =
sAa

σext
xy cos(2θ)− 1

2

(
σext
xx − σext

yy

)
sin(2θ)

. (9)

If we set r∗ equal to the lattice constant a, we can find the
critical stress values necessary to pull apart a dislocation
pair nucleated from the pristine lattice by a single bond
flip (see Fig. 1(d) or Fig. 4(b)). These critical stresses,
which we denote with a dagger symbol, are given by

(σxx − σyy)
†

= −2sA/ sin(2θ), (10)

σ†xy = sA/ cos(2θ). (11)

While continuum elasticity theory is expected to break
down at the scale of the lattice constant a, we will find
in Sec. IV that continuum theory predictions obtained
by setting r∗ = a nevertheless yield quantitative insights
into numerically modeled tubular crystals.

On a cylinder, the energetics of a dislocation pair at
finite glide separation is different than on the plane, as
each dislocation feels the stress field of all the periodic
images of the other dislocation, so the dislocation pair
interacts like a pair of grain boundaries in the infinite
plane. The dislocation pair energy on a cylinder was
calculated in Ref. [17], and for a separation x along the
cylinder axis and y along the azimuthal direction can be
written (up to a constant for fixed θ) as

Fs(x, y)

Aa2/2
= ln [cosh x̃− cos ỹ]

+ x̃

(
sinh x̃ cos(2θ) + sin ỹ sin(2θ)

cos ỹ − cosh x̃

)
+

2R

a
[σ̃xy(ỹ sin θ − x̃ cos θ)− σ̃yyx̃ sin θ

+σ̃xxỹ cos θ] (12)

where we use dimensionless quantities x̃ ≡ x/R, ỹ ≡ y/R,
and σ̃ij = σext

ij /A. Thus, at separations large compared
to the cylinder radius R, the dislocations attract with a
linear potential (second term of Eq. 12) that can compete
with the linear term from the external stress.

For dislocation separations small compared to the
cylinder radius, r � R, the stretching energy for disloca-
tions on a cylinder reduces to that on a plane. Therefore,
in examining the stress required to unbind and separate

a dislocation pair from an initial separation of one lat-
tice spacing, it is appropriate to start with the stretching
energy of Eq. 7, giving the critical stresses in Eqs. 10
and 11. Those critical stresses are of order A = Y/(4π),
whereas the stress magnitude required to ensure that dis-
locations continue to glide apart at large distance x→∞
is of smaller order ∼ (a/R)A, as obtained from the form
of Eq. (12) [17]. So, an imposed stress great enough to
unbind a dislocation pair at separation r = a is sufficient
to ensure continued glide to infinite separation.

Our continuum approach to dislocation energetics ne-
glects a small periodic Peierls potential arising from the
discreteness of the underlying lattice, as well as the as-
sociated Peierls stress needed to overcome it [44]. In
this paper, we assume a small nonzero temperature suffi-
cient to allow easy passage over these corrections to our
continuum energy formulas. Even without a small tem-
perature to help overcome the Peierls barrier, the size of
the critical stresses σ† ∼ A alone may be sufficient, as
the maximum Peierls stress is typically several orders of
magnitude smaller than µ ∼ A [44].

The external stress typically acts to pull apart three
of the six possible dislocation pairs with elementary, op-
posite Burgers vectors, whereas the other three disloca-
tion pairs are pushed together. The critical stress values
of Eqs. (10,11) do not depend on R, as the energetics
at these tight separations are the same as on the plane;
however, they do depend on the lattice orientation φ with
respect to the cylinder axis through the parastichy angle
θ = φ + q · 60◦, q ∈ Z. On the other hand, each dislo-
cation unbinding event changes both R and φ. (Recall
from Sec. II that we define φ as the angle made by the
steepest left-handed parastichy with x̂, the cylinder axis;
see Eq. (2).)

The critical stresses of Eqs. (10) and (11) for dislo-
cation unbinding are plotted in Fig. 3 using the color
scheme introduced in Fig. 2 for the Burgers vector b. The
arrows on the curves in Fig. 3 record whether φ increases
or decreases as a result of the associated plastic deforma-
tion event. If a tubular crystal with a given parastichy
tilt φ is subjected to an external stress that slowly rises
from zero until a dislocation unbinding event occurs, then
we need only examine the Burgers vector pair with the
lowest critical stress σ† at a given φ. In this scenario, for
pure axial stress σ†xx > 0, we see in Fig. 3(a) a “flow” in
φ away from 0 or 60◦ and toward 30◦, while the cylinder
radius decreases. Because φ = 30◦ is an achiral geometry,
the tube will thus evolve toward an (approximately) achi-
ral state as its radius shrinks. This deformation pathway
is in qualitative agreement with molecular dynamics sim-
ulations of carbon nanotubes showing that in the ductile
regime of ∼ 10% strain and high temperature, plastic de-
formations rotate the graphene orientation on the tube
away from the armchair state (φ = 0) and toward the
zigzag state (φ = 30◦) [22, 23].

For an applied stress σ†xy that is purely torsional,
Fig. 3(b) reveals a flow away from φ = 45◦ and toward
φ = 15◦. If the sign of σext

xy is reversed, φ = 15◦ be-
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comes unstable and φ = 45◦ becomes stable. Meanwhile,
the radius changes nonmonotonically, depending on the
value of φ. Interestingly, molecular dynamics simulations
of SWCNTs under torsion [26] have found that φ = 15◦

is a critical angle at which there is a change in Burgers
vector of the dislocation pair that becomes stable rela-
tive to the pristine lattice at lowest torsional strain, and
at which the torsional strain per unit length γ∗ required
to unbind this dislocation pair has a cusp qualitatively
similar to that in Fig. 3(b). Eq. (11) therefore appears
to offer geometric intuition for those numerical findings.

B. Effects of the bending energy

So far we have neglected the bending energy Fb of the
tubular crystal, which we now introduce:

Fb =
1

2
κ

∫
dA [H(x)]

2
, (13)

where κ is the bending modulus and H(x) is the local
mean curvature, equal to the sum of the two principal
curvatures of the surface. There could in general be an-
other term κ̄K(x) associated with the Gaussian curva-
ture K(x), but we will restrict our attention to cylinders
of infinite length (or with periodic boundary conditions)
where the integrated Gaussian curvature vanishes.

Comparing the Young’s and bending moduli gives rise
to a length scale of local out-of-plane deformation

√
κ/Y

at which stretching and bending energies are of compa-
rable magnitude. For cylinders of radius R, therefore,
the relative importance of stretching and bending ener-
gies is characterized by a dimesionless ratio called the
Föppl-von Kármán number (see, e.g., [48])

γ ≡ Y R2

κ
. (14)

For large γ, the tube will prefer to bend to minimize
the elastic energy; for small γ, local changes in the lat-
tice constant leading to stretching or compression are the
preferred mode of deformation.

How does the bending energy affect the energetics of
plastic deformation in a tube? For a pristine tubular
crystal in the continuum approximation, with an exactly
cylindrical shape of length L and radius R, the bending
energy approaches a simple limit,

Fb → πκL/R. (15)

The bending energy is thus decreased by increasing the
cylinder radius and decreasing its length; for glide de-
formations that keep the number of particles fixed, Fb
favors changing m and n to obtain larger R(m,n) ≈
(a/2π)

√
m2 + n2 −mn. Now consider a tube for which

the stretching energy Fs has a local minimum with
L = L0 and R = R0. If γ = Y R2

0/κ is large but finite, we
expect a slight increase in radius R = R0(1 + uyy), 0 <

uyy � 1, and a small decrease in length, L = L0(1+uxx),
uxx < 0, |uxx| � 1, where uyy is the azimuthal strain and
uxx is the strain along the cylinder axis. Upon expanding
in the small quantities |uxx|, uyy, and γ−1, we find the
total energy of the cylinder,

Ftot = Fb + Fs

=
πκL

R

+
1

2
· (2πRL)

[
2µ
(
u2
xx + u2

yy

)
+ λ (uxx + uyy)

2
]

(16)

≈ πR0L0

[
Y γ−1 (1 + uxx − uyy)

+ (2µ+ λ)
(
u2
xx + u2

yy

)
+ 2λuxxuyy

]
. (17)

To first order in γ−1, Ftot is minimized by uyy = −uxx =
Y γ−1/(4µ) = 1

2 (1 + ν) γ−1, where ν = λ/(2µ+ λ) is the
Poisson ratio [45]. The bending energy therefore acts
like a diagonal, traceless, radius-dependent contribution
to the stress tensor,

σbyy = −σbxx =
1

2
Y γ−1, σbxy = 0, (18)

as can be verified by replacing Fb with −
∫
dAσbijuij =

−
∫
dA
(
σbyyuyy + σbxxuxx

)
in Ftot.

How does the bending energy affect the stresses re-
quired for plastic deformation by dislocation glide? As
seen in Eq. 10, the critical axial stress σ†xx and azimuthal
stress σ†yy oppose one another, affecting glide motion only

in the combination (σxx − σyy)†. We have just found
that the bending energy’s effective stress contribution has
σbxx = −σbyy. Therefore, the effective critical stress con-
tains a simple “curvature offset”,

(σxx − σyy)
†
eff = (σxx − σyy)

†
+
(
σbxx − σbyy

)
= (σxx − σyy)

† − 4πAγ−1. (19)

The left-hand side, the effective critical stress to unbind
a dislocation pair, must match the critical stress calcu-
lated in Eq. (10), which depends on φ but not R. Mean-
while, the curvature offset −4πAγ−1 depends on R but
not φ. The quantity (σxx − σyy)† on the right-hand side
of Eq. (19) is the externally imposed stress actually re-
quired to unbind a dislocation pair in the presence of a
bending rigidity.

For the case of imposed torsional stress, we can ob-
tain a similar curvature-induced stress offset by replacing(
σext
xx − σext

yy

)
in Eq. (9) with

(
σbxx − σbyy

)
= −4πAγ−1

and solving for σext
xy to obtain (σxy)eff. Setting r∗ = a

gives a stress offset that now depends on the angle θ that
the Burgers vector makes with the cylinder axis,

(σxy)
†
eff = sA/ cos(2θ) = σ†xy + 2πAγ−1 tan(2θ).

Upon returning to the case of imposed axial tension,
from Fig. 3(a) we see that in order to have a plastic defor-
mation event that decreases R, we need a reduced stress
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(σxx − σyy)
†
eff /A ≡ σ̃c(φ) between 2 and 4/

√
3 ≈ 2.31,

depending on φ. By symmetry, if (σxx − σyy)eff /A is
negative but greater in magnitude than the critical value
σ̃c(φ), then the tube will plastically deform by glide of
dislocations that increase R. The +x-moving disloca-
tion will have Burgers vector opposite to one of those
indicated in Fig. 3(a), i.e., the directions coded blue,
green, or red (solid-line arrow stems). Eq. (19) there-
fore implies that the bending energy alone is sufficient to
destabilize narrow tubes with respect to dislocation un-
binding events that increase R, provided γ−1 is not too
small. Specifically, for a given ratio κ/Y and helical tilt
φ, there is a critical radius

Rc =

√
4πκ

σ̃c(φ)Y
, (20)

below which a tube with R < Rc will undergo a plas-
tic deformation event that increases the radius sponta-
neously, even in the absence of any external stress. (Note

that
√
κ/Y must be at least of order 3a/2π in order for

a tube with R < Rc to be a geometrical possibility.)
The curvature corrections calculated above assume

that γ−1 is small. However, γ−1 must still be large
enough in order for this effect to be easily observable. Is
this the case in single-walled carbon nanotubes? SWC-
NTs have unit cell spacing a ≈ 0.24 nm, a 2D Young’s
modulus of Y ≈ 340 J/m2 [22, 49, 50] and a bend-
ing modulus calculated from monolayer graphene to be
κ ≈ 2 × 10−19 J [51, 52]. Thus, κ̃ = κ/Y a2 ≈ 0.01, and
γ−1 = (a/R)2κ̃ is in the range 10−3 − 10−2 for typical
carbon nanotubes with 2πR/a of order 10, suggesting
that it would be difficult to measure the effects of the
curvature energy in this system.1 However, a curvature-
induced force ∝ κa/R2

0 on dislocation pairs has been
noted in simulation studies of carbon nanotubes [54].
We note that molecular dynamics simulations of car-
bon nanotubes have found that, at least for zigzag tubes
(φ = 30◦, corresponding to parastichy indices m = n in
our notation), the formation energy of a dislocation pair
may become negative for n < 14, although the radius of

1 Thermal fluctuations are known to give rise to renormalized,
scale-dependent bending rigidity κR(`) and Young’s modulus
YR(`) (where ` is the length scale), such that κR(`)/YR(`) may
be greater than κ/Y by a factor (`/`th)η−ηu [53]. Here `th
is a thermal length-scale `th ∝

√
κ2/(kBTY ) that is approx-

imately 2 nm at room temperature, and η − ηu ≈ 0.46. If
the nanotube circumference 2πR is substituted for `, we find
that thermal fluctuations give a renormalized reduced bend-
ing rigidity κ̃R(`) ≡ (κR(`)/YR(`)a2) ≈ cκ̃(R/a)0.46, where
κ̃ = κ/Y a2 ≈ 0.01 and c = (2πa/`th)0.46 ≈ 0.88. Then the
renormalized inverse Föppl-von Kármán number is γ−1

R (`) =
(a/R)2 × (κR(`)/YR(`)a2) ≈ 0.88κ̃(R/a)−1.54 (still with ` =
2πR). The result is at most a very modest increase in γ−1

R (`)
compared to the zero-temperature value γ−1 = κ̃(R/a)−2. Rais-
ing the absolute temperature by a factor of 10 contributes merely
a factor of 100.46/2 ≈ 1.7 to γ−1. Therefore, thermal effects are
not expected to significantly change the results here.

the n = 14 zigzag tube is about an order of magnitude
greater than Rc ≈ 0.2a [23].
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FIG. 3: (Color online) Dimensionless critical external stress
values required to unbind a dislocation pair with initial sepa-
ration of one lattice spacing, for different lattice orientations
φ, as given in Eqs. 10 and 11. The curve labeling (by color, as
well as by dashing and arrowhead filling) corresponds to the
right-moving dislocation (see Fig. 2(d)) having the Burgers
vector as depicted in the legend at right, where φ is measured
relative to the cylinder axis x̂. Arrowheads in (a) and (b)
indicate the direction of the change of helical angle φ with
each plastic deformation event. Solid curves indicate that the
dislocation unbinding increases R, whereas for dotted curves
R decreases. For curves with filled arrowheads (±a1,2), left-
pointing arrowheads correspond to left-pointing unit vectors
in the legend, and likewise for right-pointing arrowheads. (a)
Axial stress σxx minus a pressure-like azimuthal stress σyy, in
units of A = Y/4π. (b) Torsional stress σxy/A. Note that all

dislocation unbinding events in (a), with (σxx − σyy)† > 0,
decrease the tube radius R.

IV. NUMERICAL MODELING

A. Numerical approach

To study how well our continuum elastic predictions
apply to tubes of finite size, we now describe numerical
simulations of dislocation glide in tubular crystals under
axial stress σxx > 0. The tubular crystal is modeled as
a network of harmonic springs connecting nodes at the
sites of a triangular lattice, following Ref. [45]. The initial
spring network gives the crystal a tubular topology and
a particular choice of phyllotactic indices (m,n), with
each node connected to six springs so that the lattice is
initially a pristine (defect-free) triangular crystal.
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We implement periodic boundary conditions in the X
direction, parallel to the cylinder axis x̂ (in the case of
a pristine tube), with springs joining nodes across the
periodic boundaries. Periodic boundary conditions offer
two advantages: We can ignore the complications of end-
effects for dislocation dynamics, and the Gaussian curva-
ture modulus does not contribute to the energy because
the tube has no boundary.

As in Ref. [45], the stretching energy is discretized by
defining a spring constant ε via a stretching energy

F discrete
s = 1

2ε
∑
〈j,k〉

(|Rj −Rk| − 1)
2
, (21)

which corresponds to Eq. 4 with the choice µ = λ =
√

3
4 ε.

Here, position vectors R are vectors in R3, and
∑
〈j,k〉 is a

sum over neighboring nodes connected by an edge within
a particular triangulation. The Young’s modulus and
Poisson ratio are then Y = 2√

3
ε and ν = 1

3 respectively.

Simulation lengths are scaled in units of the preferred
lattice spacing, equal to the spring rest length. For a
discrete version of the bending energy, we use the mean
curvature energy discretization from Ref. [55], which can
be written

F discrete
b = κ

∑
j

[∑
k(j) cjk (Rj −Rk)

]2
∑
k(j) cjk (Rj −Rk) · (Rj −Rk)

(22)

where cjk ≡ cot θ1
jk + cot θ2

jk, and θijk (i = 1, 2) are the
angles opposite the edge jk in the two faces to which that
edge belongs.

∑
k(j) is a sum over neighboring nodes k

sharing an edge with node j. In the continuum limit,
this bending energy corresponds to Fb = 1

2κ
∫
dxdyH2,

which for a cylinder of length L and radius R reduces to
πκL/R. An alternative curvature energy discretization
is [45]

F discrete,2
b =

1√
3
κ̃
∑
〈α,β〉

|nα − nβ |2

=
2√
3
κ̃
∑
〈α,β〉

(1− nα · nβ), (23)

penalizing deviations between the unit normal direc-
tions of neighboring faces (summing over all pairs of
neighboring faces). We do not use this form because,
even though Eq. 23 has the correct continuum limit of
Fb = 1

2κ
∫
dxdy

(
H2 − 2K

)
for an unstrained lattice, it

contains no information about stretching of the triangu-
lar faces, and therefore does not give the correct scaling
Fb → πκL/R for pristine cylinders with periodic bound-
ary conditions under external forces. In contrast, we have
checked that the discretization in Eq. 22 for the bending
energy converges to πκL/R to within 1% for a wide vari-
ety of strained and unstrained tubular crystals, including
those as small as R ≈ 3a.

Recall that the lattice sites of a tubular crystal are
well-approximated by the centers of discs packed in a

cylindrical surface. Therefore, we use the latter geome-
try as an initial state and then minimize the energy over
node positions to obtain the preferred lattice sites of the
pristine tubular crystal. A dislocation pair is then cre-
ated from the pristine lattice by a bond flip that removes
a bond between neighboring nodes j, k and replaces it
with a new bond between nodes j′ and k′, the common
neighbors of j and k, as shown in Fig. 4(a,b). The node
pairs {j, j′} and {k, k′} are then a pair of dislocations
with equal and opposite Burgers vectors, each comprised
of a positive disclination at a five-coordinated node (j
or k) and a negative disclination at a seven-coordinated
node (j′ or k′). Thereafter, dislocation glide of {k, k′} by
one lattice spacing to a neighboring node pair {`, `′} is
accomplished by a similar bond flip, removing the bond
k′` and replacing it with a new bond k`′, as depicted in
Fig. 4(c). By repeating this process on either or both dis-
locations, we can adjust the glide separation distance r
of the dislocation pair in discrete steps, always assuming
a small but finite temperature ensures enough energy to
easily surmount the small Peierls potential.

(b)(a) (c)
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k
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j0

j
k

k0
`
`0

FIG. 4: (Color online) Illustration of dislocation nucleation
and glide by bond flips. (a) In a pristine lattice, with all
nodes six-coordinated, a bond jk between nodes j and k,
shown as the thick bond in green (medium gray), is chosen to
be flipped. (b) Bond jk is replaced by a new bond j′k′ in ma-
genta (dark gray) connecting the common neighbors of j and
k. This nucleates two dislocations {j, j′} and {k, k′}. Five-
coordinated and seven-coordinated disclinations are labeled
by green (medium gray) and magenta (dark gray) spheres,
respectively. (c) Another bond flip, replacing bond k′` with a
new magenta (dark gray) bond k`′, glides the rightmost dis-
location from {k, k′} to {`, `′}; nodes k and k′ return to being
six-coordinated and are labeled with black spheres.

For each spring network, the total energy Ftot =
F discrete
s + F discrete

b is minimized over the positions {Ri}
of all nodes using a conjugate gradient algorithm from the
ALGLIB package [56]. We probe the energy landscape
of dislocation glide by comparing Ftot for a given dislo-
cation glide separation to Ftot with the dislocations one
glide step closer together or one step farther apart. The
option giving the lowest Ftot determines the new state
of the system. There are three possible final outcomes:
The dislocations may annihilate into the defect-free state;
they may reach a separation along the cylinder axis of at
least half the length of the perfect cylinder; or they may
come to rest at some smaller but nonzero separation. In
the case of the second outcome, we consider the dislo-
cations to be “free”, i.e., on a truly infinite cylinder we
expect they would continue gliding to infinite separation.
If the dislocations annihilate or come to rest at a smaller
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separation, we consider them to be still bound.
Periodic boundary conditions in X require two more

independent variables in addition to the node positions:
the horizontal length LX of the box, and a rotation angle
β by which the right end of the cylinder is rotated about
the X̂ axis before being reconnected with the left end.
Chiral lattices generically necessitate nonzero values of
β. We minimize over LX and β simultaneously with the
node positions {Ri}. Before the application of any strain,
we record the “rest” values L0

X and β0 of these variables.
Then, we can apply an axial strain uxx by holding LX
fixed at L0

X(1 +uxx). A torsional strain could be applied
by holding β fixed at β0 (1− (L/R)uxy) [26].

B. Critical stresses and pathways of plastic
deformation

The numerical results for plastic deformation under
axial tension are plotted in Figs. 5 and 6 for a range
of (m,n) initial tubular crystal tessellations. Starting
from zero, an applied axial strain is slowly increased in
steps of 1%. At small strains, any dislocation pair an-
nihilates immediately after it is nucleated, returning to
the pristine lattice. At a critical stress σ†xx, a disloca-
tion pair with one of the six available Burgers vector
pairs unbinds and glides apart to freedom. (For some
(m,n) values, two Burgers vectors unbind at the same
σ†xx.) Fig. 5 records with colored arrows the plastic de-
formations (m,n)→ (m′, n′) obtained in this way, using
the Burgers vector coloring scheme introduced in Fig. 2.
These arrows collectively indicate the flow through the
configuration space of parastichy numbers (m,n) values
(or, equivalently, quantized (R,φ) values) under axial
tension. The overall response to an axial stress σxx > 0 is
of course a step-by-step decrease in R.2 Meanwhile, there
is a convergence of the lattice orientation toward the
m = n line of achiral states, where φ = 30◦, as predicted
in Fig. 3(a). Because of the stepwise nature of the plastic
deformation toward smaller R, with (∆m,∆n) = (0,−1)
or (−1, 0) at each step, the parastichy tilt angle angle φ
oscillates slightly about 30◦ as the tube radius shrinks,
as also found for carbon nanotubes [22]. Plastic defor-
mations with (∆m,∆n) = (−1,−1), with b = −a3 (ar-
rows pointing diagonally down-left, colored cyan), were
recorded only near φ = 0 or 60◦, where Fig. 3(a) shows

that the theoretically predicted (σxx − σyy)
†

for b = −a3

coincides with the minimal (σxx − σyy)
†

associated with
a1 or −a2.

The critical axial stress σ†xx required to pull apart the
dislocations recorded in Fig. 5 is plotted in Fig. 6(a) as
a function of φ. In Fig. 6(b), the data collapses to a

2 Negative σxx or a torsion σxy have the additional complications
of buckling or supercoiling, instabilities which are outside the
scope of this paper.

single curve when the curvature offset to σxx due to the
final bending rigidity term in Eq. (19) is included. The
scatter in Fig. 6(a) reflects the R-dependence of σ†xx, but
Fig. 6(b) confirms that the R-dependence is described
simply by the curvature offset −Y γ−1 = −κ/R2

0, where
R0 is the radius that minimizes the stretching energy Fs.
With this correction, the critical stress depends only on
φ. While Figs. 5 and 6 show results for reduced bending
modulus κ̃ ≡ κ/Y a2 = 0.25, similar results were ob-
tained for κ̃ = 0.5, 0.75, and 1. The Burgers vectors and

the magnitude of σ†xx,eff in Fig. 6(b) are in approximate

agreement with the predictions of Fig. 3(a). However,

the exact shape of the σ†xx,eff curve as a function of φ dif-
fers somewhat between theory and numerics, reflecting
differences between the continuum and discrete formula-
tions.

An interesting feature of Fig. 5 is the presence of green
(pointing up), blue (pointing right), and red (pointing
diagonally up-right) arrows at small R, indicating plas-
tic deformation events that increase R, contrary to the
predominant magenta (pointing down), orange (point-
ing left), and cyan (pointing diagonally down-left) ar-
rows that all show the tube radius shrinking. These
tube-widening deformations occur at zero applied axial
strain, and arise solely from the effective stresses σbxx
and σbyy generated by the bending energy as given in
Eq. 18. As predicted, there is a critical radius Rc be-
low which the bending energy alone makes narrow tubes
unstable to widening. To compare quantitatively with
theory, we fixed φ = 30◦ and varied m = n ≈ 2πR/a
to find the largest radius Rc at which a tube-widening
deformation occurs spontaneously. This procedure was
repeated over a range of values of the reduced bend-
ing modulus κ̃ ≡ κ/Y a2. The results are plotted in

Fig. 7, which shows that Rc/a varies as
√
κ̃. A lin-

ear fit gives Rc =
√

1.74πκ/Y , which agrees well with

the the prediction in Eq. (20), Rc ≈
√

1.73πκ/Y , using

σ̃c(φ = 30◦) = 4/
√

3.

C. Tube axis reorientation by dislocations

The simulated tubes reveal that, in the presence of dis-
locations, the deviations from a perfect cylindrical shape
are not limited to changes in radius: In addition, the dis-
locations create kinks in the tube axis, as can be seen in
Fig. 8(a,b). As pointed out in Ref. [17], a pair of dislo-
cations in a crystal on a perfectly cylindrical surface acts
like a pair of grain boundaries, between which the crystal
axes are slightly reoriented. We find that when the tubu-
lar crystal is free to assume an energy-minimizing shape,
it is approximately piecewise cylindrical (far from the
transition regions discussed in the following section) with
a kink angle in the tube axis associated with a reorien-
tation of the crystal axes across the boundaries between
the different (m,n) tessellations. Thus while one pair of
dislocations is gliding apart, the tube axis contains two
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kinks at the boundaries between the outer (m,n) and in-
ner (m′, n′) tessellations. Here we approximate the tube
axis using a computed “spine curve” as described in the
next section. We also remove the periodic boundary con-
ditions along the tube axis to investigate bending of tubes
by dislocations. After each glide step, the applied strain
is set to zero and the tube conformation is relaxed with
the dislocations frozen in place.

Averaging over the two tube axis kinks, we find a kink
angle on the order of a/|C|, or (equivalently) of the differ-
ence ∆φ between the helical orientations of the two tes-
sellations, provided that the dislocation separation rglide

exceeds the circumference ≈ 2πR0. This average kink
angle is plotted in Fig. 8(c) as a function of rglide for a
b = ±a1 dislocation pair during the plastic deformation
process (m,n) = (15, 15) → (m′, n′) = (15, 14). Because
the dislocations move along their helical glide paths, the
azimuthal angle separation of a defect pair (shown as
color saturation of data points in Fig. 8(c,d)) varies lin-
early with rglide. Blue (upper) and orange (lower) data
points correspond respectively to reduced bending mod-
ulus κ̃ = 0.09, 0.9, showing that there is only a weak de-
pendence of this effect on κ̃. Figs. 8(a,b) are snapshots
from the κ̃ = 0.09 case.

The net effect of the pair of kinks on the tube axis
orientation depends crucially on the relative azimuthal
coordinates of the two dislocations. If the two disloca-
tions are on opposite sides of the tube, as in Fig. 8(a),
their respective kink angles add constructively, effectively
bending the tube. In contrast, if the two dislocations are
on the same side of the tube, as in Fig. 8(b), the two kinks
effectively cancel each others’ reorientations of the tube
axis, producing a tube conformation that is not bent but
instead zigzagged. Fig. 8(d) shows the angle between the
tube axis in the left (m,n) region and the tube axis in
the right (m,n) region, i.e., the change in tube axis ori-
entation after traversing the (m′, n′) region. The data is
again plotted as a function of dislocation pair glide sep-
aration rglide and shows only a weak dependence on κ̃.
The tube axis reorientation angle is near its maximum
in Fig. 8(a) and nearly zero in Fig. 8(b), with intermedi-
ate azimuthal separation angles of the defects producing
states intermediate between the bent and zigzagging tube
conformations.

We can understand the shapes of the tube reorientation
angle curves in Fig. 8(d), producing the dashed black-
and-white line approximations shown there, through the
following geometric reasoning. Assume that the tube axis
t̂C in the central region is along X̂, and that each of
the two dislocations causes a deflection in the tube axis
by a small angle δ in the direction X̂ × ρ̂. Here, ρ̂ is
the unit radial vector pointing from the tube axis to the
dislocation (see Fig. 10). Then the tube axis on the left

side of the tube has unit tangent vector t̂L ∝ X̂+ δ(X̂×
ρ̂L), and likewise on the right side of the tube t̂R ∝
X̂+δ(X̂×ρ̂R), where ρ̂L and ρ̂R correspond respectively
to the left and right dislocations. For a dislocation at
azimuthal angle coordinate α relative to Ŷ , we have X̂×

ρ̂ = Ẑ cosα− Ŷ sinα. After normalizing t̂L and t̂R, it is
straightforward to determine that

t̂L · t̂R =
1 + δ2 cos(∆α)

1 + δ2
(24)

where ∆α is the difference in azimuthal angular coordi-
nate α between the dislocations. Setting Eq. (24) equal
to cosβ where β is the (small) tube axis reorientation
angle, we find

β ≈ δ
√

2 (1− cos(∆α)). (25)

In Fig. 8(d), at each data point we use for the deflection
angle δ the numerically measured mean kink angle from
Fig. 8(c). The dislocations’ azimuthal separation ∆α in-
creases linearly with glide separation rglide, with slope de-
termined by the helical pitch of the associated parastichy.
The tube axis reorientation angle β is then calculated us-
ing Eq. 25, producing the dashed black-and-white lines
in good agreement with the reorientation angle measured
directly from the simulated tubes.

V. TUBE TRANSITION REGIONS

So far our analytic calculations have assumed the tube
has a perfect cylindrical or piecewise cylindrical shape,
albeit with a radius that can change in time in response
to external stress. However, at any intermediate stage of
the dislocation pair’s glide separation, the radius neces-
sarily changes spatially at a pair of transition regions in
the tube, where the two dislocations interpolate between
regions with different preferred circumferences |C(m,n)|.
Given the stepwise nature of the plastic deformation
mechanism, the fractional change in radius mediated
by each dislocation is typically small, so the cylindri-
cal shape is a reasonable starting approximation. On the
other hand, we can use the fractional change in radius
as a small parameter, allowing some analytic insight into
the equilibrium shape of a tubular crystal interrupted by
dislocations, as discussed below. (How these small devia-
tions modify the energy landscape of dislocation motion
during plastic deformations is a more subtle problem that
we leave for future work.)

In this section, we first apply a local measure of the
tubular crystal’s radius to compute the profile of the
tube’s transition region in the numerical simulations. We
then compare these results with an analytic treatment of
small deflections in thin-walled cylinders.

A. Numerically calculated radius profiles in the
transition regions

Defining a local radius for the simulated tube is some-
what subtle. For the tubes shown in Fig. 9(e,f), iso-
lated dislocations cause slight bending or reorientation of
the tube axis (as we have seen in the previous section),
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FIG. 5: (Color online) Numerical results for plastic defor-
mation of tubular crystals, in terms of changes in the paras-
tichy numbers (m,n), under axial tension σxx > 0 with a
reduced bending modulus κ̃ = κ/Y a2 = 0.5. The disloca-
tions that unbind at lowest applied stress (consistent with
the allowed transitions summarized in Table 3) are recorded.
Arrows connecting grid points indicate the transformation of
the tubular crystal from (m,n) to (m′, n′). The arrowhead
direction corresponds to the Burgers vector as shown in the
lower of the two ai legends at right. The color scheme used in
Figs. 2, 3 is repeated here, and the two legends at right show
the correspondence of the ai orientations in the tube tan-
gent plane (upper legend) with the associated change in the
(m,n) parastichy number configuration space (lower legend).
Brown (light gray) elliptical contours are curves of constant
R ∝

√
m2 + n2 −mn. Lines of constant φ (i.e., constant

n/m) are shown in medium gray, with n/m as marked on
the right side. Here, n/m = 1 corresponds to φ = 30◦. For
comparison, we show the golden mean ϕ = 1

2
(1 +

√
5) and

its inverse, favored in many instances of plant phyllotaxis
[1, 2]. Blue (right-pointing), green (upward-pointing), and
red (pointing diagonally up-right) arrows are tube-widening
events triggered by the bending rigidity that occur at zero
applied stress. The point ringed by a black circle marks the
widest tube with m = n that is unstable to spontaneous
tube-widening dislocation pairs, driven by the bending en-
ergy. This gives the critical tube radius Rc/a ≈ 11/(2π) for
φ = 30◦ and κ̃ = 0.5, corresponding to the data point ringed
by a black circle in Fig. 7.

(a)

(b)

�° ��° ��° ��° ��°
�

�

�

�

�

ϕ

σ
��†
/�

�° ��° ��° ��° ��°
�

�

�

�

ϕ
σ
��†
/�

-
�π

γ-
�

��

����
- ��

- ��
- ��

�

�

ϕ

FIG. 6: (Color online) Numerically calculated critical axial
stresses for plastic deformation of tubular crystals with a re-
duced bending modulus κ̃ = κ/Y a2 = 0.5, excluding the
spontaneous widening deformations at zero applied stress. (a)
The critical applied axial stress σ†xx required for each disloca-
tion unbinding event in (a) as a function of φ, with strings of
closely spaced squares swept out as R varies. (b) The same
data as in (a) but collapsed by including the curvature correc-
tion from Eq. (19). The color scheme for the Burgers vector is
the same as in the above figures, with the legend reproduced
in the inset to (b). The Burgers vector is a1 for magenta
(dark gray) data points, −a2 for orange (medium gray) data
points, and −a3 for white data points outlined in cyan (light
gray).

which complicates the determination of a centerline from
which to measure the radius on the tube surface. To
define a tube centerline, or “spine”, we adopt the follow-
ing method: We fix X (the coordinate along the unper-
turbed cylinder’s axis), and then we find the Y and Z
coordinates (in R3) of a point on the spine by finding the
zero of a fictitious repulsive force exerted by every lattice
site in the tubular crystal on the spine point (with the
X component of the force projected out). We found it
convenient to impose a fictitious force pointing along the
separation direction d between a tube lattice site and the
spine point, and varying like 1/|d|8. In tests on point sets
sampled from analytically defined canal surfaces [57], this
procedure produced a computed spine in good agreement
with the known spine curves of these continuous surfaces.
Linear interpolation was then used to fill in the spine af-
ter a certain number of points had been calculated in
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FIG. 7: Critical tube radius Rc, below which bending energy
causes spontaneous dislocation unbindings that increase the
tube radius (for m = n achiral tubes only), as a function
of the curvature modulus κ. The curve is a best fit Rc =√

1.74πκ/Y , in good agreement with the prediction Rc ≈√
1.73πκ/Y from Eq. (20) (with φ = 30◦). The data point

ringed by a black circle corresponds to the circled (m,n) =
(11, 11) grid point in Fig. 5.

this way. The local radius at a particular tube lattice
site was then estimated as the distance from that site to
the nearest point on the calculated spine.

Computed local radius results are shown in Fig. 9 for
an intermediate stage in the plastic deformation (m,n) =
(20, 20) → (20, 19) by a dislocation pair whose right-
moving dislocation has Burgers vector b = a1. (Here
the axial strain is set to zero before measuring the radius
profile.) Three different values of the reduced bending
modulus κ̃ = κ/Y a2 are used in Fig. 9(a-d). R is plotted
against X (the coordinate in R3 most closely aligned with
the cylinder axis), suppressing the azimuthal coordinate.
For the largest tested bending modulus κ̃ = κ/Y a2 = 2
in Fig. 9(c,d), R is approximately independent of the
azimuthal coordinate, whereas for small κ̃ there is con-
siderable azimuthal variation in R. In Fig. 9(a), where
κ̃ = 0.1, the disclination pairs comprising the dislocations
create sharp local disturbances in R, with the positive
disclination at a higher R and the negative disclination
at a lower R than the radius of either the initial or final
pristine tubes. In contrast, at larger κ̃ the disclinations
do not generate a large local change in R, instead follow-
ing the gentler slope of the transition region (Fig. 9(c,d)).
The shift between these two extremes is gradual as κ̃
changes, as illustrated in Fig. 9(b) for κ̃ = 0.5.

The large jump in R between the disclinations at low
κ̃ in Fig. 9(a) can be understood in light of the known
buckling behavior of a membrane with a dislocation. In
Ref. [45], a membrane with a dislocation in its center
and lattice spacing a was found to buckle, with a sud-
den jump in the out-of-plane direction between the two
disclinations, when the membrane’s linear size exceeded
(127±10)aκ̃. Upon setting this linear size equal to 2πR0,
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FIG. 8: (Color online) Tube axis reorientation in the pres-
ence of dislocations. (a,b) Two snapshots from the glide pro-
cess of a simulated tubular crystal undergoing a plastic de-
formation from (m,n) = (15, 15) in yellow (light gray) to
(m′, n′) = (15, 14) in dark gray, with reduced bending rigid-
ity κ/Y a2 ≡ κ̃ = 0.09. Green (medium gray) and magenta
(dark gray) spheres indicate the dislocations’ five- and seven-
coordinated disclinations, respectively. The rightmost dislo-
cation is on the far side of the tube in (a). The external stress
is set to zero at each snapshot. (c) Plot of the tube axis kink
angle, averaged over the two dislocation sites, as a function
of the dislocations’ glide separation distance in units of the
initial tube radius R0. (d) The angle between the leftmost
and rightmost segments of the tube axis, measuring reorien-
tation of the tube axis by the (m′, n′) region, as a function of
dislocation glide separation distance. Dashed black and white
curves are the geometric model for tube axis reorientation as
given in Eq. 25. In both (c) and (d): Blue (upper) and orange
(lower) data points correspond to reduced bending modulus
κ̃ = 0.09, 0.9, respectively, and vertical blue lines correspond
to snapshots (a) and (b) as indicated. Color saturation of
data points indicates the dislocations’ azimuthal angle sepa-
ration as shown in the legend at bottom, where blue (upper)
and orange (lower) color bars correspond to blue (upper) and
orange (lower) data sets in (c) and (d).
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X

X

FIG. 9: (Color online) (a-d) Tube radius as a function
of coordinate X along the axis of the unperturbed cylinder
(both in units of a), as a dislocation pair whose right-moving
dislocation has Burgers vector b = a1 interpolates between
an (m,n) = (20, 20) tessellation on the left and right sides
and an (m,n) = (20, 19) tessellation in the middle. Green
(medium gray) and magenta (dark gray) larger dots mark X-
coordinates of the 5- and 7-coordinated disclinations; color
saturation of other data points is a proxy for the local tube
radius R. The reduced bending rigidity κ̃ = κ/Y a2 is 0.1
(a), 0.5 (b), or 2 (c-d), while the number of lattice sites is
N = 1000 (a-c) or N = 2000 (d). The spread in radii at a
given X/a is due to the azimuthal variation in the distance to
the spine. Theoretical curves (black) are from Eqs. (32)-(36).
(e) A heat map of the local radius on the tubular crystal cor-
responding to (a), with the color saturation corresponding to
the R values as shown there, and positive and negative discli-
nations shown as green (medium gray) and magenta (dark
gray) spheres, respectively. (f) A similar heat map of the lo-
cal radius corresponding to (c). In both (e) and (f), radius
variations in the positions of plotted surface points, relative to
an average-radius reference cylinder, have been exaggerated
by a factor of 10 for clarity.

we find a critical value κ̃b ≈ 2πR0/(127a) below which
buckling is expected. For the (m,n) = (20, 20) tube,
κ̃b ≈ 0.16, in agreement with the buckled behavior we
see with κ̃ = 0.1.

B. Analytic description of radius profiles in the
transition regions

We now seek analytic insight into the shape of the
transition region in the opposite limit where κ̃� κ̃b and
there is a well-defined “transition region profile” R(X).
In particular, we would like to understand why R(X) in
Figs. 9(b-d) exhibits oscillatory behavior in addition to
an overall rise or decay between the narrower and wider
region of the tube.

Consider weak radial deflections from a perfect cylin-
der of radius R0, described by a function r(x, y) in R3:

r(x, y) = [R0 + ζ(x, y)] ρ̂(y) + xX̂, (26)

where we define a reduced tube deflection ζ̃(x, y) ≡
ζ(x, y)/R0 � 1 and ρ̂(y) is the unit radial vector

Ŷ cos(y/R0) + Ẑ sin(y/R0). These coordinates and vari-
ables are illustrated in Fig. 10. The mean curvature for
this parametrization is

H ≈ ζxx + ζyy −R−1
0 (1− ζR−1

0 )− 2ζζyyR
−1
0 , (27)

where subscript x, y denote spatial derivatives. As seen
in Fig. 9(c,d), for larger κ̃ the radius is approximately
independent of the azimuthal coordinate. In this regime
we can therefore make the simplifying assumption that ζ
has no dependence on y. Then

H = ζxx −R−1
0 (1− ζR−1

0 ). (28)

FIG. 10: (Color online) Schematic illustration of the coordi-
nate systems and variables used in Sec. V to describe a weakly
distorted cylinder. An ideal cylinder in blue (inner surface) of
radius R0 is transformed into a surface of revolution in orange
(outer surface) with azimuthally-symmetric but x-dependent
radius R(x) = R0 + ζ(x). Lowercase (x, y) are coordinates
in the undeflected cylindrical reference surface, respectively
along the axial and azimuthal directions. Uppercase (X,Y, Z)
are coordinates of the three-dimensional embedding, with the
tube axis (dotted line) oriented along X̂. The ρ̂(y) direction
points radially out from the tube axis in three dimensions.

We can estimate the width w of the transition re-
gion along the cylinder axis using scaling arguments:
Assume that over the transition region width w, there
is a change in radius ∆ζ of order a, since R0 ≈
(a/2π)

√
m2 + n2 −mn and each dislocation changes m
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and/or n by at most ±1. The stretching energy den-
sity is then ∼ Y (a/R)2. The leading-order term in the
squared mean curvature is ζ2

xx ∼ (a/w2)2, giving a cur-
vature energy density ∼ κ(a/w2)2. (Other terms in H2

are smaller by factors of w/R, which is small, as shown
below.) Equating the bending and stretching energy den-
sity scalings gives w ∼ γ−1/4R, similar to deformations
on a sphere [58]. Thus, w/R scales like the inverse fourth
root of the Föppl-von Kármán number γ, and we have
assumed γ is large. (See also Ref. [43], where a point
force f is applied normal to a thin shell of thickness h,
and the shell is deformed by a height ζ ∼ fR/Y h, over

a region of size d ∼
√
hR ∼ γ−1/4R.) In contrast, large-

amplitude “pinch in a pipe” studied by Mahadevan et al.
[59] has a persistence length lp ∼ γ1/4

√
RδR where the

amplitude of the pinch is δR.
To go beyond scaling arguments, we square the mean

curvature in Eq. (28) and expand the free energy density
as

f =
κ

2

[
ζ2
xx +

ζ2

R4
0

− 2ζxx
R0

+
2ζxxζ

R2
0

− 2ζ

R3
0

]
+

3

4
Y
ζ2

R2
0

(29)

The term proportional to Y is the stretching energy due
to the strain uyy from the radius differing from the pre-
ferred radius R0, with the assumption that uxx = −uyy,
as was found to be the case for perfect cylinders in Sec-
tion III.

The Euler-Lagrange equation associated with Eq. (29)
reads

0 =
δf

δζ
= κ

[
ζxxxx + ζR−4

0 + 2ζxxR
−2
0 −R−3

0

]
+

3

2
Y ζR−2

0

(30)

⇒ R0 = R4
0ζxxxx + 2R2

0ζxx + ζ

(
1 +

3

2
γ

)
(31)

Suppose that the transition region is centered on a dislo-
cation at x = 0. For x > 0, we have a tubular lattice tes-
sellation where the stretching energy prefers a radius R+

0 ,
and the Föppl-von Kármán number is γ+ = κ̃(R+

0 /a)−2.
For x < 0, the different preferred tubular radius intro-
duces similar parameters R−0 , γ−. We now solve Eq. (31)
for x > 0, subject to boundary conditions ζ ′(x → ∞) =
ζ ′′(x → ∞) = 0 and [R+

0 + ζ(x → ∞)] = R+
∞, where

R+
∞ = R+

0

(
1 +

[
1 + 3

2γ
+
]−1
)
≈ R+

0

(
1 + 2

3 (γ+)
−1
)

is

the radius of the pristine tubular crystal with this tessel-
lation. Keeping only real solutions, we find

R(x > 0) = R+
0 + ζ(x > 0) = R+

∞ + c+Re
[
e−x/w+

]
,

(32)

w+ = R+
0

[
−1 + i

√
3
2γ

+

]−1/2

(33)

where the complex number w+ describes a combina-
tion of exponential and oscillatory behavior of ζ(x), and

c+ has yet to be determined. In the large γ+ limit,
R(x > 0) → R+

∞ + c+ exp (−x/v+) cos(x/v+) where

v+ = R+
0

(
3
2γ

+
)−1/4

.
At x = 0, Eq. 32 must match onto

R(x < 0) = R−0 + ζ(x < 0) = R−∞ + c−Re
[
ex/w

−
]
,

(34)

w− = R−0

[
−1 + i

√
3
2γ
−
]−1/2

(35)

Ensuring that both R(x) and R′(x) = ζ ′(x) are continu-
ous at x = 0 requires

c+ =

(
1 +

Re [1/w+]

Re [1/w−]

)−1 (
R−∞ −R+

∞
)
, (36)

and a similar expression for c− with the − and + labels
reversed.

Eqs. (32-36) are compared to the numerically calcu-
lated radius data in Fig. 9(a-d) (black curves); our ana-
lytic shape profiles provide reasonably good descriptions
of the transition region provided κ̃� κ̃b. For the pristine
tube radii R−∞, R+

∞, we use radii calculated numerically
for defect-free tubes with the associated (m,n); these nu-
merically calculated radii differ slightly (< 1%) from the

theoretical values R∞ = R0

[
1 +

(
1 + 3

2γ
)−1
]

expected

from Eq. (31). (Note that Eq. (1), which defines R0, is
exact for a triangular packing of discs in a cylindrical
surface, but is only approximate for a tubular crystal of
spheres [10, 16].) The real part of the complex parame-
ter w± successfully captures the width of the transition
region, and its imaginary part predicts the oscillatory
behavior observed in R(x). As predicted by the scaling
argument, for large γ the transition region width scales as
w ∼ γ−1/4R0. However, even in that limit, w has a com-
plex prefactor resulting in both exponential rise/decay
and oscillations in R(x), controlled by the same length-
scale.

If the two dislocations are not far apart compared to
Re[w] ∼ γ−1/4R0, then the two calculated transition re-
gion profiles may overlap significantly. The actual R(x),
in order to remain smooth, must compromise between
the two transition region profiles; we expect this effect
leads to small changes in the energetics of dislocation
unbinding compared to the calculations in Section III.

In this paper we have ignored the interactions between
dislocations and the Gaussian curvature K(x) that they
induce on a tube. These interactions are described by an
energy

FG =
Y

2

∫
dA

∫
dA′ [S(x)−K(x)]

1

∆2
xx′

[S(x′)−K(x′)]

(37)

where the effective disclination density associated with
a dislocation positioned at xb is S(x) = εijbi∂jδ(x,xb),
and 1/∆2

xx′ is the Green’s function of the biharmonic
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operator [60]. The dislocations evidently position them-
selves near rings on the tube where R(x) has an inflection
point and the local Gaussian curvature is approximately
zero. As the dislocations glide, the transition regions
move with them, such that the contribution of Eq. (37)
to the total energy remains approximately constant. The
good agreement between Eqs. (32)-(36), which neglect
the couplings in Eqn. (37), and the numerically calcu-
lated transition region profile in Fig. 9(b-d) suggests that
the essential role of the dislocations is in switching the
preferred radii between R+

0 and R−0 , not their coupling
to the Gaussian curvature field.

C. Dislocation orientation in the transition regions

Examining the Gaussian curvature K near the transi-
tion region reveals an interesting agreement between the
energetically preferred dislocation orientation and the ge-
ometrical view of dislocation motion in tubular crystals.
Five-coordinated disclinations prefer positive K, while
seven-coordinated disclinations prefer negative K. Dis-
locations on Gaussian bumps, for example, prefer to sit
near the ring of K = 0, oriented with the positive discli-
nation closer to the top of the bump where K > 0, and
the negative disclination at larger distance where K < 0
[60]. In our system, a transition region where a tube
changes from a larger to a smaller radius has positive K
on the wider side of the transition region and negative K
on the narrower side of the transition region, as shown
in Fig. 11. Thus, a dislocation will energetically prefer
to orient with the five-coordinated disclination closer to
the wider side. This expectation agrees with the geom-
etry of dislocation motion in a tubular crystal: If a dis-
location’s positive 5-fold disclination is at, say, a larger
x-coordinate than the negative 7-fold disclination, then
the Burgers vector b has a negative component along the
ŷ direction, meaning that the circumference decreases as
the dislocation moves in the positive-x direction. This
dislocation orientation is shown schematically in Fig. 11;
see also the rightmost dislocation in the simulated tubu-
lar crystals of Fig. 1(e,f) and in Fig. 2(d). Thus, the pos-
itive disclination is closer to the wider side of the tube,
and will be on the part of the transition region with posi-
tive K, while the negative disclination is on the narrower
side in a region of K < 0, consistent with our simulations.

VI. CONCLUSIONS

We have examined the plastic deformation of tubular
crystals by glide of separating dislocation pairs through
both continuum elastic calculations and simulations of a
discretized harmonic solid sheet with a bending energy
wrapped into a tube. Dislocation pairs gliding apart me-
diate stepwise parastichy transitions, changing the paras-
tichy numbers (m,n) by ±1 and thus also changing the
tube radius R and helical angle φ according to Eqs. 1 and

FIG. 11: (Color online) Schematic illustration of Gaussian
curvature K on a tube with a dislocation. At the transition
region where the tube radius changes, the Gaussian curvature
is mostly positive on the wider side and mostly negative on
the narrow side. The dislocation that causes this transition
region has its fivefold disclination (green, rightmost sphere)
near the ring of maximum K and its sevenfold disclination
(magenta, leftmost sphere) near the ring of minimum K.

2. The predictions of continuum elasticity calculations of-
fer valuable insights into the numerically calculated me-
chanics of tubes even when the tube circumference is as
small as ∼ 10 times the lattice spacing.

Tubes under axial elongation stress change their lat-
tice structure to converge toward the stable m = n achi-
ral state while their radius shrinks. In the regime where
the inverse Föppl-von Kármán number γ−1 is small but
finite, the bending modulus κ shifts the critical stress re-
quired to drive apart dislocations, strengthening narrow
tubes against plastic deformations caused by axial stress.
By properly correcting the yield stress σ†xx required to un-
bind a dislocation pair with a curvature-induced stress
offset −Y γ−1 = −κ/R2, we obtain an effective yield
stress as a function of φ that is independent of the R. If κ
is large enough, very small tubes with R < Rc ∝

√
κ/Y

may even be unstable to emission of dislocation pairs that
widen the tube, driven by the curvature energy alone.

We have focused on positive extensional stresses be-
cause compressional stresses (σxx < 0) are complicated
by the possibility of an Euler buckling transition. Simi-
lar buckling phenomena can complicate the response to
a torsional stress σxy of either sign. Both problems are
interesting areas for future investigation.

Dislocations at finite separation were found to cause
kinks in the tube axis orientation, creating nontrivial
tube geometries. The net effect of a pair of kinks on
the tubular crystal is determined in large part by their
azimuthal angular separation: Bent tubes are formed by
dislocations on opposite sides of the tube, whereas zigzag-
ging tube conformations are produced by dislocations on
the same side of the tube. Tube geometries intermedi-
ate between these extremes may be produced by other
angular separations.

We have also examined how the tube radius changes
spatially in the transition region surrounding a disloca-
tion. At small reduced bending modulus κ̃ = κ/Y a2 the
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simulated tubular crystals show buckling behavior like
that observed in simulated crystalline membranes. For
larger κ̃, the radius varies smoothly as a function of the
cylinder’s axial coordinate. The transition region has
width w ∼ γ−1/4R0 along the tube axis direction and
also exhibits damped oscillations in R(x) at the same
length-scale, with the dislocation positioned near a ring
of zero Gaussian curvature wrapped around the tube.

Our results suggest several additional avenues for fruit-
ful future investigation. One is to examine parastichy
transitions at finite temperature, where dislocation pairs
form and unbind at rates depending on an escape en-
ergy barrier [17]. Another is to consider the response
of the tube to bending, which may stabilize dislocations
at nonzero, finite separation [38]. Some preliminary ob-
servations about bending are presented in Appendix A,
where we show that bending a tubular crystal into a torus
causes spontaneous unbinding and separation of certain
dislocation pairs, provided that the torus’s aspect ratio
is large enough.

Finally, nontrivial tube conformations could be tar-
geted by the placement of frozen-in defects, as suggested
by the numerically observed kinks in the tube axis at

the sites of dislocations (Fig. 8). Patterns of defects are
expected to promote controllable zigzagging and bending
tube shapes. Even more pronounced distortions will be
triggered if the disclinations comprising a dislocation
separate and migrate to opposite sides of the tube. In the
long term, we hope that improved understanding of the
mechanics of dislocation-mediated parastichy transitions
will aid in the design of mechanically reconfigurable bulk
materials or nanomachines.
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Appendix A: Toroidal tubular crystals

In addition to axial extension and torsion, another type
of deformation likely to be encountered by tubular crys-
tals is bending. A uniformly bent rod experiences ex-
tension along the outer half and compression along the
inner half [43]. Our focus in this paper on tubes with pe-
riodic boundary conditions along the tube axis and under
uniformly applied stresses precludes a full treatment of
dislocation motions in response to general bending forces.
However, some insights arise from the special case of the
torus tessellated with a tubular crystal. Rather than
placing the simulated tubular crystal in a box that is
periodic along the X direction, we embed the same bond
network topology on a torus in R3. Any tubular crys-
tal with parastichy numbers (m,n) can be mapped onto
a physical torus, provided that the torus’s major radius
RM is large enough compared to the tubular crystal’s ra-
dius R to avoid self-intersection. For example, Fig. 12(a)
shows a pristine tubular crystal with (m,n) = (14, 18)
embedded as a torus. Here, 2πRM is analogous to the
length LX of the periodic box for cylindrical tubular crys-
tals. Such toroidal crystals are in fact sometimes formed
by single-walled carbon nanotubes [61, 62]. Rather than
imposing external stresses, we observe spontaneous dis-
location motion in response to the extensional and com-
pressional strains naturally present in the outer and inner
portions of the torus, respectively.

A strong bending rigidity is necessary to maintain
an approximately circular cross-section for the toroidal
tubular crystal. Fig. 12(b) shows that when the reduced
bending rigidity κ̃ = κ/(Y a2) is decreased from 1 to 0.1,
the surface distorts into a pinched annulus structure with
nearly flat sidewalls. The pinched structure is reminis-
cent of the instability of pressurized rings to deformations
from circular to elliptical conformations [63]. To study
dislocation nucleation and glide on a torus, we hereafter
keep the bending rigidity fixed at κ̃ = 1 to avoid this
distortion.

The extensional strain uxx present in the outer portion
of the toroidal tubular crystal creates a stress σxx that
should locally favor the appearance of tube-narrowing
dislocation pairs. Indeed, we find numerically that even
with zero externally imposed stress, a toroidal tubular
crystal can be unstable to the nucleation and glide sep-
aration of dislocation pairs at its outer equatorial ring,
where uxx is greatest. This maximum strain uxx is con-
trolled by the aspect ratio of the tube, A.R. = RM/R,
as the outer equatorial ring has circumference greater
than the circumference RM of the centerline by a factor
(1 +uxx) where uxx = R/RM = 1/A.R.. In general, as a
function of the angular coordinate v shown in Fig. 12(a),
the axial strain is uxx(v) = (R/RM ) cos v.

The simplest application of what we’ve learned about
cylindrical tubular crystals is to predict that dislocation
pair nucleation and separation require a strain uxx ≥
σc(φ)/Y +κ̃(R0/a)−2, where σc(φ) is the smallest critical

stress (σxx − σyy)†eff at a given φ, as shown in Fig. 3(a)
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in units of A = Y/(4π). Upon setting uxx = 1/A.R., we
obtain for the case of (m,n) = (14, 18) a prediction that
the aspect ratio must be greater than ≈ 3.26 in order for
dislocations to arise spontaneously. These dislocations
will have b = a1 for the right-moving dislocation, as
is the case in Fig. 12(c). Numerically, we find that the
critical aspect ratio lies between 2.9 and 3.3. On tori with
larger aspect ratios (i.e. larger RM , since fixing (m,n)
fixes R) the dislocation pairs spontaneously annihilate as
soon as they are created by a bond flip.

Attempts to create tube-narrowing dislocation pairs
along the inside, top, or bottom regions of the torus re-
sulted in immediate defect pair annihilation, as the torus
there provides no stress to drive the dislocations apart.
Along the inner portion of the torus, we expect that the
compressional strain created by the torus geometry would
result in formation and separation of tube-widening dis-
location pairs. However, we did not observe such events
in the simulated toroidal tubular crystals due to numeri-
cal instabilities. More realistic models of toroidal crystals
would include unbound disclinations in the ground state
to screen the local Gaussian curvature [64–66], which
would interact in interesting and complex ways with glid-
ing dislocations.

(b)

(a)

(c)

FIG. 12: (Color online) (a,b) Toroidal tubular crystal with
(m,n) = (14, 18), with reduced bending rigidity κ̃ = 1 (a) or
0.1 (b). Note that pinched sidewalls in (b). Lower panel of
(a) shows the torus major radius RM , tubular crystal radius
R, and the angular coordinate v. (c) Plastic deformation in
the (m,n) = (14, 18) tubular crystal with κ̃ = 1. Top: A
dislocation pair whose rightmost member has b = a1 is nu-
cleated near the outer equator. Bottom: Under zero external
stress, the dislocations spontaneously glide apart until coming
to rest near the top and bottom of the torus.
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