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The nonequilibrium process by which hard-particle systems may be compressed into disordered,
jammed states has received much attention because of its wide utility in describing a broad class
of amorphous materials. While dynamical signatures are known to precede jamming, the task of
identifying static structural signatures indicating the onset of jamming have proven more elusive.
The observation that compressing hard-particle packings towards jamming is accompanied by an
anomalous suppression of density fluctuations (termed “hyperuniformity”) has paved the way for
the analysis of jamming as an “inverted critical point” in which the direct correlation function c(r),
rather than the total correlation function h(r) diverges. We expand on the notion that c(r) provides
both universal and protocol-specific information as packings approach jamming. By considering the
degree and position of singularities (discontinuities in the n-th derivative) as well as how they
are changed by the convolutions found in the Ornstein-Zernike equation, we establish quantitative
statements about the structure of c(r) with regards to singularities it inherits from h(r). These
relations provide a concrete means of identifying features that must be expressed in c(r) if one hopes
to reproduce various details in the pair correlation function accurately and provide stringent tests on
the associated numerics. We also analyze the evolution of systems of three-dimensional monodisperse
hard-spheres of diameter D as they approach ordered and disordered jammed configurations. For
the latter, we use the Lubachevsky-Stillinger (LS) molecular dynamics and Torquato-Jiao (TJ)
sequential linear programming algorithms, which both generate disordered packings, but can show
perceptible structural differences. We identify a short-ranged scaling c(r) ∝ −1/r as r → 0 that
accompanies the formation of the delta function at c(D) that indicates the formation of contacts
in all cases, and show that this scaling behavior is, in this case, a consequence of the growing
long-rangedness in c(r), e.g., c ∝ −1/r2 as r → ∞ for disordered packings. At densities in the
vicinity of the freezing density, we find striking qualitative differences in the structure factor S(k)
as well as c(r) between TJ- and LS-generated configurations, including the early formation of a
delta function at c(D) in the TJ algorithm’s packings, indicating the early formation of clusters
of particles in near-contact. Both algorithms yield structure factors that tend towards zero in the
low-wavenumber limit as jamming is approached. Correspondingly, we observe the expected power-
law decay in c(r) for large r, in agreement with previous theoretical work. Our work advances the
notion that static signatures are exhibited by hard-particle packings as they approach jamming and
underscores the utility of the direct correlation function as a sensitive means of monitoring for the
appearance of an incipient rigid network.

PACS numbers: 61.50.Ah, 05.20.Jj

I. INTRODUCTION

Packings of hard particles in d-dimensional Euclidean
space R

d have been used ubiquitously as a powerful
model to describe many-body systems such as liquids,
glasses, colloids, granular materials, particulate compos-
ites, and biological systems, among others [1–26]. In
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three dimensions, the venerable hard-sphere model is par-
ticularly useful, owing to its mathematical simplicity and
the rich diversity of equilibrium and non-equilibrium be-
havior that it exhibits.

It has been shown that bringing hard-particle pack-
ings towards jamming (roughly speaking, mechanical sta-
bility) is accompanied by an anomalous suppression of
long-range density fluctuations [27–32]—a phenomenon
known as “hyperuniformity” [6, 7]. A many-particle sys-
tem is hyperuniform if the structure factor S(k) (trivially
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related to the Fourier transform of pair statistics in di-
rect space) tends to zero in the limit that the wavenum-
ber |k| tends to zero. Hyperuniformity may be concep-
tualized as an “inverted critical point” in which the di-
rect correlation function c(r), which is defined through
the Ornstein-Zernike integral equation for a system with
number density ρ:

h(r12) = c(r12) + ρ

∫

Rd

h(r23)c(r13)dr3, (1)

becomes long-ranged, i.e., its volume integral diverges
[6]. This is to be contrasted with the usual thermal crit-
ical point (e.g., liquid-vapor or Curie critical points) in
which the total correlation function h(r) (rather than
c(r)) becomes long-ranged. Accordingly, a static length
scale, obtained from the Fourier transform of c(r), ξ =
[−c̃(k = 0)]1/d, grows as a system approaches a hyperuni-
form state and ultimately diverges at this critical state.
In hard-particle packings, this occurs as jamming is ap-
proached [30], and a similar analysis can be used to ob-
tain meaningful information about the nature of glassy
states of particles with soft interaction potentials [33].
Because of this, it has been an intriguing prospect to in-
vestigate disordered hyperuniform systems by adapting
standard tools used to investigate critical phenomena.
At the same time, the direct correlation function has

proven to be a fruitful starting point for efforts to charac-
terize the structure of disordered systems such as simple
liquids since the pair statistics may be obtained through
Eq. (1) [34]. Physically, the equation suggests that pair
statistics between any two particles may be decomposed
into a “direct” contribution encoded in c(r) as well as
an “indirect” contribution mediated through “chains” of
particles, expressed mathematically through the convo-
lution between h(r) and c(r). For systems with suitably
well-behaved interactions, one may equivalently think of
c(r) as describing the linear response of a system to a
perturbation in an externally applied potential field [34].
It has been observed that maximally random jammed

(MRJ) hard-sphere packings, which constitute the most
disordered configurations as measured by some scalar or-
der metric subject to the constraint of jamming and iso-
staticity [35, 36], are hyperuniform and exhibit a non-
analytic linear behavior in the structure factor for low
k, namely, S ∝ k [37]. Hopkins et al. [30] studied the
behavior of very large (N = 106) sphere packings pro-
duced by the Lubachevsky-Stillinger event-driven molec-
ular dynamics algorithm [38] under rapid compression so
as to study the approach to the MRJ-like states at den-
sities well above the freezing density and close to jam-
ming. They found evidence that the nonanalytic linear
behavior in S(k) was evident considerably in advance of
jamming, and that upon further compression, the extrap-
olated value at the origin tended towards zero, implying
that corresponding long-ranged behavior in c(r) might be
observable for this protocol. Their computations for the
Fourier-transformed direct correlation function showed c̃
extending towards negative infinity near the origin as the

packings were compressed, supporting this prediction.

In the current work, we further develop the view that
one may find static, structural precursors to jamming in
hard-particle systems. Because c(r) is known to gener-
ally possess a qualitatively simpler functional form while
still encoding the complete pair statistics of the system,
we will focus primarily on the signatures therein, pay-
ing particular attention to features that point towards
the development of an incipient contact network and hy-
peruniform density fluctuations (i.e. long-rangedness in
c(r)). Moreover, g2(r) is known to possess various sin-
gularities at jamming (e.g., a Dirac delta function at con-
tact, discontinuity at a distance of two diameters), and
we determine to what extent these features are inherited
by c(r).

However, one should also bear in mind that different
packing protocols will tend to produce different ensem-
bles of disordered jammed states [39]. In this paper, we
will also bring attention to qualitative differences in pro-
tocols’ approach to their jammed states. Additionally, it
is nontrivial to ensure that standard protocols approach
properly-jammed states and avoid becoming stuck in un-
stable mechanical equilibria. This has been found to be
related to a “critical slowing down” that becomes of prac-
tical concern for large systems [32]. Therefore, we carry
out our current investigation as if our systems are indeed
jammed and hyperuniform with the important caveat
that this is more difficult to do with high precision in
practice than previously thought. If one had a protocol
that were able to produce better-jammed packings, we
expect that the packings would possess stronger struc-
tural signatures consistent with hyperuniformity.

To this end, we analyze computer-generated packings
of monodisperse hard-spheres of diameter D created by
the LS algorithm as well as the Torquato-Jiao (TJ) se-
quential linear programming algorithm [40]. We consider
these two algorithms since (i) they are both known to
generate highly disordered packings under suitable con-
ditions, but also because (ii) the jammed states they
produce possess considerable differences in their macro-
scopic properties, including density, rattler fraction, and
degree of order as measured by various standard order
metrics [41]. By investigating multiple protocols that
differ considerably, we seek to discern what features are
protocol-dependent, and which are in common to a di-
versity of MRJ-like states. We also briefly consider the
behavior of the hard-sphere FCC crystal, conjectured to
be the equilibrium phase [42, 43] at packing fractions
φ ∈ [0.55, φFCC) along the solid branch ending at close

packing with a packing fraction of φFCC = π/
√
18. This

case provides valuable information about jamming under
an arguably more well-behaved setting, where one need
not worry about metastability, and hyperuniformity may
be approached to arbitrary numerical precision with min-
imal practical issues.

We observe that the TJ and LS protocols exhibit
markedly different qualitative behavior in c(r), even at
packing fractions far from jamming. Specifically, we find
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that the direct correlation of packings produced by the
TJ algorithm exhibit signs of a delta function at r = D
at packing fractions below the freezing density φ ≈ 0.494,
whereas features in c(r) exhibited by LS for r > D are
substantially more subtle up until much higher densities.
With the development of the expected delta function at
c(r = D), we observe a concomitant development of a
dominant −1/r scaling for c(r < D) as r → 0. We
show using theoretical arguments that one can predict
this numerical observation. Interestingly, we observe the
power-law scaling c(r) ∝ −1/r2 in the limit r → ∞
that is a consequence of the linear trend in S(k) for
small k. Observing this behavior is difficult in prac-
tice because it requires an accurate measurement of S(k)
for small wavenumbers, which requires that one consider
large packings. Our work advances the notion that static
signatures are exhibited by hard-particle packings as they
approach jamming and underscores the utility of the di-
rect correlation function as a sensitive means of monitor-
ing for the appearance of an incipient rigid network.
The remainder of the paper is organized as follows: in

Sec. II, we discuss some relevant analytical results per-
taining to the structure of disordered hard-sphere pack-
ings through c(r) and the Ornstein-Zernike equation. In
Sec. III, we discuss quantitatively the manner by which
c(r) inherits singularities from g2(r). In Sec. IV, we
review some known facts regarding the critical scaling
behavior expected for systems approaching hyperunifor-
mity. In Sec. V, we review the protocols that we use to
generate nearly-jammed hard-sphere packings. In Sec.
VI, we present the structure factor and direct correla-
tion functions of our ordered and disordered packings as
they approach jamming and point out emergent static
structural features exhibited by each. Conclusions and
discussion are presented in Sec. VII.

II. ORNSTEIN-ZERNIKE EQUATION AND

JAMMING

We begin by reviewing a number of relationships be-
tween the standard pair statistical descriptors of point
processes with the goal of relating the direct correla-
tion function to other familiar statistical descriptors. We
then proceed by reviewing theoretical progress that has
been made in obtaining an accurate description of dis-
ordered hard-sphere systems by use of the direct corre-
lation function, including shortfalls that persist with the
current state of the art which point to the necessity for
our present numerical investigations.
The structure factor is defined for a translationally-

invariant system in R
d as

S(k) = 1 + ρh̃(k), (2)

where h̃(k) is the Fourier transform of the total correla-
tion function. This is related to the scattering intensity
S(k), defined for a single system of N particles within a

fundamental cell under periodic boundary conditions as

S(k) = 1

N
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, (3)

which includes forward scattering, i.e., S(0) ≡ N . This
is to be contrasted with the definition of Eq. (2), in which
S(0) is related to the volume integral of h(r). Apart from
at k = 0, the scattering intensity is identical to the struc-
ture factor for a single configuration. For an ensemble of
periodic point configurations such (e.g. derived from the
particles centers of our packings), the ensemble average
of S(k) is directly related to the structure factor S(k)
via

lim
N,vF→∞

〈S(k)〉 = (2π)dδ(k) + S(k), (4)

where δ(k) is the Dirac delta function and the limit be-
ing taken on N and the fundamental cell volume vF are
such that the relevant physical system (e.g. unjammed
packings at some constant density or at some given dis-
tance to the jamming density φc) is preserved. In prac-
tice, we directly compute S(k) from our simulation data
and average the data from a large number of packings
with the same system size to approximate S(k) for the
ensemble of packings generated by a given protocol, keep-
ing in mind that finite-system artifacts are expected to
persist to some degree. In all cases, the quantity S(0)
must be inferred through extrapolation to the origin. Us-
ing this ensemble average, one may combine the Fourier
transform of Eq. (1) with Eq. (2) in order to express the
Fourier transform of the direct correlation function as

c̃(k) =
S(k)− 1

ρS(k)
, (5)

from which c(r) may be computed by inverse Fourier
transform.
A number of closure relations have been proposed to

offer approximate solutions to Eq. (1). In particular, the
Percus-Yevick (PY) closure demands that h(r) = −1 for
0 ≤ r < D and c(r) = 0 for r > D for monodisperse
spheres of unit diameter [44]. Physically, these require-
ments specify that no two spheres may overlap, and that
direct interactions (in the sense of Eq. (1)) are absent be-
yond the particles’ hard cores. We would like the former
criterion to apply in any solution for hard-spheres, but
the latter assumption is increasingly violated as the pack-
ing fraction φ = πρ/6 increases. The cubic polynomial
form of c(r) produced by the PY closure that solves Eq.
(1) accurately describes much of the equilibrium liquid
branch of the hard-sphere system with good quantita-
tive agreement for φ < 0.40 and qualitative agreement
for φ < 0.49. However, it possesses various shortcom-
ings at higher densities still within the liquid branch that
one might like to improve: it underpredicts g2(1

+) (and
thus the pressure), and oscillations in the pair correla-
tion function are out of phase and decay too slowly with
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increasing r [45]. At higher densities, g2(r) fails basic sat-
isfiability criteria such as nonnegativity and hence ceases
to be physical.

In order to address this shortcoming, a variety of ad-
justments have been made to the PY approximation to
improve the range of densities over which it may apply.
A classic approach is to introduce a Yukawa term beyond
the core [46–48], i.e., c(r > D) = Ke−z(r−D)/r. This im-
proves the degree to which the approximation matches
qualitative features in c(r) and provides additional fit-
ting parameters to allow for a quantitative match of ad-
ditional system properties. To this end, the recent work
of Jadrich and Schweizer [49] used a two-Yukawa gener-
alized mean spherical approximation which allowed them
to match the system’s compressibility as well as g2(D

+)
and its first derivative in an attempt to accurately de-
scribe the behavior of the hard-sphere system along some
metastable branch leading towards a disordered jammed
state. By allowing z and K to approach infinity, this
model may capture the appearance of a delta function at
c(r = D), and predicts a functional form for c(r) inside
the core that departs from the solution to the Percus-
Yevick approximation. For a single-Yukawa form with
d = 3, one finds [46]

c(x) =− a− bx− φax3/2

− ν
1− e−zx

zx
− ν2

cosh(zx)− 1

2Kz2ez
(6)

for x < 1, where x = r/D, a = 1 − 24φ
∫∞

0 c(x)x2dx,

ν = 24φ
∫∞

1
xe−z(x−1)g2(x)dx, b satisfies

24φy20 = −4b+ 2νz − ν2

Kez
(7)

24φ(y21 − 2y0y2) = 24φa− 2νz3 +
ν2z2

Kez
, (8)

and yi = (di/dxi)[xg2(x)]D+ . Interestingly, upon taking
k and z towards infinity so as to obtain a delta function
at c(r = D), we see that the fourth term in Eq. (6) scales
as −1/r for rz < r as r → 0, where rz ≈ 1/z. Thus, as
z is taken to infinity, rz goes to zero. For r < rz , the
term saturates to a constant. Note that, in order for this
scaling behavior to imply that c(r) diverges at the origin,
one must have ν → ∞. This is not necessarily implied
by this analysis [50].

While this approach improves upon these features, it
still lacks the correct long-r scaling behavior for MRJ-
like packings, i.e., c(r) ∝ −1/r2 as r → ∞. Accord-
ingly, the small-k behavior of the structure factor is not
in qualitative agreement either. In addition to this, sev-
eral salient features in the pair correlation function, in-
cluding (i) the power-law divergence as r → D+, (ii) the

cusp at r/D =
√
3, and (iii) the correct step discontinuity

at r/D = 2, remain elusive.

III. INHERITANCE OF FEATURES IN c(r)
FROM g2(r)

Here, we present a derivation for the magnitude of
the step discontinuity in g2(2) in terms of the informa-
tion in c(r) for the specific case of disordered, jammed
hard-sphere packings in three dimensions. Critically, we
assume throughout this analysis that (i) g2 and c are
isotropic (radial) functions and that (ii) the packings are
isostatic, meaning that the average contact number for
backbone spheres in the packing is z = 6 + O (1/NB),
where NB = (1−fr)N is the number of backbone spheres
in a packing with rattler fraction fr. It is estimated that
fr = 0.015 for TJ and fr = 0.025 for LS [41]. The partic-
ular form of the O (1/NB) term depends upon whether
one is considering collective or strict jamming, but be-
comes irrelevant in the infinite-system limit [51]. The
pivotal observation from which this analysis follows is
that a singularity of a given order in c may not contribute
to a singularity in g2 of lower order. For example, a step
discontinuity in c cannot cause a delta function to appear
in g2. This assumption is justified by recursively insert-
ing the form of h(r) into the Ornstein-Zernike relation to
obtain

h(r12) = c(r12)

+ρ

∫

R3

c(r13)c(r23)dr3

+ρ2
∫

R3

c(r13)c(r34)c(r24)dr3dr4

+ . . . (9)

and noting that each successive convolution ought to in-
crease the order of the differentiability class of the term
by one.

We begin with the delta function at g2(1). By Eq.
(9), we see immediately that the only contribution to
this must come from a delta function in c(1), and that
the two must be of equal magnitude. The number of
particles that are separated at a distance r is given by

z(r) = limǫ→0

∫ r+ǫ

r−ǫ
4πx2ρg2(x)dx. We substitute z(1) =

6fb, where fb = 1 − fr is the backbone fraction, and
obtain the result that the strength of the delta function
in g2(1) is equal to fb/4φ.

We now proceed to identify the source of the jump dis-
continuity found at g2(r = 2). We begin by decomposing
c(r) into three parts:

c(r) = c◦(r) + cδ(r) + cΘ(r), (10)

where cδ(r) = fbδ(r − 1)/4φ is the delta function con-
tribution from above; cΘ(r) = A(1 − Θ(r − 2)), where
Θ(x) is the Heaviside theta function, captures the step
discontinuity predicted in c at r = 2, and c◦(r) captures
the remainder of the direct correlation and is assumed to
be at least continuous at r = 2. Substituting this into
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Eq. (9) gives

h(r12) = c◦(r12) + cδ(r12) + cΘ(r12)

+ρ

∫

R3

[(c◦(r13) + cδ(r13) + cΘ(r13))

(c◦(r23) + cδ(r23) + cΘ(r23))] dr3 + . . .(11)

Substituting in r12 = 2 + ǫ and r12 = 2 − ǫ into this
and subtracting the two equations from each other while
letting ǫ → 0 gives:

∆ǫh(2) = ∆ǫc◦(2)+∆ǫcδ(2)+∆ǫcΘ(2)+ ρ∆ǫI(2), (12)

where we have used the shorthand ∆ǫf(x) =
limǫ→0 f(x+ ǫ)− f(x− ǫ) and defined

I(r12) =

∫

R3

c(r13)c(r23)dr3. (13)

We notice that ∆ǫcδ(2) = ∆ǫc◦(2) = 0, meaning that the
only surviving term of the first three is ∆ǫcΘ(2) = −A.
Furthermore, by considering the decomposition of Eq.
(10) as applied to Eq. (13), we can see that the term with
the differentiability class of the lowest degree is given by

Iδ(r12) =

∫

R3

cδ(r13)cδ(r23)dr3, (14)

and that ∆ǫIδ(2) should be nonzero so long as the delta
function represented by cδ has a nonzero amplitude (i.e.
cδ is not trivially zero everywhere). All other terms con-
tributing to I(r) are continuous at r = 2, as are all
higher-order convolutions. Thus, we are left with

∆ǫh(2) = ρ∆ǫIδ(2)−A. (15)

To evaluate the first term, we define r̄ = (r1 + r2)/2, so
that

Iδ(r12) =

∫

R3

cδ

(

r3 − r̄ +
r12

2

)

cδ

(

r3 − r̄ − r12

2

)

dr3.

(16)
We invoke the convolution theorem to write

Ĩδ(k) = c̃δ(k)
2,

where we have invoked translational invariance to remove
r̄ and the symmetry of the two terms within the in-
tegrand with respect to r12. Carrying out the inverse
Fourier transform gives the result

ρIδ(r12) =
ρ

2π2r

∫ ∞

0

c̃2δ(k)k sin krdk

=
ρ

2π2r

∫ ∞

0

(

π

φk
sin k

)2

k sinkrdk

=
3

πφr

∫ ∞

0

1

k
sin2 k sin krdk

=
3

4φr
(1−Θ(r − 2)) . (17)

Because Iδ represents the “sharpest” contribution from
the single convolution term, we can conclude immedi-
ately that no other terms within the first convolution
term (and no further convolution terms) will contribute
to the quantity limǫ→0 h(2+ǫ)−h(2−ǫ) since they will be
too smooth (i.e. they do not retain a step discontinuity
following convolution). Thus, we arrive at the result that
the magnitude of the step discontinuity in the total cor-
relation function (and, equivalently, the pair correlation
function) at r = 2 is

∆ǫh(2) = ∆ǫc(2)−
3

8φ
. (18)

By extending this analysis, we can claim that even in the

absence of any additional nonanalytic features in c(r),
g2(r) is expected to have discontinuities in successively
higher derivatives at further integer values of r. For
example, there ought to be a discontinuity in the first
derivative of g2 at r = 3D, a discontinuity in the second
derivative at r = 4D, and so on.

IV. SCALING RELATIONS FOR SYSTEMS IN

THE VICINITY OF HYPERUNIFORMITY

In this section, we recall various scaling behaviors for
various pair statistics in direct and Fourier spaces for
ordered and disordered packings of hard spheres in the
vicinity of jamming that are particularly germane to this
paper.
Torquato and Stillinger have shown [6] that a hyper-

uniform system with a structure factor that scales as

S(k) ∝ k2−η, k → 0 (19)

may be thought of as an “inverted critical point.” At
this point, the direct correlation becomes long-ranged,
scaling as

c(r) ∝ −r2−d−η, r → ∞ (20)

in dimension d, where η is a critical exponent such that
2− d < η < 2. Additionally, the inverse of the structure
factor at the origin exhibits critical scaling behavior in
the vicinity of its critical density, i.e.,

S−1(0) ∝ (1− φ/φc)
−γ (21)

for densities close to, but below φc [6].
In the case of the equilibrium crystal branch, we may

exploit the compressibility relation relating the structure
factor to the isothermal compressibility κT at tempera-
ture T

S(0) = ρkBTκT (22)

along with the free-volume equation of state [52] which
predicts that the pressure p behaves as

p

ρkBT
=

d

1− φ/φJ
, (23)
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to obtain the result that κT ∝ (1−φ/φc)
2 in the vicinity

of jamming. From this, it follows that

γ = 2 (equilibrium crystal). (24)

Note that this result is independent of dimension. One
may also define a correlation length ξ with the critical
behavior

ξ ∝ (1− φ/φc)
−ν (25)

which may be related to the previous critical exponents
through

γ = (2− η)ν. (26)

As mentioned before, one such length scale can be defined
by the volume integral of the direct correlation function:
ξ = (−

∫

R3 c(r)dr)
1/d.

For packings along glassy metastable branches leading
to MRJ-like states, one cannot use the compressibility
relation because the states are nonequilibrium in nature
[30]. However, one may reconcile the differing pictures
presented by S(0) and κT by introducing a “nonequilib-
rium index”, defined as

X ≡ S(0)

ρkBTκT
− 1. (27)

Hopkins et al. studied the behavior of X under rapid
compression toward jamming for MRJ-like packings pre-
pared by the LS algorithm for system sizes up to N = 106

and found that, as φ increased toward jamming, X ∝
(1− φ/φc)

−1 [30].
By combining this result with the observation that the

pressure in MRJ-like packings again diverges according
to the free-volume equation of state, we get the result
that

γ = 1 (MRJ packings). (28)

By Eq. (26), this implies that ν = 1 for MRJ pack-
ings as well. This is a noteworthy result because it tells
us that while both MRJ-like and equilibrium crystalline
packings become increasingly hyperuniform as they are
compressed, they are different universality classes with

respect to the critical exponents η and γ associated with

hyperuniformity. While ensembles of packings are known
to exist that interpolate between these extremes, the in-
terpolation is not unique, owing to the large diversity of
jammed packings that are known to exist. Thus, it is an
interesting, outstanding question how these critical ex-
ponents might evolve between these two extreme states.

V. SIMULATION METHODS

In order to study the behavior of the equilibrium hard-
sphere FCC crystal for densities between φ = 0.55 and

the close-packing density φFCC = π/
√
18, we used stan-

dard event-driven molecular dynamics [38]. Configura-
tions of N = 4M3 spheres with 4 ≤ M ≤ 63 were placed
on their lattice sites and allowed to equilibrate at fixed
packing fraction within a cubic fundamental cell with pe-
riodic boundary conditions for 105 collisions per sphere
before taking statistics. Measurements of the structure
factor were made every 103 collisions per sphere to verify
that equilibrium had been attained.
To generate disordered, strictly jammed sphere pack-

ings in three dimensions, we begin with initial condi-
tions produced by random sequential addition (RSA)
at an initial packing fraction of φ = 0.10. We use
the Torquato-Jiao (TJ) sequential linear programming
method [40] with system sizes of up to N = 104 using
the same parameters as those used to study the MRJ
state in Ref. [41]. The final mean density of these pack-
ings is φ = 0.6352± 2.6× 10−4 for a system size of N =
2000. After the algorithm terminates and a putatively
jammed state is reached, the packing is equilibrated
within its jamming basin using event-driven molecular
dynamics at fixed density. We also compare these pack-
ings to those generated using the well-known event-driven
Lubachevsky-Stillinger (LS) molecular dynamics algo-
rithm [53]. For LS, we use an initial dimensionless growth

rate of Γ = dD/dt
√

m/(kBT ) = 10−2 until packings
reach a dimensionless pressure of P = pV/NkBT = 104,
at which point the expansion rate is slowed to γ = 10−5,
and packing continues until P = 108. The mean density
of the final packings as prepared under this protocol is
φ = 0.6434± 1.0× 10−4 at a system size of N = 10000.

VI. RESULTS

In this section, we present results pertaining to our
computer-generated hard-sphere packings as they ap-
proach both ordered and disordered jammed states. We
will present our analysis assuming that the particle di-
ameter D is unity unless otherwise specified.

A. FCC

We begin by examining the behavior of the hard-sphere
FCC crystal because the behavior exhibited by the crys-
tal undergoing thermal motion away from jamming serves
as a interesting starting point from which we can make
several observations to guide our subsequent investiga-
tion of disordered jammed systems. We will investigate
the crystal’s approach to close-packing with attention to
the fluctuating component of the structure factor as well
as the implications it has for the qualitative form of c(r).
Figure 1 shows plots of the radially-averaged structure

factor S(k) for the equilibrated FCC crystal for a vari-
ety of densities along the solid branch; our computation
follows the collective coordinate formulation of Eq. (3).
Curves are averaged over ensembles of 100 packings with
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N = 2048. Figure 2 shows the corresponding radially-
averaged direct correlation function evaluated numeri-
cally using discrete Fourier transform techniques follow-
ing Eq. (5).

10−1 100 101 102

kD/2π

10−5

100

S
(k
)

φFCC − φ = 10−4

φFCC − φ = 10−2

φ = 0.55

FIG. 1. (Color online.) The structure factor of the hard-
sphere FCC crystal at various densities and system size
N = 2048. Dashed lines showing S = (1 − (φ/φFCC)

1/d)2

highlighting the critical behavior of S(0) are included.

10−2 100

r/D

100

105

1010

|c
(r
)|

φFCC − φ = 10−4

φFCC − φ = 10−2

φ = 0.55

FIG. 2. (Color online.) The radially-averaged direct cor-
relation function of the hard-sphere FCC crystal at various
densities and system size N = 2048. The thick dashed line
is included as a guide for the eye and shows a 1/r scaling as
r → 0.

In addition to the Bragg peaks that arise from the crys-
tal geometry from the “frozen-in” structure of the pack-
ings, the curves possess a background contribution de-

rived from thermal fluctuations which scales as k2 start-
ing at a sufficiently-high wavenumber (on the order of
unity) and saturates to S = 1. While the domains of
interest in the scaling descriptions of Eqs. (19) and (20)
as written are k → 0 and r → ∞, one might reasonably
suspect that it is possible to invert the two limits so as
to infer the scaling behavior of c(r → 0) from S(k → ∞).
In the case of our FCC data, we see that this implies
that the direct correlation function ought to scale as r−1

for r < 1. Looking at Fig. 2, this seems to be the case.
We note in passing that this is also consistent with the
prediction given by the analysis of the Yukawa form men-
tioned in Sec. IV.
At sufficiently low wavenumbers, S(k) converges to

a constant, given to a good approximation as S(0) =
(1−(φ/φFCC)

1/3)2, confirming that the critical exponent
γ = 2 as predicted in Eq. (24). Importantly, at the point
of exact jamming, the FCC crystal is trivially stealthy
(its structure factor is identically zero up to some posi-
tive wavenumber), meaning that the critical exponent η
may be thought of as being infinite. This discontinuous
change from the equilibrium behavior at even vanishingly
small distances to jamming highlights the singular nature
of jamming and underscores the need to be careful when
considering limiting behavior.
It is important to note that a structure factor that

scales as k2 can be obtained by applying random, un-
correlated displacements to each particle in the crystal
[54]. Given the inherent anharmonicity of the system ow-
ing to the singular nature of the hard-sphere interaction
potential, we are motivated to ask whether the probabil-
ity distribution of the pair separation of nearest-neighbor
spheres in the crystal might be, to a good approximation,
statistically independent from pair to pair on certain
length scales. On larger length scales (lower wavenum-
bers), the exact form of S(k) is in excellent agreement
with a normal mode analysis based on the fictitious inter-
particle potential derived in [55], suggesting underlying
correlated displacements on corresponding length scales.
In the second paper in this series, we investigate the con-
sequences of this by analyzing the percolation properties
of an intimately-related “cherrypit model” [56].

B. Disordered Packings and the MRJ state

We now turn our attention to characterizing the ap-
proach to jamming in disordered packings produced by
the LS and TJ algorithms as described in Sec. V. Unlike
the case for the FCC crystal, MRJ-like packings do not
strongly indicate signs of an incipient jammed structure
at densities far below that of jamming. Furthermore,
there is a strong protocol dependence yielding qualita-

tive differences in various packing protocols’ approaches
towards disordered, jammed states.
Figure 3 shows the ensemble-averaged structure fac-

tor of our packings for a variety of densities and proto-
cols. As jamming is approached, limk→0 S(k) approaches
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zero, implying that the jammed state is hyperuniform, in
agreement with previous investigations [30, 37]. Because
the data is presented on a log-log scale, the vertical off-
set between the nearly-jammed TJ and LS configurations
corresponds to a difference in slope in their respective
linear behavior in the vicinity of the origin. Interest-
ingly, the packings produced by the TJ algorithm display
anomalous behavior well before jamming is reached, in-
cluding a structure factor that increases as the wavenum-
ber approaches zero for intermediate densities. By con-
trast, S(k) for LS-generated packings seems to mono-
tonically decrease for kD/2π < 1 at all packing fractions
leading up to jamming. This suggests that the intermedi-
ate configurations that TJ creates on its way to jamming
are far from equilibrium—even at packing fractions below
the freezing density φf ≈ 0.494 [57]. For configurations
that are close to jamming at a density of φc, we group
packings according to the quantity 1− φ/φc rather than
φ.

10−1 100

kD/2π

10−3

10−2

10−1

100

S
(k
)

TJ, φ = 0.40
φ = 0.50
φ = 0.60
1− φ/φc = 3× 10−5

1− φ/φc = 3× 10−8

LS

FIG. 3. (Color online.) The structure factor for ensembles
of packings created using TJ (solid lines) and LS (dashed
lines) at various packing fractions φ and distances to jam-
ming 1−φ/φc. Note that very little change is observed upon
compressing the systems from 1−φ/φc = 3×10−5 to 3×10−8.

The TJ algorithm seems to find configurations that
are consistently more disordered than those visited by
LS starting at intermediate densities and continuing up
to jamming [58]. One may consider the order metric

τ =
1

(2π)d

∫

|k|<kmax

(S(k)− 1)2dk, (29)

which may be thought of as quantifying extent to which
a given configuration differs from a Poisson process (for
which S = 1 for all k). This order metric was used in [59]
with kmax → ∞. The order metric τ is also reminiscent
of the direct-space order metric T ∗ that we have utilized
before [41], which measures deviations in the pair corre-
lation function from unity, as well as the two-body excess

entropy s(2) [60–63]. Here, we keep kmax finite to pre-
vent τ from diverging due to the contributions of Dirac
delta functions in the corresponding direct-space statis-
tics characteristic of jammed packings; a similar issue
arises in the aforementioned order metrics as discussed
in [60].
Looking at Fig. 3, one can see immediately that S(k)

for TJ-generated packings remains much closer to unity
at intermediate densities than for LS. This difference per-
sists up to jamming. Figure 4 shows the quantity τ com-
puted for ensembles of 1000 packings created by the TJ
and LS algorithms corresponding to the densities used
for Fig. 3 as a function of kmax. Consistent with other
order metrics including T ∗ as well as the standard bond-
orientational order metric Q6, which primarily measure
short-range order, τ demonstrates that the packings gen-
erated by TJ are also more disordered than those pro-
duced by LS on larger length scales [41]. Thus, τ provides
complementary information to T ∗ and Q6.

10−1 100 101 102

kmaxD/2π

100

101

102

103

104

105

106

τ
(k

m
a
x
)

TJ, φ = 0.40
φ = 0.50
φ = 0.60
1− φ/φc = 3× 10−5

1− φ/φc = 3× 10−8

LS

FIG. 4. (Color online.) The order metric τ for ensembles
of packings created using TJ (solid lines) and LS (dashed
lines) at various packing fractions φ and distances to jamming
1−φ/φc for different cutoffs kmax. Note that very little change
is observed upon compressing the systems from 1 − φ/φc =
3× 10−5 to 3× 10−8.

Near jamming and at sufficiently high wavenumbers,
the behavior of the integrand in Eq. (29) is dominated
by the contribution arising from the delta function in c
at r = D. This causes τ to diverge toward infinity at
a rate that is linear in kmax. The thick black line in
Fig. 4 illustrates the slope associated with this behavior.
If the delta function is not sharp (because of a spread
in nearest-neighbor distances), then τ will saturate to a
constant. This is seen for the LS and TJ packings for
φ = 0.40 and 0.50 as well as for LS at φ = 0.60. This
suggests that, while near-contacts accumulate starting
at low densities as TJ densifies its packings, they remain
spread out over a range of pair distances beyond contact.
Because of the noise in measuring the structure fac-
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tor numerically (due to both a finite number of packings
in the ensemble as well as finite system sizes), S(k) the
decaying oscillations converging to S = 1 will eventu-
ally saturate to white noise. Therefore, τ will begin to
grow with increasing cutoff as kdmax. The beginning of
this trend is visible in Fig. 4 for our ensembles at lower
densities.

Figure 5 shows the corresponding direct correlation
functions for these ensembles of packings. The first
salient feature is that the direct correlation function for
the packings produced by the TJ algorithm exhibits a
prominent peak at r = 1 that is clearly visible at pack-
ing fractions as low as φ = 0.50. This is accompanied
by a steep decrease in c(r) for r < 1 that is dominated
by a −1/r scaling as r → 0. As mentioned in Sec. II,
the analysis of a Yukawa-like c(r) beyond the core as z
goes to infinity [46–49, 64] provides the rationalization for
the appearance of a scaling behavior of this form. How-
ever, it only becomes dominant if the volume integral of
c(r) outside the core is sufficiently large. That is, the
short-ranged behavior of c(r) seems to be, fascinatingly,
communicating its growing long-rangedness in the sense
of the theoretical considerations of Sec. IV.

The early appearance of a delta function in c at r = 1
leads us to suggest that cluster formation in TJ occurs
long before the packing is confined to a jamming basin.
This result is likely related to the observation of Shen
et al. [65] that athermal packings of spheres compressed
from low densities in the presence of a viscous background
exhibit a “contact percolation” which is accompanied by
the emergence of a nontrivial mechanical response to ap-
plied stress at densities significantly below that of jam-
ming. Because of the manner in which the sequential lin-
ear programming algorithm searches for local optimiza-
tions in packing fraction, which require little reconfigu-
ration at low densities, there is reason to believe that the
TJ algorithm explores available configuration space in a
similar fashion to the procedure of Shen et al. for low to
intermediate densities.

We also note in passing that the direct correlation func-
tions exhibit both a cusp at r =

√
3 and a mild step

discontinuity at r = 2, mirroring the features found in
the pair correlation function. We have noticed that the
step discontinuity observed in g2 of jammed packings is
consistently larger than what is produced as an effect
of the delta function at c(r = 1); this is explained in
light of the result contained in Eq. (18). Note also that
the particular form of Eq. (18) relies on the assumption
that the packing is isostatic, meaning that there are the
minimum number of backbone contact pairs necessary to
ensure jamming. In the infinite system limit, this cor-
responds to a mean backbone coordination number of
z = 6 + O (1/N), where the vanishing term reflects the
difference between collective or strict jamming [51].

Figure 6 shows −c(r) plotted on a log scale. As jam-
ming is approached, we observe that c ∝ −1/r2 for large
r, confirming numerically the prediction of Eq. (20) for
η = 1 in the case of disordered packings This scaling be-

havior is difficult to obtain numerically since one must
accurately obtain S(k) data for low wavenumbers in or-
der to extract the large-r behavior of c. In particular, one
must necessarily extrapolate S(0), as a direct computa-
tion using Eq. (3) contains a forward scattering contri-
bution which must be omitted. Additionally, to improve
numerical stability, our c̃(k) data were multiplied by the
Fourier transform of a narrow triangular window so that
the real-space data is smoothed accordingly via convo-
lution. Details of the procedure are give in Appendix
A.

The difference in the protocols’ approaches to jamming
may be readily traced back to differences in the dynam-
ics involved: on one hand, the constant thermal mo-
tion inherent to LS acts to equilibrate packing and avoid
metastable branches terminating at low-density jammed
states; an aggressive expansion rate works against this,
though one must worry about the algorithm becoming
trapped in an unstable mechanical equilibrium (which is,
by definition, not a jammed state). The possible dis-
placements obtained by TJ are highly degenerate since,
in general, there are many different displacements which
allow for the same increase in the packing fraction (which
is limited to a small value so that the linear approxima-
tions in the LPs’ formulation remain reasonably accu-
rate). Therefore, TJ tends to displace spheres in a “lazy”
fashion, only moving what is necessary to increase the
packing fraction and no more.

Evidence of this aforementioned qualitative difference
may be observed directly; Figure 7 shows snapshots of
two-dimensional packings of monodisperse disks created
by TJ and LS (using a rapid compression rate) at a pack-
ing fraction of φ = 0.55. In two dimensions just as in
three, we can see that the structures of the packings are
qualitatively different. In particular, the TJ algorithm
exhibits clustering of particles that might be quickly dis-
persed through thermal motion; in the absence of this,
the clusters continue to combine and aggregate as jam-
ming is approached. We point out that particles within
these clusters do not necessarily contact one another;
some separation is expected to remain between parti-
cles owing to the nonlinearities that are not captured
in the TJ algorithm’s linear approximation to the pack-
ing problem. In LS, on the other hand, particles tend
to space themselves out more uniformly through their
thermal motion. We note in passing that, while this dif-
ference does not prevent the LS algorithm from discover-
ing MRJ-like states in 3D, the two-dimensional case was
recently shown to be considerably more subtle—the dif-
ference in how TJ creates jammed packings has led to
the first observations of MRJ-like packings of monodis-
perse disks in two dimensions, whereas the LS algorithm
and other standard protocols are unable to observe them,
finding significantly more ordered, polycrystalline struc-
tures even under rapid compression [66].



10

0 0.2 0.4 0.6 0.8 1 1.2

r/D

-250

-200

-150

-100

-50

0

50
c(
r) φ = 0.40

φ = 0.50

φ = 0.60

1− φ/φc = 3× 10−5

1− φ/φc = 3× 10−8

Cubic fits

Fits with r−1

0 0.2 0.4 0.6 0.8 1 1.2

r/D

-250

-200

-150

-100

-50

0

50

c(
r)

φ = 0.40

φ = 0.50

φ = 0.60

1− φ/φc = 3× 10−5

1− φ/φc = 3× 10−8

Cubic Fits

Fits with r−1

(a) (b)

FIG. 5. (Color online.) Direct correlation functions computed for packings generated by (a) LS and (b) TJ for various densities.
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FIG. 6. (Color online.) Log-log representation of −c(r) for (a) LS and (b) TJ packings at system sizes of N = 10000 and
N = 2000, respectively. Data for positive c is shown using dashed lines of the same color in (b). The thick black dashed guide
line shows a slope of −1/r2.

VII. CONCLUSIONS AND DISCUSSION

In this work, we have compared and contrasted the ap-
proach of both ordered and disordered hard-sphere pack-
ings towards jammed states through considering the be-
havior of their structure factors and direct correlation
functions. By considering the degree and position of sin-
gularities in c(r) as well as how they are changed by
the convolutions found in Eq. (1), we have established
quantitative statements about the structure of the direct
correlation function with regards to features it inherits
from g2(r). These relations provide a concrete means of
identifying what features must be expressed in c(r) if one

hopes to reproduce various details in g2(r) accurately.

Moreover, we found that the LS and TJ protocols ap-
proach their respective jammed states in markedly differ-
ent manners, as shown by various pair statistics. Specifi-
cally, the structure factor of TJ-generated packings shows
anomalous increasing behavior for small k at intermedi-
ate densities, and generally remains closer to S = 1 at
all densities leading up to jamming when compared to
LS. The order metric τ compares a configuration’s pair
statistics to that of an uncorrelated (Poisson) point pro-
cess, which may be thought of as a maximally disordered
reference state. In this sense, τ may be thought of as
a “disorder metric”. At low to intermediate densities,
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(a) (b)

FIG. 7. (Color online.) Two-dimensional packings of
monodisperse disks created by the (a) LS and (b) TJ algo-
rithms at a packing fraction of φ = 0.55.

τ suggests that packings created by TJ are more disor-
dered on large length scales, but more ordered on short
length scales as evidenced by the crossover as the trunca-
tion in the integration domain kmax is made increasingly
large. This is consistent with the intuition that TJ does
not disturb the packings as they are compressed as much
as LS does, leaving the large-scale characteristics similar
to the initial conditions obtained from low-density RSA.
On the other hand, the formation of near-contacts well
before jamming may be interpreted as a sort of “order-
ing” that LS avoids through equilibration; therefore, LS
yields configurations that are more disordered locally at
densities far from jamming.

TJ shows signs of particles in close proximity at sur-
prisingly low densities as evidenced by the appearance of
a clear precursor to the delta function at c(1) and cor-
responding −1/r scaling within the core as r → 0. We
have shown that the latter numerical observation can be
predicted from theoretical considerations using a Yukawa
model for c(r). By evaluating τ , we see that these near-
contacts that cause the delta function to appear are dis-
tributed across a range of pair separations, and the delta
function’s precursor is not “sharp” until higher densities.
This is to be expected because of the linear approxima-
tions that TJ makes as the packing is compressed; the
inaccuracies due to nonlinear contributions are largest
when large changes in the system configuration (parti-
cle translations and box deformations) are made. This is
the case at densities far from jamming, where the linear
approximations to the packing problem still leave a large
amount of configuration space accessible. Nonetheless,
this feature in the intermediate-density structures pro-
duced by the TJ algorithm suggests that it possesses im-
portant qualitative commonalities with the physical pro-
cess of compressing hard-spheres embedded in a dampen-
ing background, providing a conceptual physical analog
to the algorithm as witnessed in practice.

It has been suggested previously [6, 30] that the hype-
runiform, linear nonanalytic behavior of S(k) for MRJ-
like packings ought to give rise to a long-ranged direct
correlation function which exhibits a power-law decay
of c ∝ −1/r2. We have confirmed this numerically us-
ing simulated packings of hard-spheres generated by two
very different protocols, adding to the evidence to the

conjectured link between jamming and hyperuniformity
[36, 37] and supporting the idea that the emergence of
large-r scaling behavior consistent with hyperuniformity
may be regarded as a structural precursor to jamming.
It would be interesting to consider new semi-empirical
forms for c(r) incorporating this long-range behavior in
order to gain understanding regarding its structural con-
sequences.
It is interesting that the structure factor of the FCC

crystal exhibits scaling that is constant for low k, but
gives way to k2 beginning at wavenumbers on the order
of unity, extending to an increasingly large maximum
wavenumber as jamming is approached. We noted above
that this would imply that the average pair distance be-
tween any given pair of nearest-neighbor particles might
be spatially uncorrelated to a good approximation. It
has been observed elsewhere [67] that the fluctuating
component of the structure factor in disordered pack-
ings of thermally-excited soft-spheres exhibits a similar
quadratic scaling at densities slightly above the jamming
transition density. We have noticed that this behavior
is also exhibited for disordered hard-sphere packings at
packing fractions below, but close to jamming, suggest-
ing similarly that the pair separations between nearest-
neighbor particles may fluctuate in an uncorrelated man-
ner to a good approximation.
We suspect that the aforementioned differences be-

tween the LS and TJ algorithms should be evident in
other ways. In a subsequent paper [56], we will study
our hard-sphere systems in the context of two different
percolation problems. In the first, we decorate the hard
cores with a perfectly penetrable shell (this is known
as the “cherrypit model” [45]) and tuning the size of
this shell for various configurations to explore percola-
tion criticality. Based on our findings here, one would
expect for TJ that the critical shell thickness would be-
come very small rather quickly, whereas it might de-
crease more steadily towards zero for LS as jamming is
approached. Moreover, one might expect to find struc-
tural differences in the percolating clusters between these
two algorithms. Second, we investigate percolation by
measuring the time-averaged magnitudes of pair forces in
nearly-jammed, structurally-arrested configurations as a
function of a minimum “threshold” force. This approach
serves to “average out” fluctuations in particle position,
and thus provides insight into the role of fluctuations in
the incipient structure of disordered, jammed systems.
Both approaches provide insight into the jamming pro-
cess using static structural features, expanding upon the
work presented here.
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Appendix A: Numerical procedure for obtaining c(r)
from S(k) data

In this appendix, we provide procedural details regard-
ing our numerical computation of the direct correlation
function used to ascertain the large-r behavior.

We begin by measuring S(k) at wavevectors that are
integer combinations of the columns of the reciprocal ma-
trix ΛR defined as ΛR = [(2π)Λ−1]T , where the columns
of Λ ∈ R

d×d span the fundamental cell of our system in
direct space. Measurements are then binned and aver-
aged according to their wavenumber with a bin width of
∆k/2π = 0.01, so that we have reported measurements
at wavenumbers given by kn = (∆k/2π)(1/2 + n) for
n = 0, 1, 2 . . . . Because the density of wavevectors scales
as kd−1, we randomly select wavevectors with a probabil-
ity proportional to the inverse of this density such that,
for higher wavenumbers, the expected number of mea-
surements per bin is E(ns) = 105. At smaller wavenum-
bers, the structure factor is measured at every available
wavevector.

Once we have obtained data for all of our packings, we
perform an ensemble average. If there are empty bins,
then we linearly interpolate a value for those bins, ex-
pecting that this is representative of the large-system
limit. We also linearly extrapolate S(k) down to zero
if any bins are missing data; our results are qualitatively
robust against small variations in this extrapolation.

Our data is then converted via Eq. (5) to give us
c̃(k). Because of the asymptotic behavior of c̃(k), we
find that it is necessary to apply a convolution in or-
der to eliminate artifacts caused by difficulties associated
with numerically integrating this high-frequency behav-
ior. We do this by multiplying c̃(k) with the Fourier
transform of a triangular window in direct space given
by w(r) = (3/πr3c)(1− r/rc)(1−Θ(r− rc)). The Fourier
transform of this radial function is

w̃(k) =

{

12
(krc)4

(2− 2 cos(krc)− krc sin(krc)) , k > 0

1, k = 0
.

(A1)

For a general three-dimensional, radial function f(r) ≡
f(|r|), the Fourier transform and its inverse may be ex-

pressed [45] as

f̃(k) =

{

4π
k

∫∞

0 rf(r) sin(kr)dr, k > 0
∫

R3 f(r)dr, k = 0
(A2)

f(r) =

{

1
2π2r

∫∞

0
kf̃(k) sin(kr)dk, r > 0

1
(2π)3

∫

R3 f̃(k)dk, r = 0
. (A3)

Note that both the forward and inverse transforms are
equivalent up to their scaling coefficients. In order to
take advantage of the usual one-dimensional fast Fourier
transform algorithm for our three-dimensional, radial
c̃(k), we take our discrete Cn = c̃(n∆k) for n =
0, 1, 2, . . . , l and compute

C′
n =











(n− l)∆kCl−n−1, n = 0, 1, . . . , l

0, n = l + 1

(n− l − 1)∆kCn−l−1, n = l + 2, . . . , 2l + 1

.

(A4)
We then compute the usual one-dimensional inverse FFT
on this data, defined here as

c′m = F−1[C′
n;m]

=
∆k

2l + 1

2l+1
∑

n=0

C′
ne

2πnm/(2l+1) (A5)

wherem = 1, . . . , 2l+1. We then apply the prefactor and
a phase correction because to correct for the fact that the
index n = l + 1 corresponds to k = 0 to obtain

cm =
c′m

2π2rm
e−2πiml/(2l+1) (A6)

where rm = m∆r and ∆r = 2π/∆k(2l + 1). Through
analogy with Eq. (A3), one expects that cm is completely
imaginary, while one expects the Fourier transform to be
completely real-valued. This is reconciled by dropping
the imaginary unit from cm; doing so is justified since
the imaginary prefactor is expected if one applies Euler’s
formula to the exponential term in Eq. (A5), but is miss-
ing as a prefactor to the sine term in Eq. (A3). Finally,
the value for c0 corresponding to c(r = 0) is obtained by
integrating Cn numerically according to Eq. (A3).
Once the direct space c(r) has been found (represented

discretely through cm), one must then be sure to truncate
the data at rmax = Lmax/2 where Lmax is the width of
the simulation box; data beyond this point is subject to
finite-size artifacts.
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