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The growing sluggishness of glass-forming liquids is thought to be accompanied by growing struc-
tural order. The nature of such order, however, remains hotly debated. A decade ago, point-to-set
(PTS) correlation lengths were proposed as measures of amorphous order in glass formers, but re-
cent results raise doubts as to their generality. Here, we extend the definition of PTS correlations
in order to agnostically capture any type of growing order in liquids, be it local or amorphous. This
advance enables the formulation of a clear distinction between slowing down due to conventional
critical ordering from that due to glassiness and provides a unified framework to assess the relative
importance of specific local order and generic amorphous order in glass formation.

I. INTRODUCTION

It is tempting to attribute the spectacular dynamical
slowdown of glass-forming liquids as one lowers temper-
ature to an increasingly collective behavior characterized
by the growth of a static length. The puzzle of glass
formation, however, lies in the elusive nature of such
a length and of the associated spatial correlations [1–
3]. The structural changes measured by static pair den-
sity correlations, as probed by common scattering exper-
iments, stay remarkably weak. Hence, the sought-after
static correlations must be quite subtle and, as a result,
hard to detect. To make matters worse, whatever the
definition of the putative static length, its increase over
the dynamical range accessible to computer simulations
and experiments is expected to be modest – by less than
a factor of 10 – due to the activated scaling form between
the relaxation time τ and the static length ξ,

log

(
τ

τ0

)
∼ B ξψ

T
, (1)

with τ0 and B being liquid-specific constants and ψ ≤ d
an effective exponent bounded by the spatial dimen-
sion [1–4]. It is much harder to detect large grow-
ing lengths in glass-forming liquids than in systems ap-
proaching standard second-order critical point, whereat
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the dynamics also slows down, but a power law relates
time and length scales,

τ

τ0
∼ C ξz, (2)

with a dynamical exponent z = O(1) [5].
Although this difficulty once motivated attempts to

avoid making explicit reference to collective changes in
static properties of glass-forming liquids [6, 7], evidence
linking static correlations to their sluggishness has since
grown prevalent [8]. Two main proposals have been for-
mulated to identify static correlations in glass formers.
(i) The spatial extent of locally preferred structure(s) as
obtained, for instance, from multi-body correlations as-
sociated with bond-orientational order [9]. In fluids of
spherical particles these bond-orientational correlations
can detect polytetrahedral or icosahedral local order in
d = 3 and six-fold local order in d = 2 [10]. An unfortu-
nate drawback of this proposal is that the prevalent local
order is a liquid-specific property that may be hard to
access in generic molecular glass formers. (ii) The corre-
lations associated with metastability [11–13], as inspired
by the paradigm of a rugged free-energy landscape and
by the random first-order transition (RFOT) theory of
the glass transition [3, 14]. Various ways to access this
type of length have been proposed [15–17], but we fo-
cus here on that relying on freezing particles outside a
spherical cavity. Simply put, one probes over what dis-
tance the amorphous boundary stabilizes a metastable
state. Such length scales are expected to capture an
incipient amorphous order related to the rarefaction of
available metastable states–and thus a decrease in the
corresponding configurational entropy–as the liquid be-
comes sluggish. They are associated with point-to-set
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FIG. 1. Overlaps for monodisperse hard disks at packing fraction φ = 0.695 < φhexatic and cavity radius R = 6.25 ≈ ξPTS
`=6 ≈

2ξPTS
pos . The positional (left) and bond-orientational overlaps for ` = 6 (middle) and 8 (right) between a specific equilibrated

configuration Y with a given reference configuration X are evaluated at the particle centers of the former (top). Averaging
over reference and equilibrated configurations yields smooth overlap profiles (bottom). In order to compare different types of
overlaps, their average values for two identical configurations are rescaled to unity. Cavity overlap profiles clearly confirm that
the ` = 6 overlap detects the incipient hexatic order while positional and other bond-orientational overlaps are blind to it.

(PTS) correlations that go beyond standard multi-body
quantities.

In this work we address two key issues. First, PTS
lengths have been claimed to be order agnostic, i.e., with
no need to specify the type of order potentially growing
in the system, be it local or amorphous. If true, this
appears as a clear strength of such observables. Yet,
recent work by Russo and Tanaka [18] shows that the
commonly implemented method of studying PTS corre-
lations is unable to track the growth of six-fold local order
in a two-dimensional hard-disk model. They concluded
that such correlations are irrelevant to slow dynamics in
this system and, therefore, cannot be order agnostic [18].
Second, behind the two proposals for defining relevant
static length scales are often two lines of research that
seem largely at odds and often ignore each other. On
the one hand, PTS correlations have become an impor-
tant tool for theorists aiming at assessing the validity of
the mean-field description of the glass transition and of
the RFOT theory for glass-forming liquids in two and
three dimensions [1, 19]. On the other hand, explana-
tions of glass formation based on the growth of some spe-
cific local order are prevalent among soft-matter [20] and
metallic-glass scientists [21, 22]. Since–for the reasons
given above–length scales do not grow large in physical
glass formers, it is hard to disentangle the two explana-
tions and ascertain if the collective behavior underlying
glass formation is primarily due to specific local order or
generic amorphous order.

We resolve the first point by putting forward the fol-
lowing central idea: to agnostically capture incipient or-

dering PTS correlations must take into account all de-
grees of freedom that are potentially relevant to describe
configurations at a coarse-grained level, as one would do
in crystallography. For liquids, one should thus extend
PTS correlations to (i) positional, (ii) bond-orientational,
and (for molecular liquids) (iii) orientational degrees of
freedom. (Similarly, a crystalline profile is defined by the
equilibrium positions of the atoms on an underlying lat-
tice, modulo small displacements due to vibrations and
permutations of identical atoms, and the lattice itself
is characterized according to translational and orienta-
tional symmetries.) In order to validate this proposal,
we perform a computer study of several slowly relaxing
liquids, including two-dimensional hard disks heading to-
ward quasi-long-range ordered phases and a canonical
three-dimensional glass former (see Appendix A). Our
results show that properly defined PTS correlations cap-
ture whatever order is growing in a liquid, be it generic
amorphous order or a more specific local order (Fig. 1).

Concerning the second issue, we show that, based on
the behavior of PTS correlations, one can unambiguously
disentangle glassiness from critical slowing down due to
ordering. This further leads to a natural taxonomy of
relaxation slowdown in liquids, and provides a unified
framework to assess the relative importance of specific
local order and generic amorphous orders in glass-forming
liquids.
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FIG. 2. Decay of the PTS correlations with cavity radius R for monodisperse hard disks: (a) positional gPTS
pos (R) and (b-c) bond-

orientational gPTS
` (R) for ` = 6, 8 at packing fractions φ = 0.600 (red-cross), 0.650 (green-circle), 0.680 (cyan-square), 0.690

(blue-diamond), and 0.695 (black-plus). Solid lines are exponential fits. Note that the y-axis range is an order of magnitude
larger for ` = 6 than for ` = 8. (b) The growth of positional (red-square) and hexatic (blue-diamond) PTS correlation lengths
extracted through the exponential fits track the correlation lengths (dashed lines) extracted from the radial and coarse-grained
` = 6 correlation functions, respectively. Lengths are relative to the results for ξ0 ≡ ξ(φ0 = 0.650).

II. EXTENDED SET OF PTS CORRELATIONS

PTS correlations are studied by first pinning a frac-
tion of the particles in equilibrium configurations, then
letting the system further explore phase space in pres-
ence of this constraint, and finally measuring the degree
of similarity (or overlap) between a new equilibrium con-
figuration and the initial one [11, 13, 23–25]. What had
not been previously appreciated is that PTS correlations
are defined not only by a pinning protocol [23] but also
by the degrees of freedom considered in assessing the sim-
ilarity of configurations. For spherical particles studied
here, we consider positional as well as bond-orientational
overlaps, and freeze particles outside a cavity of radius R
in order to ensure a proper localization of both degrees
of freedom within specific states [26].

Positional overlap is defined in terms of the particle
density by computing the average overlap [〈Qpos〉] (R).
Bond-orientational overlap could be defined using a bond
density, but it is more convenient to project that bond
density onto circular (in d = 2) or spherical (in d = 3)
harmonics of rank `, and study overlaps defined for a
range of ` (` = 1-16 is typically sufficient; higher harmon-
ics get increasingly noisy). A bond-orientational over-
lap field of rank ` between the reference configuration X
and a configuration Y equilibrated in the presence of the
frozen particles is then

QXY
` (r) ≡ N`

∑
m

{
ψX
`,m(r)

}∗
ψY
`,m(r) , (3)

where ψX
`,m(r) is the local bond-orientational order pa-

rameter, and both the summation over m and the nor-
malization N` are d-dependent (see Appendix B). The
mean overlap of rank `, [〈Q`〉] (R), is then the average
of QXY

` over the configuration Y, and over the reference
configuration X. We also define gPTS(R) ≡ [〈Q〉] (R) −
[〈Q〉] (∞) for both positional and bond-orientational PTS
correlations.

Note that what enters our definition of PTS corre-
lations (detailed in Appendix B) are not microscopic
configurations per se, but spatially and orientationally
coarse-grained configurations, because approximating the
notion of states or density profiles requires averaging over
vibrations [27]. Hence, while bond-orientational and po-
sitional degrees of freedom are entirely tied up at the
purely microscopic level, upon coarse-graining they be-
come partly independent fields.

III. LOCAL ORDER THROUGH PTS
CORRELATIONS

In order to show that this extended set of PTS cor-
relations can indeed detect growing local order, we first
consider a system of monodisperse hard disks. This sys-
tem is known to order first into a hexatic phase at a
packing fraction φhexatic = 0.700(1) and then in a hexag-
onal phase at φhexagonal = 0.716(2) [28–31]. The local or-
der in the liquid is the six-fold bond-orientational order,
which can be measured from the decay of the standard
correlation function of the local hexatic order parameter,
g6(r) = 〈ψ6(0)∗ψ6(r)〉. Although the liquid-hexatic tran-
sition has been recently shown to be weakly first-order
for this model [31], the associated correlation length,
ξ6, nonetheless grows very rapidly upon approaching
φhexatic. [32] (By weakly first-order transition we mean
a transition with a small jump of the order parameter
and a large yet finite correlation length.) Meanwhile, the
positional length ξpos extracted from the two-point radial
correlation function g(r) – and bond-orientational length
ξ` extracted from the “two-point” bond-orientational cor-
relation function g`(r) for ` incompatible with the hexatic
order – grows much more mildly (see Appendix C).

Let us now examine the behavior of positional and
bond-orientational PTS correlations in this liquid (Fig. 2
for ` = 6, 8 and Fig. 6 in Appendix for ` = 1-16). As also
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observed by Russo and Tanaka [18], we find that the po-
sitional PTS correlation length grows only slightly, stay-
ing of the order of ξpos. However, bond-orientational PTS
correlations for ` = 6 extend over longer distances as φ in-
creases, and perfectly track the growth of the hexatic or-
der. Interestingly, one also notes that bond-orientational
PTS correlations for ` 6= 6, 12 show no distinctive fea-
tures of the growing hexatic order. When systematically
investigated, there is thus no need to a priori know or
guess the symmetry of the incipient local order. In other
words, when properly extended to account for all degrees
of freedom, PTS correlations capture the full extent of
the local order in a liquid (see Fig. 1).

IV. AMORPHOUS ORDER THROUGH PTS
CORRELATIONS

We next investigate a canonical d = 3 glass-forming liq-
uid, the Kob-Andersen binary Lennard-Jones (KABLJ)
model (see Appendix A). Its local order, based on ar-
rangements in the form of bicapped square antiprisms
[also denoted as (0, 2, 8) polyhedra [33, 34]], is known to
be strongly frustrated and does not correlate over large
distances as temperature decreases [35]. One expects
that the symmetry of the preferred local arrangement
again leads to nonzero projections on at least some of the
bond-orientational local order parameters. We therefore
systematically compute the standard bond-orientational
correlation functions g`(r) and contrast them with both
positional and bond-orientational PTS correlations.

Results down to T = 0.45 [36], which is near the mode-
coupling crossover, show no striking differences between
the various overlap functions (Fig. 3 for ` = 6, 8 and
Fig. 8 in Appendix for ` = 1-16). In this model, posi-
tional PTS correlations and bond-orientational PTS cor-
relations thus go hand in hand. In addition, although the
growth of the associated length scale over the accessible
regime is moderate, it is nonetheless larger than either
the two-body positional length or the lengths associated
with the local structure, as measured by standard bond-
orientational correlation functions (Fig. 3g).

The behavior of the KABLJ model appears typical of
a glass-forming phenomenology in which the growth of
generic amorphous order captured by PTS correlations
comes without any significant contribution from the lo-
cally preferred order. The latter stays relatively short-
ranged, which can be taken as a manifestation of its frus-
tration. This frustration has the dual effect of preventing
the extension of locally preferred structures – here partly
through compositional constraints [34] – and of gener-
ating a rugged landscape with a multitude of equiva-
lent low-energy metastable states above the ground state.
The only significantly growing length scale is that asso-
ciated with PTS correlations, which neatly capture the
growing amorphous order.

V. GLASSINESS VERSUS CRITICAL SLOWING
DOWN

Studying PTS correlations associated with all relevant
degrees of freedom has allowed us to contrast two quite
different kinds of slowing down in liquids: that of sys-
tems heading toward a continuous or weakly first-order
transition and that due to a glassy behavior controlled
by a multiplicity of metastable states with no significant
extension of some locally preferred order.

The monodisperse hard-disk system studied above is
an example of slowly relaxing liquids approaching a con-
tinuous (or weakly first-order) transition. In these sys-
tems, bond-orientational PTS and conventional correla-
tions – for some spherical harmonics of rank ` that detect
the local order – track the growth of the incipient order
as one approaches the transition. By contrast, positional
PTS correlations (as well as the bond-orientational PTS
for ` incompatible with the local order) merely follow
standard pair correlations. These correlations do not ex-
tend over large distances if, as in the above examples
of hexatic phases, the (quasi-)ordered phase does not in-
volve additional breaking of translational symmetry. The
relaxation slowdown is then controlled by the incipient
local order, which grows because a phase transition is
approached. Sluggish dynamics is thus here a form of
critical slowing down that should not be confused with
the glassy relaxation of liquids approaching a glass tran-
sition.

Quite differently, for some glass-forming systems such
as the KABLJ model, essentially all PTS correlation
functions, be they bond-orientational or positional, track
the same length. This PTS correlation length can thus
be associated with growing generic amorphous order and
the rarefaction of available disordered metastable states,
without any notable competition from the extension of
the specific local order. This length increases modestly
over the dynamical range accessible to computer simula-
tions but nonetheless does so more than other structural
lengths associated with pair positional correlations or lo-
cal order. The matching of (generic) bond-orientational
and positional PTS correlations and the parallel decou-
pling between the latter and other structural lengths are
characteristic of this type of systems [13, 16, 23–25, 36–
47]. The relaxation slowdown then appears to be com-
patible with the RFOT scenario [3].

Additional information can be obtained from the fluc-
tuations of the cavity overlaps [36]. One can define an
overlap susceptibility χPTS from the variance of the over-
lap fluctuations, averaged over a small region around the
cavity center: χPTS(R) ≡

[
〈Q2〉 − 〈Q〉2

]
(R). For glassy

systems characterized by rugged local free-energy land-
scapes, we expect overlap susceptibilities to develop a
peak at ξPTS (Fig. 3), as observed numerically also in
other types of constrained glassy systems [48, 49]. By
contrast, for the d = 2 hard disks, the overlap suscepti-
bility for ` = 6 is devoid of such distinctive peak structure
and instead monotonically approaches the bulk value,
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FIG. 3. PTS correlations (a-c), susceptibilities (d-f), and lengths (g) for the d = 3 KABLJ model as a function of cavity radius
R: positional (a,d) and bond-orientational results for ` = 6 (b,e) and 8 (c,f) at T = 1.00 (red-cross), 0.80 (green-circle), 0.60
(cyan-square), 0.51 (blue-diamond), and 0.45 (black-plus). For PTS correlations, solid lines are compressed exponential fits
gPTS = A exp[−(R/ξPTS

fit )η] with η = 3; for susceptibilities, solid lines are guides for the eye, and dashed lines for T = 0.45
are extrapolated from R = 3.2 to the extrapolated peak (star) at R ≈ 3.8 [36]. (g) The bond-orientational PTS lengths ξPTS

`

for ` = 6 (blue-diamond), 7 (green-cross), 8 (black-plus), 12 (cyan-circle) follow the positional PTS length ξPTS
pos (red-square).

Dotted lines depict the standard pair positional length ξpos and bond-orientational lengths ξ` for ` = 6, 7, 8, 12, all of which
increase at a slower pace with decreasing temperature, in agreement with Ref. 35. Lengths are relative to the results for
ξ0 ≡ ξ(T0 = 0.800).

much like simple two-point functions (see Fig. 7 in Ap-
pendix). There also seems to be a difference in the cavity-
size dependence of the mean overlap, with the appearance
of a nonconvex dependence at the lowest accessible tem-
peratures for the KABLJ model, while no such structure
is observed for d = 2 hard disks (see also Ref. 13).

Yet another striking difference between critical and
glassy slowdowns appears in sampling small cavities. For
the KABLJ model, the barriers in the local free-energy
landscape at the PTS scale are so high that nonlocal
Monte Carlo schemes (such as parallel-tempering) are
needed to ensure equilibration [25, 36, 48]. The small
cavity sizes make the physical lifetime of the metastable
states extremely large. For monodisperse hard disks, by
contrast, barriers decrease for small cavities as a result
of the weakening influence of correlations. A local Monte
Carlo scheme suffices in that case. This latter dynamical
behavior is consistent with the slowing down being due
to the proximity of a weakly first-order transition and
inconsistent with typical glass phenomenology.

This difference in dynamical behavior is further corrob-
orated by looking at the parametric evolution of the bulk
relaxation time against the dominant growing correlation
length in the system (Fig. 4). Whereas the slowing down
in the KABLJ model is qualitatively well described by
the glassy activated scaling in Eq. (1), that of the hard-
disk model are in line with the critical power-law scaling
in Eq. (2).
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FIG. 4. Growth of the structural relaxation time, τα, with
the dominant length, normalized with ξ0 ≡ ξPTS

pos (T0) at high
temperature T0 = 0.80 for the KABLJ model (blue triangles)
and with ξ0 ≡ ξ`=6(φ0) at low packing fraction φ0 = 0.650 for
monodisperse (orange squares) and φ0 = 0.700 for 11% poly-
disperse hard disks (purple stars). For the KABLJ model, τα
increases exponentially while the PTS length grows modestly.
By contrast, for hard disks, τα;`=6 as a function of ξ`=6 (see
Appendix C) increases much more mildly, compatible with
the power-law scaling of Eq. (2) (see the inset for the log-log
plot).

VI. POLYDISPERSE HARD DISKS, REVISITED

Armed with these observations, we finally take a look
at d = 2 systems with polydispersity ∆ = 3%, 6%, 9%
and 11%. This last system was first investigated by
Russo and Tanaka [18], and we reproduce here all their
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results over the range φ = 0.73-0.77 they studied. In ad-
dition, we compute the bond-orientational PTS correla-
tions and find that the ` = 6 component perfectly tracks
the growth of the hexatic order, while the positional PTS
length grows only mildly, just as in the monodisperse
(∆ = 0%) case (see Appendix C). For intermediate ∆,
we also know φhexatic (∆) [50]. Interestingly, when stud-
ied at appropriately rescaled φ, the various static lengths
grow similarly at all ∆ (see Fig. 7 in Appendix). As
far as static lengths go, ∆ = 11% is thus smoothly con-
nected and qualitatively similar to the monodisperse sys-
tem, suggesting that the growth of structural correlations
is due to the approach of a weakly first-order transition,
and not to glassiness. In addition, the PTS correlation
functions are convex and the overlap susceptibilities dis-
play no peak structure, which provide yet more evidence
that this system is not glassy. Finally, we encounter no
high barrier to sampling configurations in small cavities;
a (semi-)local Monte Carlo scheme suffices to equilibrate
them. Barriers are in fact so low that the hard disks even
fail to develop a plateau in the self-intermediate scatter-
ing function [18], which is usually taken as a canonical
feature of glassiness. Our results thus suggest that the
conclusions drawn by Russo and Tanaka about the role
of PTS correlations near the glass transition are obtained
from numerical observations performed in a model that
does not behave as canonical glass-forming liquids.

VII. CONCLUSION

Our study of PTS correlations in slowly relaxing liq-
uids shows that a full characterization of these correla-
tions requires, besides a proper imposition of constrain-
ing boundary conditions, an account of all degrees of
freedom relevant to describing the configurations at a
coarse-grained level. For spherical particles, this should
include positional and bond-orientational degrees of free-
dom. When both are taken into account, PTS correla-
tions prove to be a powerful tool to investigate two- and
three-dimensional liquids. They can track both the spa-
tial extent of a specific local order – possibly associated
with an underlying ordering transition – and the growth
of some generic amorphous order associated with a re-
duction in the number of available disordered metastable
states. Furthermore, in the case of molecular liquids, pro-
vided orientational degrees of freedom are also included,
PTS correlations can provide a useful tool to detect a pu-
tative growing local order. Contrary to systems of spher-
ical particles, symmetry classifications of local arrange-
ments are remarkably difficult for these systems, and no
systematic investigation of locally preferred structures or
motifs has so far been undertaken.

Through the extended PTS correlations we have also
been able to disentangle conventional critical slowing
down from glass-forming behavior. The liquids studied
in this work, namely monodisperse and weakly polydis-
perse hard disks on the one hand and the KABLJ model

on the other, appear as two extreme classes in a pos-
sible taxonomy of slowly relaxing liquids: the formers
display growing local order triggered by an incipient crit-
ical ordering but virtually no glassiness, while the latter
shows growing amorphous order and glassiness but with a
strongly frustrated locally preferred order. One can en-
visage intermediate classes for which weakly frustrated
local order and amorphous order compete to generate a
glassy slowdown of relaxation [16, 33, 51, 52]. We pro-
pose that in these more challenging cases the study of
PTS correlations as developed in the present work should
allow a useful taxonomic characterization with an assess-
ment of the relative importance of specific local order
versus generic amorphous order in the dynamical slow-
down. For instance, existing work on a liquid in the
hyperbolic (i.e., negatively and uniformly curved) plane
provides evidence that for weak frustration, controlled by
a small curvature [51, 53], the length associated with the
growing local six-fold order grows hand in hand with the
positional PTS length [16] (and much more than the two-
point positional correlation length) in the regime accessi-
ble to computer simulations. We can therefore anticipate
that in this regime bond-orientational PTS correlations
would grow concomitantly. Hexatic and hexagonal order-
ing being strictly suppressed due to the constant curva-
ture [54], the system is clearly a glass former, yet it also
displays a significant growth of the six-fold local order
that saturates at a length scale of the order of the radius
of curvature. An open question then concerns the behav-
ior of PTS correlations beyond this saturation. Although
this regime may be hard to reach in practice because of
the large structural relaxation times, we speculate that
there may be a crossover to a regime where PTS corre-
lations decouple from the local order and track a length
describing the further reduction of metastable states. It
would be particularly interesting to know the shape of the
overlap susceptibilities in this case. Similar studies could
further be undertaken on d = 2 hard-disk models in flat
space, if indeed cranking up the polydispersity, ∆, can
mimic the effect of negative curvature in suppressing the
hexatic order, and in weakly frustrated three-dimensional
atomic and molecular glass-forming models.

In any case, the proposed conceptual framework pro-
vides a constructive approach to resolving the contro-
versy on the role of static correlations and associated
length scales in the slowdown of relaxation leading to
glass formation.

ACKNOWLEDGMENTS

We acknowledge fruitful exchanges with H. Tanaka
and J. Russo. We also acknowledge the Duke Compute
Cluster for computational times, without which this re-
search would have been impossible to carry out. The
research leading to these results has received funding
from the European Research Council under the Euro-
pean Union Seventh Framework Programme (FP7/2007-



7

2013)/ERC Grant agreement No. 306845 (LB). PC and
SY acknowledge support from the National Science Foun-
dation Grant No. NSF DMR-1055586 and the Sloan
Foundation.

Appendix A: Models and simulations

In this section, we describe the models simulated as
well as the simulation procedure employed to obtain the
data describe in the main text.

1. 2D Monodisperse

Configurations with N = 10, 000 monodisperse hard
disks of equal diameter σ = 1.0 in a periodic box
of linear size L are prepared at packing fractions
φ = 0.600, 0.650, 0.680, 0.690, 0.695, using a Monte Carlo
(MC) sampling scheme that includes only local dis-
placements. Both equilibration- and production-run
lengths are 100Nτ Monte Carlo sweeps, where Nτ (φ =
0.600, 0.650, 0.680, 0.690, 0.695) = (2, 2, 5, 10, 30) × 103

MC sweeps. A total of 100 independent configurations
are generated.

In order to measure PTS correlations, for each of these
100 configurations, we randomly pick a position within
the simulation box as the cavity center. Phase space
within a cavity is again explored through simple MC sam-
pling scheme. An important change with respect to bulk
equilibration is that particles outside the cavity are fixed
and we put a hard wall at the edge of the cavity, i.e., all
moves that take a mobile particle outside the cavity are
rejected.

In order to check for proper equilibration within the
cavity, we employ two initialization schemes [36, 55]: (1)
from the original configuration, and (2) from a random-
ized configuration, obtained by shrinking the disk diam-
eters from σ to 0.5σ, performing 104 MC sweeps to ran-
domize their positions, and re-growing the disks back to σ
sufficiently slowly to avoid local jamming. Positional and
bond-orientational overlaps between the original and the
equilibrated configurations for the two schemes are mon-
itored. After Nτ MC sweeps, (disorder-averaged) overlap
values for the two schemes converge. For both of these
schemes, we run simulations for 100Nτ MC sweeps, dis-
carding configurations from the first 20Nτ sweeps and
sampling 200 cavity configurations, equally spaced in
time, from the remaining production runs.

In total, 100 cavities are attained for each R at each
packing fraction φ, and two sets of 200 configurations for
each cavity are obtained from the two schemes.

2. 2D Polydisperse

The d = 2 polydisperse hard-disk system is akin
to the monodisperse system but with disk diameters

0 0.06 0.12

0.6

0.65

0.7

0.75

0.8

∆

φ

FIG. 5. Evolution of weakly first-order transition line (ma-
genta) with polydispersity from a semigrandcanonical ensem-
ble calculation [50]. Dots indicate packing fractions at which
PTS measurements are performed for each polydispersity,
φ = φ1 (red-cross), φ2 (green-circle), φ3 (cyan-square), φ4

(blue-diamond), and φ5 (black-plus).

{σi}i=1,...,N that are drawn from a Gaussian distribution.
Through a simple affine transformation on {σi}i=1,...,N ,

we adjust the mean diameter σ̄ ≡
∑N

i=1 σi

N = 1.0 and

polydispersity ∆ ≡
√∑N

i=1(σi−σ̄)2

Nσ̄2 = 3%, 6%, 9%, 11%.
In addition to local displacements, we employ particles
identity swaps (20% of the MC moves). We prepare sam-
ples at packing fractions φ = φ1, ..., φ5, where (Fig. 5)

(φ1, φ2, φ3, φ4, φ5)

= (0.600, 0.650, 0.680, 0.690, 0.695) for ∆ = 3%

= (0.620, 0.670, 0.690, 0.700, 0.710) for ∆ = 6%

= (0.640, 0.680, 0.705, 0.720, 0.735) for ∆ = 9%

= (0.660, 0.700, 0.730, 0.750, 0.770) for ∆ = 11% ,

and Nτ (φ = φ1, φ2, φ3, φ4, φ5) = (2, 2, 5, 10, 30) × 103,
using the same preparation protocol as for monodisperse
disks.

3. Kob-Andersen Binary Lennard-Jones

The d = 3 Kob-Andersen binary Lennard-Jones
(KABLJ) mixture is a 80 : 20 mixtures of A : B atoms
with interatomic pair potentials

vαβ(r) = 4εαβ

[(σαβ
r

)12

−
(σαβ
r

)6
]
, (A1)

where α, β = A or B; the potential is truncated at the
conventional cutoff of 2.5σαβ and is shifted so that it
vanishes at the cutoff. Molecular dynamics simulations
are performed at a density ρ = 1.2. (Lengths and tem-
peratures are given in Lennard-Jones units of σAA and
εAA/kB , respectively.) More details are given in Ref. 36.

We emphasize here that, while for mono/polydisperse
hard disks we attained good equilibration in all cavities
without resorting to parallel-tempering, for the KABLJ
model the scheme was essential [36]. This difference pro-
vides additional evidence of glassiness for this model.
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Appendix B: PTS Definitions

In this section we define both positional and orienta-
tional measures of PTS correlations.

1. Positional overlap

Denote a pair of configurations X = {xi} and Y =
{yi}. Here, X corresponds to the frozen initial configu-
ration and Y to re-equilibrated configurations. For hard
disks, we thus have 2 × 200 such pairs for each cavity.
For each particle xi, find the nearest particle yinn (of
the same species for the KABLJ liquid; no such proviso
for mono/polydisperse systems). Assign an overlap value
QX;Y

pos (xi) ≡ w
(∣∣xi − yinn

∣∣), where

w(z) ≡ exp

[
−
(z
b

)2
]

(B1)

with b = 0.2. This choice defines overlap values
QX;Y

pos (xi) at scattered points {xi}. We then define

QX;Y
pos (r) to be a continuous function passing through

these points. Specifically, we first subdivide space
with a Delaunay tessellation and within each sim-
plex associate linearly interpolated values. Similarly
we obtain QY;X

pos (r), and finally define QXY
pos (r) ≡

1
2

{
QX;Y

pos (r) +QY;X
pos (r)

}
.

The overlap around the core of the cavity,

QXY
pos ≡

∫
|r|<rc dr Q

XY
pos (r)

2πd/2rdc/Γ (d/2)
, (B2)

is evaluated through Monte Carlo integration, with
10, 000 points within a ball of size rc = 0.5 for the d = 3
KABLJ liquid and 1000 points with rc = 0.5 for d = 2
hard disks. Here, r = 0 denotes the center of the cavity.

The positional PTS correlation function is

gPTS
pos (R) ≡

[
〈Qpos〉J(R)

]
− 〈Qpos〉bulk , (B3)

where 〈...〉J(R) denotes the thermal average over
re-equilibrated configurations inside the cavity with
quenched disorder J(R) set by a pinned external config-
uration, and [...] the average over disorders (i.e., average
over cavity centers). We have subtracted the bulk value
corresponding to R = ∞ such that the PTS correlation
function vanishes at infinity. The bulk value is evalu-
ated by taking 105 pairs of independent configurations
in bulk samples for the mono/polydisperse systems and
4000 pairs for the KABLJ model.

In this notation, the positional PTS susceptibility is

χPTS
pos (R) ≡

[
〈Q2

pos〉J(R) − 〈Qpos〉2J(R)

]
. (B4)

2. 2D orientational overlap for mono/poly-disperse

In d = 2, we define an `-orientational overlap
field QXY

` (r) by first associating an orientational value

ψX
`,m (j) to a particle located at xj , where m = ±1.

From a radical Voronoi tessellation, we find NX
j De-

launay neighbors k; for each neighbor k, we define
an angle between them θXj,k by expressing xk − xj ≡
rj,k(cosθXj,k, sinθ

X
j,k); and to the particle at xj we asso-

ciate the average value

ψX
`,m (j) ≡ 1

NX
j

∑
k/j

eim`θ
X
j,k . (B5)

Then, for each point in space r, we find the nearest
particle in X, j?, and associate its value to the point,
ψX
`,m (r) = ψX

`,m (j?). Similarly, we obtain ψY
`,m (r). We

finally define the `-orientational overlap field as

QXY
` (r) = N`

∑
m=±1

{
ψX
`,m(r)

}∗
ψY
`,m(r) (B6)

with N` ≡ 1/2. Note that this quantity is real and inde-
pendent of the choice of axis in defining angles.

The `-orientational PTS correlation functions have a
similar definition as the positional ones. Figure 6 shows
the bond-orientational overlap functions gPTS

` (R) ≡
[〈Q`〉] (R) (for bond-orientational correlation, the bulk
value is zero by symmetry) for ` = 1 to 16 for monodis-
perse hard disks. (We have also studied values of ` from
17 to 24 but the resulting curves are noisy. Furthermore,
for high values of `, small displacements originating from
mere vibrations tend to decorrelate the overlap over short
distances no bigger than the interatomic distance.) Note
the growing length scale for ` = 12 as the symmetry is
compatible with six-fold order. The bond-orientational
correlations for ` incompatible with the six-fold order, in
contrast, do not track its growth and instead their spatial
extents stay within the order of positional scale ξpos.

The `-orientational PTS susceptibilities can also be
defined similarly to the positional ones. Figure 7 com-
pares positional and ` = 6 bond-orientational PTS sus-
ceptibilities, χPTS

pos and χPTS
`=6 , for polydispersity ∆ =

0%, 3%, 6%, 9%, 11% at various packing fractions, where
0% corresponds to monodisperse hard disks, along with
the growth of associated PTS lengths. We detect no qual-
itative changes as a function of polydispersity. Note that
there is no distinctive peak structure in susceptibilities
and the bulk value of the ` = 6 bond-orientational sus-
ceptibility has a strong density dependence that tracks
the growth of the local six-fold order. We expect the
same behavior to be seen in the simple ferromagnetic
Ising model upon approaching its critical temperature
from above.

3. 3D orientational overlap for Kob-Andersen

The d = 3 observables are essentially the same as in the
d = 2 case, except that we employ standard (rather than
radical) Voronoi tessellation; angle θ is replaced by (θ, ϕ);
eim`θ is replaced by spherical harmonics Yl,m(θ, ϕ); the
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FIG. 6. Radial decay of the bond-orientational PTS correlations for monodisperse hard disks, gPTS
` (R), for ` = 1, . . . , 16 at

φ = 0.600 (red-cross), 0.650 (green-circle), 0.680 (cyan-square), 0.690 (blue-diamond), and 0.695 (black-plus). Note that the
vertical axes have the same range for all ` except for ` = 6. Solid lines are exponential fits.

summation over m is replace by m = −`, . . . , `; and the
prefactor N` ≡ 4π

2`+1 . This quantity is again real and
independent of the choice of axis in defining spherical
harmonics. Figure 8 lists bond-orientational PTS corre-
lations for ` = 1 to 16 for the KABLJ model. We see
no qualitative differences among different angular com-
ponents.

Appendix C: Coarse-grained two-point functions

Coarse-grained bond-orientational two-point functions
are defined by first taking a point r1 in the bulk config-
uration and another point r2, separated by distance R
in a randomly-chosen direction, and then defining orien-
tational fields ψI

`,m (r + r1) around the first point as be-

fore and ψII
`,m (r + r2) around the second. The two-point

function is given by

N`
∑
m{

2πd/2rdc/Γ (d/2)
} ∫
|r|<rc

dr
{
ψI
`,m(r + r1)

}∗
ψII
`,m(r+r2)

(C1)
averaged over 200 different pairs of points for each of 100
bulk configurations for hard-disk models, and 100 pairs
for 50 bulk configurations for the KABLJ liquid.

Pair bond-orientational correlation lengths, ξ`, are
extracted through the exponential fit to these coarse-
grained orientational two-point functions. Pair positional
correlation length, ξpos, is extracted through the expo-
nential fit to the peak values of the two-point radial cor-
relation function g(r) for r ≥ 4.

Finally, to assess the bulk relaxation time in the hard-
disk system, the coarse-grained bond-orientational auto-
correlation function, f`(t), is defined in the way similar
to the corresponding two-point functions defined above.
One difference is that, rather than comparing two points
separated by distance R, we consider two points sepa-
rated in time t. Averages are over 100 initial bulk configu-
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FIG. 7. Positional χPTS
pos (top row) and ` = 6 bond-orientational χPTS

6 (middle row) PTS susceptibilities as a function of
cavity radius R for hard disks with polydispersity ∆ = 0%, 3%, 6%, 9%, 11% (from left to right), at φ = φ1 (red-cross), φ2

(green-circle), φ3 (cyan-square), φ4 (blue-diamond), and φ5 (black-plus) where the values of φi at each polydispersity are the
same as in Fig. 5. The bottom row, for the same range of polydispersity, records the growth of positional (red-square) and
hexatic (blue-diamond) PTS lengths extracted through the exponential fits to PTS correlations. Dashed lines are positional
and six-fold pair correlation lengths. Lengths are relative to the results for ξ0 ≡ ξ(φ0 = φ2).

rations and 200 randomly-chosen points r1 within each of
them. The relaxation time, τ`, is then extracted through
the exponential fit to the autocorrelation function f`(t).
We find τα;`=6 to be the most rapidly growing timescale.
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FIG. 8. Radial decay of the bond-orientational PTS correlations for the KABLJ model, gPTS
` (R), for ` = 1, . . . , 16 at T = 1.00

(red-cross), 0.80 (green-circle), 0.60 (cyan-square), 0.51 (blue-diamond), and 0.45 (black-plus). Solid lines are compressed
exponential fits gPTS = A exp[−(R/ξPTS

fit )η] with η = 3.
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