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When an entangled interpenetrating collection of long flexible polymer chains dispersed in a
suitable solvent is cooled to low enough temperatures, thin lamellar crystals form. Remarkably,
these lamellae are sectored, with several growth sectors that have differing melting temperatures
and growth kinetics, eluding so far an understanding of their origins. We present a theoretical model
to explain this six-decade old challenge by addressing the elasticity of fold surfaces of finite-sized
lamella in the presence of disclination-type topological defects arising from anisotropic line tension.
Entrapment of a disclination defect in a lamella results in sectors separated by walls which are
soliton solutions of a two-dimensional elliptic sine-Gordon equation. For flat square morphologies,
exact results show that sectored squares are more stable than plain squares if the dimensionless
anisotropic line tension parameter α = γan/

√
h4Kφ (γan = anisotropic line tension, h4 = fold

energy parameter, Kφ = elastic constant for two-dimensional orientational deformation) is above a
critical value, which depends on the size of the square.

PACS numbers: 81.10.Aj, 81.10.Dn, 82.35.Lr, 83.80.Rs

One of the outstanding phenomena in polymer sys-
tems is the ability of a collection of interpenetrating
and entangled long flexible polymer chains to organize
into crystals upon cooling. The fact that the chains
are intermingled among themselves with spatial and
dynamical long-ranged correlations before crystallization
begins is responsible for the crystallization process being
topologically frustrated. Remarkably, crystals do indeed
form in spite of such topological frustrations. A rich
phenomenology of polymer crystallization has been
cultivated over the past seven decades, with numerous
sets of experimental data posing challenges for full
interpretation [1–13]. As a prominent feature of the
phenomenon of polymer crystallization, polymer crystals
form as thin lamellae with thickness in the 10 nm range
and lateral dimensions in microns or larger. Even under
the simplest situation of crystallization from a solution
containing sufficiently long and unentangled flexible
polymer molecules, single lamellar crystallites have
been observed to form spontaneously into a plethora of
morphologies [14–25]. The size, shape, and regularity
of the crystals depend on their growth conditions such
as solvent, temperature, concentration, and rate of
growth. For example, flat hexagonal lamellae form when
polyoxymethylene is crystallized from bromobenzene
[17], whereas flat lozenge shaped lamellae form when
polyethylene is crystallized from a mixture of tetra-
chloroethylene and p-xylene [21]. These single crystals
are made of different number of sectors. As another
specific example, when polyethylene is crystallized from
p-xylene at 70◦C, a lamella with four sectors with [110]
growth planes forms; at 86◦C, a lamella with six sectors,
four with [110] planes and two with [100] planes, forms.
It is also known that {100} sectors have a lower melting
temperature than the {110} sectors. In addition to
sectored flat lamellae, other morphologies such as hollow
tents, hollow bowls, disks, onion-like, scrolls, and twisted

FIG. 1. (Color online) Base-centred orthorhombic unit cell
of a crystalline polyethylene lamella. The lamellar normal is
along the z- axis. The c- axis of the unit cell is tilted with
respect to the z- axis. Shaded strips represent oriented stems
formed by all-trans configurations. Folds are not shown.

lamellae are also known to form [14–25]. Despite the
availability of rich facts, an understanding of polymer
single crystal morphology remains as one of the major
challenges.

In this paper, we focus on the phenomenon of sector-
ization in polymer lamellae. Although the sectorization
has been known for about six decades [1–8, 14–21, 24, 25],
the problem of the structure and stability of sectors
observed in lamellar polymer crystallites has hitherto
eluded a satisfactory explanation. Why should flat
structures with sectors, and bent, tent-shaped structures
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FIG. 2. (Color online) Surface of a polyethylene lamella
viewed along the c- axis (see FIG.(1)). Stems, together with
their orientation, are indicated by solid lines centred on lattice
points. The shaded central region belongs to a unit cell. Two
types of folds are represented by dashed lines. The two folds
differ in free energy. The thick, dashed fold has the lowest
free energy.

that are manifestly deformed be stable? This paper
primarily addresses the stability of the flat, sectored
morphology of polymer crystallites.

Let us, for concreteness, consider polyethylene crystal-
lites with base-centered orthorhombic symmetry. In the
bulk, and along the c- axis of the crystal, the polymer
is in all trans- conformation, thus forming polymer
stems (FIG.(1)). The stems are tilted with respect to
the lamellar normal (by about 30◦ for polyethylene),
and fold back into the lamella by switching over from
trans- to gauch- conformation at lamellar surfaces.
Folds have preferred orientations with respect to the
underlying crystal symmetry. (FIG.2) shows two fold-
configurations for polyethylene that have different
free energies, schematically representing the ‘adjacent
reentry’ and the ‘random switch-board’ models [26]. It
has been argued that the adjacent reentry configuration
(the thick dashed fold denoted in (FIG.2)) is generally
of lower free energy [26]. It is important to note that
depending upon the symmetry of the underlying crystal
lattice the lowest free energy fold configuration can have
different orientations. In general, polymer crystallites
have different point group symmetries, preferred tilt-,
and fold angles. Moreover, in lamellae with a boundary
(edge), symmetry considerations allow for folds at the
edges favoring a specific orientation with respect to
the edge-normal, leading to anisotropy in line tension
[27, 28]. Addressing the problem of stability of sectored
polymer crystallites is therefore a formidable task. It
must be noted that the lateral sizes of the lamellar crys-
tallites are four to five orders of magnitude larger than
the atomic dimensions, allowing a continuum description
for these crystallites without addressing specific and
non universal features of the unit cell [14–25]. In this
paper we extract the essential, generic features of flat,

FIG. 3. (Color online) Illustration of an idealized, lozenge
shaped, sectored lamella bounded entirely by folds with the
lowest free energy. The lamella is divided into four sectors.
Folds run along the edges of the three rhombi shown.

lamellar polymer crystallites, and construct a tractable,
continuum, phenomenological model for elucidating the
structure and stability of sectors.

The model and the mechanism of stability that we
propose is primarily based upon the fact that for a finite
lamella the ground state fold orientation in the middle
of the fold surface cannot possibly be compatible with
the most favored orientation of folds throughout the
entire boundary of the lamella. This necessarily leads
to deformation in the fold-orientation field, and costs
elastic free energy. For sufficiently strong anisotropy of
line tension, the finite lamella can trap a vortex in the
fold-orientation field (a topological defect, also known
as a disclination) [29]. Moreover, the fold- field-lines
of the disclination (vortex) can split up into sectors
separated by wall defects so as to further reduce the
free energy cost from anisotropic line tension. In the
context of domains of Langmuir monolayers with tilt
order, trapping of vortices due to anisotropy of line
tension has been studied [30]. A five-armed star defect
observed in thin hexatic films with tilt order [31] has
been discussed by Selinger and Nelson [32]. This defect
has arms (wall defects) of finite, equal lengths that
emanate from a disclination. However, anisotropy of line
tension plays no role in the stability of the star defect.
In this paper we show that intersecting wall defects
separate sectors, with a disclination situated at the
intersection of walls, and discuss the stability of square-
shaped, sectored, planar lamellae in the parameter space.

The proposed two-dimensional, continuum, phe-
nomenological model is described in §1. In §1.1 we
discuss the conventional elasticity of the lamella, which
is treated as a continuum. §1.2 deals with the energetics
of folds. We model the preferred orientations of folds
through a simple potential, and the free energy cost for
deviations of the fold-field from the preferred orientation
by an elastic free energy for the continuum fold-field.
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Symmetry-allowed couplings between the displacement
field and the fold-field are discussed in §1.3. In addition,
there are contributions to the total free energy from (i)
surface tension of the lamella (either in a solution, or in a
melt), (ii) line tension from the edges of the lamella, and
(iii) anisotropic line tension due to folds at the edges.
These are considered in §1.4. The potential, and elastic
energies of §1.2, as well as the anisotropy of line tension
(§1.4) play a crucial role in stabilizing the sectored
morphology. As mentioned above, strong anisotropy
in line tension is capable of trapping a disclination in
the fold-field within a lamella of finite extent. §2 has
a simple pedagogical discussion on disclinations and
their energetics. In §3 we minimize the total bulk free
energy to obtain the equation of equilibrium, and solve
it exactly. Typical sketches of the sectored morphology
(FIG.(3)) in the literature [22, 23] are consistent with
our solution to the equation of equilibrium (FIG.(5))
for the model presented in §1. The solution describes
intersecting wall defects in the fold-field. Across the
walls, the orientation of fold-field switches over from
one minimum of the potential to the other. Walls
separate the lamella into sectors, with a disclination
of strength +1 in the fold-field (rather than in the
displacement field) situated at the point of intersection.
This configuration is topologically stable – changing it to
that of the ground state involves altering the orientation
of the fold-field throughout the lamella. However, since
the lamella is of finite extent, it is essential to establish
that the sectored morphology is energetically favored
over that of the ground state. In §4 we compare the free
energy of a lamella in the ground state with that of a
sectored lamella, and present a diagram for the region of
stability of sectored morphology in parameter space.

§1. The model : In this section we model the free
energy costs for deformations in thin lamellar crystals
with fold surfaces. We first identify the variables in
terms of which the free energy cost for deformations
can be described within a continuum description.
Since the thickness of crystalline lamellae is much
less than their lateral extent they can be treated as
two-dimensional plates with appropriately modified
elastic moduli, as in the standard theory of thin plates
[33]. In the proposed model the lamellar crystal is
treated as two-dimensional, with a one-dimensional
boundary. Deformations in the plane of the flat lattice
are described in terms of a two dimensional displacement
field u(x, y) = (ux(x, y), uy(x, y)), where the xy- plane is
the lamellar plane, with lamellar unit normal n̂ parallel
to the z- axis. The tilt of stems in the undeformed
lamellae picks out a special direction in the lamellae.
In the lowest free energy, undeformed state, folds at
the two fold-surfaces are uniformly aligned. Thus the
ground state of a lamella has up-down symmetry. The
fold-direction can be characterized by a unit, apolar
vector field n̂f ≡ −n̂f . Note that we have chosen a
unit director (apolar vector) field to describe the folds

with the understanding that the free energy cost for
stretching or compression of folds is subsumed in the
Hookian elasticity.

§1.1. Hookian elastic free energy : Crystalline lamellae
of polymers have a finite thickness, and have a specific
point group symmetry. For example, polyethylene
crystallites have orthorhombic symmetry. The elasticity
theory of orthorhombic crystals involves nine indepen-
dent elastic constants. The tilt of stems picks out a
special direction in the ground state of the lamellae,
and complicates the situation further by contributing to
the anisotropy of the elastic tensor. Moreover, changes
in the tilt angle, and bending of stems can change the
thickness of the lamella.

As mentioned in the introduction to this paper, the
phenomenon of sector formation is observed in polymer
crystallites having different point group symmetries, and
consequently, different numbers of independent elastic
constants. To simplify our analysis, and to make it gen-
eral, we treat the crystalline lamellae as homogeneous
and isotropic, and ignore the complications that arise
because of specific point group symmetries, tilt- orienta-
tions, and thickness variations. For flat, homogeneous,
isotropic lamellae, treated as thin plates, the Hookian
elastic free energy is given by [33]

Fu =
E

2(1 + σ)

∫ [
σ

1− σ
uiiujj + uijuij

]
dx dy, (1)

where E and σ are two dimensional Young’s modulus
and Poisson’s ratio respectively, the linearised strain
tensor uij = (1/2) [(∂ui/∂xj) + (∂uj/∂xi)]; xi, xj run
over x, y, and repeated indices are summed over. Here,
and in all the equations below that involve integration
over x- as well as y, the integrals are taken over the entire
area of the lamella, with appropriately chosen limits for
x and y. In 2-dimensions, E > 0, and −1 < σ < 1 for
stability.

§1.2. Free energy contributions from the fold-field :
Given the crystal structure of the polymer, folds have
preferred orientations with respect to the crystal lattice.
The two most preferred orientations of folds for polyethy-
lene are shown in the schematic (FIG.(2)). These orienta-
tions have different free energies [1]. To simplify the prob-
lem at hand we model the simplest possible case, wherein
there are two equally preferred, orthogonal fold orienta-
tions. The n̂f ≡ −n̂f symmetry then implies that there
are four equally preferred, orthogonal directions along
which the folds have the least free energy. We have thus
chosen this symmetry so as to stabilize a square-shaped
lamella. A potential with four equally deep minima;

Vf =
h4
4

∫
cos[4φ(x, y)] dx dy, (2)

where φ(x, y) is the orientation of the fold-director
n̂f(x, y) = (cosφ(x, y), sinφ(x, y)) in circular polar co-
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ordinates. As is evident from the form of the potential,
in the undeformed, ground state of the lamella, φ can
have orientations given by p π/4, where p = 1, 3, 5, 7, so
that there are four equivalent ground states, which is
consistent with the stipulated symmetry.

Folds can misalign from the preferred orientation. Spa-
tial variations in φ cost elastic free energy. We model the
elastic free energy of deviations from the preferred orien-
tation by the standard, isotropic, squared gradient elas-
ticity for a two-dimensional deformation in the nematic
director [28]

Eφ =
Kφ

2

∫
(∇φ)2 dxdy, (3)

where Kφ is an elastic constant.

§1.3. Elastic coupling between u-, and φ- fields : Cou-
plings between two fields essentially describe the response
of one field to changes in the other. The couplings have to
be such that the free energy is invariant under symmetry
operations of both the fields. The fold- field is apolar,
with the symmetry n̂f ≡ −n̂f . The lowest order cou-
pling between the elastic strain uij and n̂f is of the form
(uij − (1/2) δij ukk)nfi nfj [34], where the factor within
the brackets represents pure shear deformation (the de-
viatoric strain, devoid of any hydrostatic compression),
the subscripts i, j run over x, y, and repeated indices are
summed over. This coupling just means that the response
to a shear deformation in the lattice is a change in the
orientation of the fold- field (and vice-versa). However,
this coupling is not harmonic. We have consistently re-
stricted ourselves to harmonic terms in writing the elastic
free energies (1, 3), and we ignore the nonlinear elastic
coupling discussed above.

A harmonic coupling between u- and φ- fields is ob-
tained by appealing to rotational invariance. A rigid, in-
plane rotation of the undeformed lamella costs no elastic
free energy. Rotation of the crystal lattice is described
by the antisymmetric form

δω =
1

2
(∂xuy − ∂yux) =

1

2
εij ∂iuj (4)

that is just half the z- component of the curl of u. In
(4) above, εij is the totally antisymmetric symbol with
εxy = −εyx = 1, εxx = εyy = 0. For rigid rotations of the
lamella, δω must equal δφ – the crystal lattice, and the
fold-director field n̂f must rotate simultaneously by the
same amount, so that δω = δφ. The lowest order term
that describes the free energy cost for non-rigid, relative
rotations is therefore

Fωφ[u, δφ] = Kωφ

∫
(δω − δφ)2 dx dy, (5)

where Kωφ is the coupling constant. A coupling of this
form has been used in the context of nematic elastomers
[35, 36]. The free energy (5) is minimized for δφ ' δω.
In the model we consider, we ignore the coupling (5)

for reasons discussed in §2. These have to do with the
high free energy cost of a disclination (see §2) in the
displacement field, and are of special significance for the
tent morphology of polymer crystallites (see §5).

§1.4. Surface-, and line tension energies: In a melt or
in a solution, the crystallite has a nonzero surface tension
free energy

Es = σ

∫
dxdy, (6)

where σ is the coefficient of surface tension; the lamellar
crystallite has two surfaces, the factor of 2 arising from
this has been absorbed in defining σ.

The lamella is decorated with folds; it has orientational
order. In this context, the line tension at the edges has
two contributions. The first contribution

Eis = γ

∮
dl, (7)

is isotropic, with a coefficient γ, and is the usual line
tension that is associated with a surface or a thin film
bounded by a curve. The second contribution is special
to materials endowed with orientational order, and plays
a crucial role in the stability of the sectored morphology.
This is the anisotropic line tension that prefers a partic-
ular angle between the outward normal to the boundary
and the field that describes the orientational order (in
this case, the fold-director n̂f). This contribution to the
line tension has the Rapini-Papoular form [27, 28]

Ean = γan

∮
sin2(φ− φ0) dl, (8)

where φ0 is the preferred angle of orientation of the
fold-field at the boundary. Although nonlinear in
form, (8) above is the lowest order contribution to
the anisotropic line tension that is consistent with the
n̂f ≡ −n̂f symmetry.

§2. Disclinations in two-dimensions –
crystalline-, and orientational order : Before
addressing the stability of sectored crystallites it is
essential to discuss the structure and energetics of
disclinations in two-dimensional crystals, and in fluid
membranes with orientational order (such as Langmuir
monolayers with tilt order). Let us imagine cutting
away a wedge of angle Ω from the center of a thin, ho-
mogeneous rubber disk. We then close the angle deficit
by sticking together the two newly opened edges (while
keeping the disc flat), and allowing the rubber disk to
relax. This is the Volterra construction of a disclination
[29]. Adding up the incremental angle deficits around
any closed loop enclosing the center of the deformed
disc yields the total angle deficit Ω. The center of the
disk is a singular point (for a quasi-two-dimentional
disk). An overall angle deficit corresponds to a positive
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(a) (b)

FIG. 4. (Color online) Elliptic (+1), and hyperbolic (−1)
disclinations in the xy-model. Upon traversing an anticlock-
wise, closed circuit, the vector field rotates in anticlockwise
sense through 2π for a +1 disclination, and in clockwise sense
through 2π for a −1 disclination..

disclination. Inserting a wedge in a straight cut from
the centre of the disk to its boundary leads to an angle
excess, which corresponds to a negative disclination.
It is important to note that the angle deficit or excess
cannot be arbitrary in crystals because of their discrete
rotational symmetries.

Disclinations are topological defects (point defects in
two-dimensions) and are defined via∮

dϑ = 2πs = Ω, (9)

where the integral is taken around a closed curve
that encloses the singular disclination point, the angle
ϑ = 1

2 (∇×u) · n̂, where n̂ is the unit normal to the flat
crystal, gives the local rotation of the elastic material.
The index of the disclination is given by s.

It is straightforward to estimate the free energy cost for
a disclination in a crystal. As is evident from the Volterra
construction, the displacement field for a disclination is
a linear function of the distance from the singular point
(at the origin); u ' s r. Suppressing tensorial indices,
the elastic free energy of a disclination in a crystal can
be schematically written as

Eω ∝ kel
∫ R

0

(∇u)2 r dr ∝ kel s2R2, (10)

where kel is a typical elastic constant, R is the system
size, and we have approximated the elastic free energy
density in (1) by (∇u)2 = (∂iuj)

2. The free energy
scales as the area of the system, and is clearly pro-
hibitively costly.

We now move on to disclinations in fluid membranes
with orientational order. For concreteness, let us consider
the continuum xy-model that has vectorial orientational
order described by an angle ψ [29]. For disclinations,

∮
dψ = 2πs (FIG.(4)). This topological condition is sat-

isfied by ψ = s arctan(y/x). Notice that arctan(y/x) is
just the polar angle in circular polar coordinates. To the
harmonic order, the elastic free energy density of the xy-
model is proportional to (∇ψ)2. Thus the free energy of
a disclination is [29]

Eψ ∝ kxy
∫ R

ξ

(∇ψ)2 dx dy (11)

∝ kxy s2
∫ R

ξ

1

r2
r dr ∝ kxy s2 ln(R/ξ), (12)

where kxy is the spin-wave stiffness, R is the system
size, and ξ is a cutoff of order intermolecular spacing.
In contrast to crystals, the free energy of a disclination
in orientational order grows logarithmically with system
size.

§3. Equation of equilibrium for the φ- field,
and its solution : To obtain the equation of equilib-
rium of the φ- field, we minimize the free energy func-
tional E [φ] = Eφ + Vf (see (2, 3)). The first variation of
E [φ] gives

δE [φ]

δφ
= −Kφ∇2φ− h4 sin(4φ) = 0, (13)

where φ = φ(x, y), and ∇2 is the Laplacian operator
in two dimensions. This equation is a two-dimensional,
nonlinear partial differential equation, known as the
elliptic sine-Gordon equation [29, 37]. It is well known
that the one-dimensional version of this equation admits
kink solutions (also referred to as wall- or soliton
solutions in condensed matter physics).

To solve this equation in the context of sectors, we
first notice that the potential Vf has four minima. Next,
we observe that setting the preferred angle φ0 for the
line tension term (8) (i.e., the angle between n̂f and
the outward normal n̂b to the boundary) equal to π/2
simplifies the problem for a square-shaped lamella. The
folds then prefer to run along the edges of the square.
We note that the particular choice φ0 = π/2 is not
essential, and the results of calculations that follow do
not depend on this choice. This is because the elastic
free energy (3) of the φ- field is isotropic. Thus, we
seek a solution of the Euler-Lagrange equation (13) for
a square lamella with the following features: (i) two
intersecting walls along the diagonals that separate four
sectors, and (ii) a +1 disclination in the φ- field situated
at the wall-intersection.

The equation of equilibrium (13) can be solved exactly
for the desired configuration discussed above. However,
the calculations involved are unwieldy. In what follows
we first give the solution, and thereafter present heuristic
arguments of a geometric nature that lead to the solution.
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FIG. 5. (Color online) Plot of the solution (14). Lines along
rounded squares represent the fold-field. Shaded regions rep-
resent the two intersecting walls, with a +1 disclination at the
centre. The outermost square is the boundary of the lamella.

The solution is

φ = arctan

(
tanh(y/w)

tanh(x/w)

)
− π

2
, (14)

where the wall width w =
√
Kφ/h4. Verification of

this solution by direct substitution into the equation of
equilibrium (13) also involves complicated mathematical
manipulations. Use of symbolic manipulation software
packages eases the task. The inverse tangent form for
solitonic solutions, and several exact solutions of this
form, which are expressible in terms of elementary
functions are well known [38, 39]. However, (14) is a
special type of vortex solution to the elliptic sine-Gordon
equation, describing two intersecting solitons with a
+1 vortex (disclination) at their intersection. To our
knowledge an exact vortex solution of this form is not
previously known. The solution describes two orthogonal
walls of width w that intersect at the origin, and split
the xy- plane into four sectors. We expect the width
w to be of the order of a lattice spacing. The plot of
field-lines (or integral curves) of the fold-director n̂f

obtained from the solution above is shown in FIG.(5).
The origin is a singular point that is a +1 disclination
in the φ- field. Except for a region of width w near the
corners of the square, the fold-field is parallel to the
boundary of the square at sufficiently large distances
from the origin.

We now turn to the heuristic argument behind the
solution (14). Let us consider a hollow, right pyramid
with its square base in the xy- plane, and apex on the z-
axis. Removal of the base gives a surface with four faces.
For such a pyramid, it is easy to see that the projection
of the unit normal to the faces onto the xy-plane is
perpendicular to the square boundary of the base. Ro-
tating this projected vector field by π/2 makes it parallel
to the square boundary, divides the square into four

FIG. 6. (Color online) Schematic of the surface h(x, y) =
a ln[cosh(x/w) cosh(y/w)].

sectors, and has a +1 disclination at the center of the
square. This is close to the field configuration that we
are seeking, except that the walls separating the sectors
are infinitely sharp; their width is zero. The elliptic sine-
Gordon equation (13) has the length scale w =

√
Kφ/h4

associated with it. Therefore we need to repeat the pro-
cedure described above (projection of the surface normal
followed by rotation by π/2) for a four-sided surface
with rounded edges. Such a surface can be modeled by
the height function h(x, y) = a ln[cosh(x/w) cosh(y/w)],
where a determines slopes of the four faces, and the
length scale w determines sharpness of the four edges
(FIG.(6)). This surface is described by the position
vector R = (x, y, h(x, y)). The tangent vectors to
the surface are tx = ∂xR = (1, 0, ã tanh x̃), and
ty = ∂yR = (0, 1, ã tanh ỹ), where ã = a/w, x̃ = x/w,
ỹ = y/w, with the unit surface normal given by
n̂s = (tx × ty)/|tx × ty|. The projection of n̂s in
the xy- plane gives the unit vector with components
v̂ = (vx, vy) = (1/|v|)(−ã tanh x̃,−ã tanh ỹ), where

the normalization factor |v| = a (tanh2 x̃ + tanh2 ỹ)1/2.
The angle that v̂ makes with the x- axis is given by
φ̃ = arctan(vy/vx) = arctan(tanh ỹ/ tanh x̃). However, v̂
points towards the origin, and is predominantly along the
normal to the square boundary of the projection, whereas
the fold-field prefers to be along the edges of the square.
Compensating for this undesirable global rotation of v̂
by π/2, we obtain the expression (14), which turns out to
be an exact solution to the elliptic sine-Gordon equation.

§4. Comparative energetics of distortion-free,
and sectored square lamellae : A “distortion-free”
square lamella of finite size does cost free energy due to
the anisotropic line tension term, because two opposite
edges of the square do not satisfy the condition φ0 = π/2.
By comparing square lamellae of the same area, the
surface tension term as well as the isotropic line tension
term drop out of the problem. The stability of the
sectored configuration is clearly determined through the
competition between anisotropic line tension-, potential-,
and elastic energies. The free energy of the sectored
lamella is obtained by substituting the solution for φ
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FIG. 7. (Color online) Regions of stability of the undeformed
square (below the curve) and the sectored square (above the
curve): α∗ is the threshold value of α = wγan/Kφ that sepa-
rates the regions of stability of the ground state, and sectored
configurations. These regions are indicated by an ordinary
shaded square, and a crossed, shaded square respectively. L
is in units of the wall width w, γan is the anisotropic line
tension, and Kφ is the elastic constant for two-dimensional
deformation in the nematic director.

(14) in the potential energy (2), the gradient squared
elastic free energy (3), and the anisotropic line tension
free energy (8).

The integrals involved in the calculation described
above cannot be evaluated analytically. Numerical eval-
uation of the integrals leads to a morphology diagram
delineating the relative stability of sectored lamella
versus the planar, distortion-free lamella. We identify
the key parameter determining the relative stability in
terms of the wall width w, the anisotropic line tension
γan and the elastic constant Kφ. The dimensionless

parameter α = wγan/Kφ = γan/
√
h4Kφ is the measure

of the relative strength of the anisotropic line tension.
For every given size of the square there is a threshold
value of α, denoted by α∗, that separates the regions of
stability of the ground state, and sectored configurations.
We measure the dimensionless length L of the side of
the square in units of the wall-width w. The dependence
α∗ on L is shown in FIG.(7). For any given L an
increase in γan or a decrease in the product Kφh4 leads
to stabilization of the sectored configuration. For small
sizes of the square, α∗ decreases precipitously as the
size of the square increases. For large L, α∗ decreases
weakly with L. We find that the asymptotic value of α∗

for large L is about 1.68; however large L may be, the
crystallite cannot form sectors unless α∗ exceeds this
value.

§5. Conclusions: We have constructed a minimal,
phenomenological model to address the relative stability
of flat, square-shaped, sectored polymer crystallites
against undeformed, planar crystallites of the same size
and shape. The model uses a combination of the theories

of elasticity and topological defects. Three important
factors determine the stability of the sectored morphol-
ogy of polymer crystallites: the orientational potential,
the elastic energy, and the anisotropy of line tension.
Minimization of the bulk free energy comprising elastic
free energy and potential energy of the fold-field leads
to the elliptic sine-Gordon equation (13). We obtain an
exact solution to this equation (14) that describes the
sectored morphology in terms of intersecting wall defects,
with a disclination situated at the point of intersection.
Wall defects split the crystallite into sectors across
which the fold-field switches its orientation by π/2. We
point out that the symmetry-allowed anisotropic line
tension term (8) is crucial for stabilizing the sectored
morphology of flat polymer crystallites.

An analysis of the solution to the elliptic sine-Gordon
equation leads to unique dimensionless parameter
α = γan/

√
h4Kφ, where γan is the coefficient of

anisotropic line tension, h4 is the strength of the
fold-field potential, and Kφ is the elastic coefficient for
deformations in the fold-field. For values of α greater
than a threshold value α∗, which in turn depends on the
edge-size of the square L, sectored lamellae are stabilized.

Returning to the comment made in §1.3 regarding the
importance of the δφ - δω coupling we note the following.
If the coefficient Kωφ is large enough, the coupling free
energy is minimized for δω ' δφ, which in turn means
that the disclination index sφ of the φ- field equals su,
that of the displacement field u. However, symmetry
considerations forbid sφ and su from taking arbitrary
values. Within the planar morphologies considered in
this paper, the free energy cost for a disclination in
the u- field is proportional to the lamellar area R2.
It is known that buckling of a planar lamella with a
disclination into one that is cone-shaped mitigates the
elastic stress in the lamella; dramatically alleviating the
R2 divergence to a logarithmic divergence lnR [40]. In
the context of disclination induced buckling of lamellae,
and the tent morphology of polymer crystallites, the
heuristic argument of §3 for obtaining the solution to
(13) gains special significance.

Our model is well-suited to account for the large
length scales pertinent to experimental observations of
sectored morphologies. It does not address the non-
universal details ensuing from the crystalline symmetry
within ordered domains of the semi-crystalline, sectored
morphology with intersecting wall defects and the
associated disclination.

Although we have restricted ourselves to square
crystallites for the sake of simplicity, our model can be
extended to treat other observed planar shapes such
as rhombi, and hexagons. It is also of considerable
interest to extend our approach to the tent morphology
of polymer crystallites – a tent is a “faceted cone”, with
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a disclination at its apex, and wall defects along its edges.
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