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Abstract 

Spontaneous calcium (Ca) waves in cardiac myocytes are known to underlie a wide range of cardiac arrhythmias.   

However, it is not understood which physiological parameters determine the onset of waves.   In this study, we 

explore the relationship between Ca signaling between ion channels and the nucleation of Ca waves.  In particular, 

we apply a master equation approach to analyze the stochastic interaction between neighboring clusters of 

Ryanodine Receptor (RyR) channels.  Using this analysis, we show that signaling between clusters can be 

described as a barrier hopping processes with exponential sensitivity to system parameters.  A consequence of this 

feature is that the probability that Ca release at a cluster induces release at a neighboring cluster exhibits a sigmoid 

dependence on the Ca content in the cell.     This nonlinearity originates from the regulation of RyR opening due to 

more than one Ca ion binding site, in conjunction with Ca mediated cooperativity between RyR channels in 

clusters.   We apply a spatially distributed stochastic model of Ca cycling to analyze the physiological 

consequences of this nonlinearity, and show that it explains the sharp onset of Ca wave nucleation in cardiac cells.    

Furthermore, we show that this sharp onset can serve as a mechanism for Ca alternans under physiologically 

relevant conditions.  Thus, our findings identify the nonlinear features of Ca signaling which potentially underlie 

the onset of Ca waves and Ca alternans in cardiac cells.     
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I.  Introduction 

Calcium (Ca) plays an important role in biological cells since it is involved in a wide range of signal transduction 

pathways [1-4].   In most cells, this is accomplished by a tight spatial and temporal control of the Ca concentration 

via Ca channels, which transport Ca between intracellular compartments.  In the heart, Ca cycles between 

intracellular stores and this cycling process controls the coupling between membrane voltage and tissue 

contraction.   A crucial signaling molecule involved in Ca cycling is the Ryanodine Receptor (RyR) which controls 

the flow of Ca from the sarcoplasmic reticulum (SR), which is the main intracellular Ca store.  These channels are 

Ca sensitive and can transition between different conformational states in a Ca dependent manner.   Thus, small Ca 

concentration changes in the vicinity of RyR channels can be amplified by inducing channel openings, which 

further stimulates the additional flow of Ca.  In a cardiac cell, this autocatalytic release process occurs within 

localized regions surrounding an RyR cluster, and the local increase of Ca concentration is called a Ca spark.  This 

signaling mechanism is referred to as Ca-induced-Ca-release (CICR), and it is used in the cell to mediate important 

signaling pathways in response to spatially localized Ca concentration changes [3,4].   This amplification 

mechanism is an important component of the Ca signaling apparatus, which is used in a wide variety of 

intracellular processes. 

 

RyR clusters are spatially distributed within the three dimensional volume of a cardiac cell.  Thus, when a Ca spark 

occurs at an RyR cluster then Ca can diffuse and elevate the concentration in the vicinity of nearby clusters[4,5].  If 

this elevation of Ca is large enough then the local Ca release can ignite nearby clusters and propagate in a wave like 

manner [5-8].   These Ca waves are important since they can lead to triggered activity which can cause cardiac 

arrhythmias [6,9-11].   A key feature of Ca waves is that their formation is highly sensitive to the Ca concentration 

in the sarcoplasmic reticulum (SR) [12-16].  Effectively, at low SR Ca concentration, spontaneous Ca sparks occur, 

but they rarely transition to Ca waves.  However, as the SR load is increased, Ca waves begin to form and 

propagate across the full extent of the cardiac cell.  During wave propagation, a substantial amount of Ca can be 

released in the cell, which can stimulate enough sodium-calcium exchanger to induce a membrane 

depolarization[17].  Thus, the presence of waves will disrupt the tight coupling between membrane voltage and 

subcellular Ca release[18].  Under pacing conditions several experimental studies [19,20] demonstrated that Ca 

waves can also induce Ca alternans, which is a beat-to-beat alternation in the amount of Ca released into the cell.  

Fluorescence imaging under these conditions demonstrated that waves propagate only on alternate beats, indicating 

that wave propagation played a key role in the instability to alternans.    Using a computational model Tao et al. 

[21] showed that indeed Ca alternans can be caused by wave propagation which occurred at alternate beats.  In  a 

later study Li et al [22] showed that spatial heterogeneity of the Ca signaling system made atrial cells more prone to 

Ca waves, which led to a steep SR load dependence of release which caused alternans.   Also,  Nivala et al. [23] 

showed that the nonlinear regulation of Ca waves due to SR load can drive alternans under conditions of heart 

failure, where the tight coupling between L-type Ca channels (LCC) and RyR channels is disrupted.   These 
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findings indicate that the onset of Ca waves disrupt the rhythmic response of a cell, and likely plays a key role in 

various cardiac arrhythmias.   

 

In this paper, we apply theoretical and numerical approaches to determine the factors that govern the onset of Ca 

waves in cardiac cells.  In particular, we analyze how clusters of RyRs interact and compute the probability that a 

Ca spark at a cluster will induce a neighboring cluster to fire.  Our main finding is that this probability distribution 

function exhibits a sigmoid dependence on system parameters such as the SR load.  We show further that this sharp 

nonlinearity provides a quantitative estimate for the onset Ca wave propagation in a cardiac cell.   Our analysis 

demonstrates that the underlying mechanism for this nonlinearity is due to two essential factors: (i) RyR channels 

open in a Ca dependent manner regulated by more than one Ca binding site.  (ii)  RyR channels are arranged in 

clusters so that Ca release at one receptor induces all the channels to fire.  Both of these factors lead to a nonlinear 

sigmoid dependence of the firing probability on SR load.   Our analysis reveals that this nonlinearity is due to a 

barrier hopping process that is exponentially sensitive to system parameters such as the SR load.  Using a detailed 

stochastic model of Ca cycling we demonstrate that the onset of Ca waves has a sharp sigmoid dependence on the 

SR load.   We show that this sigmoid dependence is due to the nonlinear signaling between neighboring RyR 

clusters, and present an analytic approximation for the threshold SR concentration.   Finally, we show that 

nonlinear signaling between RyR clusters offers a mechanism for the formation of Ca alternans under certain 

physiological conditions.  This analysis provides a quantitative mechanism linking stochastic dynamics at the ion 

channel level, and dynamical instabilities at the scale of the whole cell.   

 

II.  Stochastic dynamics of RyR clusters in cardiac myocytes 

 

A.  Computational cell model 

To model the spatiotemporal distribution of Ca in ventricular myocytes we have implemented an established 

mathematical model due to Restrepo et al. [24,25] (Restrepo model).  In this model, the myocyte is represented as a 

collection of subcellular compartments that are distributed in a three dimensional (3D)  representation of the cell 

interior (Figure 1A–C).   To model the spatial distribution we denote the Ca concentration in compartment ݔ as ܿ௫  

(Figure 1B), where the superscript ݊ indicates the location of that compartment in a 3D grid representation of the 

cell interior.  The subcellular compartments in the model are:  (1)  The dyadic junction, with concentration ܿ, 

where a few LCCs on the cell membrane are in close proximity to a cluster of   100 RyR channels attached to the 

junctional SR (JSR);  (2)  The submembrane space, with concentration ܿ௦,  which represents a volume in the 

vicinity of the sarcolemma, which regulates membrane bound ion currents such as the NaCa exchanger and LCC;  

(3)  The bulk myoplasm, with concentration ܿ, which characterizes the volume of space into which Ca diffuses 

before being pumped back into the SR via  SERCA (Sarcoplasmic Reticulum Calcium ATPase) uptake channels;  
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(4)  The junctional SR, with concentration ܿ௦ , that is the portion of the SR network that is positioned close to the 

cell membrane;  (5)  The network SR (NSR), with concentration ܿ௦ , which represents the bulk SR network that is 

spatially distributed in the cell.   In this study, our cardiac cell model will consist of 60 planes representing Z-

planes, where each plane contains an array of 20 ൈ 20 regularly spaced compartments (Figure 1C).     Ca diffusion 

in the cell interior is modelled by allowing a diffusive flux between nearest neighbor compartments of the 

submembrane, the bulk myoplasm, and the SR network. This diffusive flux between nearest neighbors ݅ and ݆ has 

the form ܬௗ ൌ Δܿ ߬⁄ , where Δܿ  is the concentration difference between the compartments, and ߬  is the 

diffusion time constant.   In this study we have modified several parameters in the original Restrepo model.   In 

particular we scaled down diffusive time constants between nearest neighbor compartments by a factor of two to 

promote robust wave propagation at an SR load of roughly 1200ܯߤ.    The model parameters used in this study are 

summarized in Table 1, and all parameters not shown are the same as in the original Restrepo model [25].    

Finally, we note that the time evolution of RyR and LCC channels are simulated using established Markov state 

models [11], where the stochastic evolution of the channels is computed according to the reaction rates linking the 

Markov states.   

 

B.  Master equation approach to modeling Ca signaling between RyR clusters 

In this section we develop an analytic approach to explore the conditions for wave propagation in the Restrepo cell 

model.   As a starting point we will first compute the probability, denoted as ,  that a spark at the ݅௧ RyR cluster 

induces a Ca spark at a neighboring cluster ݆.  To determine this probability we first simulate the concentration 

changes due to diffusive fluxes from nearest neighbors on the same Z-plane.    In Figure 2A, we plot the dyadic 

junction Ca concentration at site ݅ when a Ca spark is induced at that junction.    In this simulation the initial SR 

load is fixed at 1000ܯߤ and the concentration during a spark rises to a peak of   for a time duration ߬௦ ܯߤ300   ,In Figure 2B, we plot the Ca concentration at a nearest neighbor site ݆ on the same Z-plane.   Here   .ݏ15݉

we set the RyR conductance in this site to zero in order to measure the rise in local Ca concentration due only to the 

diffusive flux from the neighboring site ݅.    In this case, after a short delay the local Ca concentration rises to 

roughly   for a duration similar to the spark lifetime ܯߤ2.5  To compute the probability that this rise in   .ݏ15݉

local Ca concentration induces a Ca spark at site ݆, we will approximate the concentration change  as a step 

function of the form  ܿሺݐሻ ൌ ൜ ܿ 0 ൏ ݐ ൏ ߬௦          ܿ ݐ ൏ 0 ܽ݊݀ ݐ  ߬௦    (1)

where ܿ  ܿ ,ܯߤ2.5  is the background concentration, and where ߬௦ ܯߤ0.2  We note that ܿ    .ݏ15݉  is 

dependent on a variety of factors such as the diffusivity of Ca, the distribution of intracellular buffers, and the JSR 

load.    To proceed we note that  Ca diffusion within the dyadic junction is in the range  ܦ  100 െ 500 ሺ݉ߤሻଶ/ݏ 

[24,26], so that the diffusion time across a junction is   0.1 െ  which is much faster than the typical RyR ,ݏ݉ 0.4
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channel transition times.   Thus, we can make the rapid diffusion approximation and assume that Ca is spatially 

uniform within the junction.    The local concentration is then ܿሺݐሻ ൎ ܿሺݐሻ  ݃݊ , where ܿሺݐሻ is the concentration 

due to diffusive fluxes into the junction, ݊  is the number of RyR channels open, and ݃  is the rise in local 

concentration due to an open RyR channel.  This quantity can be approximated as ݃  ܬ ሺ2ܨߠ݄ܦߨሻ⁄  where ܬ is 

the Ca flux due to an open RyR channel in units of ܨ ,ܣ is Faraday's constant, ߠ ൌ 2 is the charge of the Ca ion, 

and where ݄ is the height of the dyadic space i.e. the spacing between LCC and RyR channels.   Here, we also note 

that the RyR flux has the form ܬ ൌ ݃൫ ܿ௦ െ ܿ൯ ൎ ݃ ܿ௦, where ݃ is the channel conductance, and ܿ௦ is the 

JSR concentration, which is much larger than the diastolic Ca concentration before the firing of a spark ( ܿ௦ ب ܿ).    
These simplifications give the approximate relation ݃  ߙ ܿ௦ with ߙ ൌ ݃ ሺ2ܨߠ݄ܦߨሻ.⁄    

 

The RyR channel in the Restrepo model is described using a 4-state scheme that accounts for Calsequestrin 

(CSQN) binding to luminal sites of the RyR [24].    In this study we focus only on activation of an RyR cluster 

where all the channels are initially in the unbound closed state, and which transition to the unbound open state 

during a Ca spark.   Thus, for this purpose it is sufficient simplify the Markovian model to a two state scheme  

 

ܥ ݇ାܿఊ֖݇ି ܱ ,   (2)

 

where the exponent ߛ  2 models the cooperativity of multiple Ca ions binding to the RyR channel, and where the 

rate constants are the same as the closed to open transition of the CSQN-unbound state of the Restrepo model.  

Here, we stress that our simplified approach is sufficient only to describes the activation of Ca sparks in clusters, 

and it does not describe slower processes that depend on RyR channel inactivation and binding to Calsequestrin.  

The effect of these features will be accounted for in the full stochastic model.     Given these assumptions the 

stochastic dynamics of the cluster is then governed by ܲሺ݊,  ሻ which is the probability that ݊ of ܰ RyR channels inݐ

the cluster are open at time ݐ.  This quantity obeys a Master equation:  

 ݀ܲሺ݊, ݐሻ݀ݐ ൌ ାሺ݊ݓ െ 1ሻܲሺ݊ െ 1, ሻݐ  ሺ݊ିݓ  1ሻܲሺ݊  1, ሻݐ െ ൫ݓାሺ݊ሻ  ,ሺ݊ሻ൯ܲሺ݊ିݓ ሻ,   (3)ݐ

 

where ݓାሺ݊ሻ ൌ ݇ାሺܰ െ ݊ሻ൫ܿ  ݃ ݊൯ఊ
and ିݓሺ݊ሻ ൌ ݇ି݊.   Thus, the dynamics is described by a birth-death 

process with a forward rate that is a nonlinear function of the local Ca concentration.   

 



6 
 

To proceed we follow our previous work [27], which is based on Hinch et al. [28], and consider the large ܰ limit 

where the birth-death process can be mapped to the continuum.  Then, if we define the fraction of channels in the 

open state as  ݔ ൌ ݊/ܰ, detailed balance between states of the cluster gives an equilibrium distribution 

ሻݔሺ  ן exp൫െܰΦሺݔሻ൯,   (4)

 

where Φሺݔሻ is the effective potential given by  

 Φሺݔሻ ൌ െ න ln൫ߩሺݔԢሻ൯ Ԣ௫ݔ݀
 ,   (5)

 

and where 

ሻݔሺߩ  ൌ ሻݔሺܰିݓሻݔାሺܰݓ ൌ ሺ1ߟ െ ݏሻሺݔ  ݔሻఊݔܰ ,   (6)

 

with dimensionless parameters 

ݏ  ൌ ܿ݃ , ߟ ൌ ݇ା݃ఊ݇ି .   (7)

 

In this picture, ߟ  is a variable that gives a measure of the cluster excitability, and ݏ  measures the interaction 

between two clusters via the local Ca concentration ܿ.    These two dimensionless quantities characterize the 

stochastic dynamics of an RyR cluster in which the local concentration has the time dependence given by ܿሺݐሻ.   

 

Model parameters.      In order to compute the effective potential, we will determine the parameters ݏ and ߟ 

directly from numerical simulations of the Restrepo cell model.  Firstly, we note that the rise in local concentration 

due to a neighboring spark ܿ is proportional to the JSR load.    Therefore, we will model the local concentration 

using a simple linear relation ܿ ൌ ߚ ܿ௦, where ߚ is a constant that characterizes the cluster-to-cluster interaction.   

Using Figure 2B we estimate that ߚ ൌ 2.5/1000, since the local concentration rises to ܿ ൎ  at a JSR load ܯߤ2.5

of ܿ௦ ൌ To estimate the parameter ݃ we note that ܿ   .ܯߤ1000 ൎ ݃ ڄ ݊, so that ݃ can be extracted directly by 

measuring the local rise in Ca concentration due to the opening of RyR channels in the cluster.   Using this 

approach we estimate that ݃  ܯߤ5  when the JSR load is ܿ௦ ൌ ܯߤ1000 , which gives ݃ ൌ ߙ ܿ௦  with ߙ ൌ5/1000.   Using these estimates we find that when a neighboring spark occurs then ݏ ൌ ݏ  whereݏ ൌ ߙ/ߚ ൌ
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0.5.   Now, when all neighboring units are inactive then ݏ ൌ ݏ  withݏ ൌ 0.2 5⁄ ൌ 0.04.    Hereafter, we will 

refer to each case as "spark on" and "spark off" respectively.    To compute the effective potential we use model 

parameters taken from the Restrepo model along with the estimates described above (Table 2).   In Figure 3A, we 

plot the effective potential Φሺݔሻ for small ݔ for the spark off (black line) and spark on case (red line).     In the 

spark off case the effective potential has a stable stationary point at ݔ  0 which represents the fully shut cluster, 

and an unstable stationary  point at ݔଵ ൎ 0.03.  For ݔ   ଵ the effective potential decreases and reaches a globalݔ

minimum at ݔଶ  1 (not shown) which represents the fully open cluster.    Here, we focus on the small ݔ regime 

since signaling between clusters is dictated by the changes in the effective potential in this region.    In the spark on 

case the bistable potential tilts and the barrier separating the two stable stationary states is reduced (red line).    To 

determine the stationary points, we note that they satisfy ݀Φ ⁄ݔ݀ ൌ 0  which requires that  ߩሺݔሻ ൌ 1 .   The 

stationary points are then solutions to the algebraic condition 

ሺ1ߟ  െ ݏሻሺݔ  ሻఊݔܰ െ ݔ ൌ 0.   (8)

 

In Figure 3B we show the stationary points ݔ and ݔଵ as a function of the parameter ݏ.    Here, we find that as ݏ is 

increased the stationary points merge and the system becomes monostable with only one global minimum at 

ଶݔ)  1), which corresonds to the fully open cluster.    

 

C. Stochastic dynamics of spark activation.    

The dynamics of the effective potential allows us to characterize the dynamics of spark activation due to a rise in 

the local Ca concentration.   We first note that for ݐ ൏ 0, the effective potential landscape will have the "spark off" 

shape (Figure 3A, solid black curve) and the system will reside at the stable stationary point at ݔ , which 

corresponds to the closed cluster.   Once the local concentration rises to ܿ then the landscape will shift to the 

"spark on" shape (red dashed curve). Note that this tilted effective potential has new stationary points that we will 

denote as ݔᇱ  and ݔଵᇱ .    Finally, when the diffusive fluxes are turned off for  ݐ  ߬௦ the landscape returns to the 

"spark off" shape.   Hence, the condition for a spark to be triggered is that the cluster, starting at ݔ, should cross 

the barrier peak at ݔଵ, within the spark lifetime ߬௦.  If it does not cross in this time then the system will then roll 

back to the stationary point at ݔ  0, and the transition to the open cluster state will not occur i.e. a spark will not 

fire at that cluster.   Here, we note that the crossing dynamics is dictated by the tilted landscape where ݏ ൌ  ,ݏ

while the crossing points are determined by the untilted case with ݏ ൌ  .    To determine the probability ofݏ

triggering a Ca spark we will first consider the limit where ݏ is small, so that the effective potential in the "spark 

on" state is still bistable (Figure 3A, dashed red curve).  In this case the potential is tilted slightly and spark 

activation can be viewed as a barrier hopping process where the peak needs to be surmounted.   In this limit, the 

probability that the system crosses ݔଵ in a time ݐ will have an exponential distribution  



8 
 

 ܲሺݐሻ ൌ 1ܶ exp ൬െ ݐܶ ൰ ,   (9)

 

where ܶ is the mean first passage time (MFPT) for ݔ to make the transition from ݔ  to ݔଵ .   This exponential 

distribution arises from the fact that in this limit the barrier crossing time is still long compared to the time scale of 

RyR channel fluctuations, so that the crossing rate is approximately constant.   The transmission probability is then 

just the probability of firing in time ߬௦, which gives 

  ൌ 1 െ exp ቀെ ߬௦ܶቁ .   (10)

 

Thus, in this limit, the transmission probability is dictated by the ratio of the average spark life time ߬௦ and the 

MFPT for the cluster to undergo a stochastic transition from  ݔ to ݔଵ.   Note that for a large tilt, in which the 

effective potential is monostable, then the exponential distribution above will not hold.  In this scenario, we will 

resort to direct numerical simulations to compute the transmission probability .       

 

To compute the mean first passage time ܶ we note that for the cluster to transition from ݔ to ݔଵ it is necessary for 

the system to surmount the barrier height of the tilted effective potential.   The escape rate for this to occur is 

dictated by the stationary points of the tilted effective potential.  This is because to leading order the system will 

spend most of the  time near the local minimum at ݔᇱ , and if it surrpounts the barrier at ݔଵᇱ , then it is very likely 

going to cross ݔଵ [29,30] since ݔଵ  ଵᇱݔ .     Following our previous work [14], based on Doering et al. [16], we note 

that the MFPT has the leading order behavior 

 ܶ  expሺܰΔΦሻ ,   (11)

 

where ΔΦ ൌ Φሺݔଵᇱ ሻ െ Φሺݔᇱ ሻ  is the barrier height, and where ݔᇱ  and ݔଵᇱ  are the stationary points of the tilted 

effective potential.     In Figure 4A we plot ܰΔΦ vs the JSR load ( ܿ௦ሻ in the “spark on” case where ݏ ൌ 0.5.     

Our results show that there is a critical JSR load, ܿ௦כ ൎ where ΔΦ൫ ,ܯߤ1150 ܿ௦כ ൯ ൌ 0, in which the barrier height 

is zero.  For ܿ௦ ൏ ܿ௦כ  the barrier height increases with decreasing SR load which leads to an exponential increase 

in the MFPT.     To confirm these predictions, we have applied the Gillespie algorithm [17] to compute the exact 

waiting time statistics of an isolated cluster of ܰ ൌ 100 RyR channels obeying the simple reaction scheme given 

by Eq. (2).   In Figure 4B, we plot ܶ vs the JSR load showing the exponential increase in waiting time as the JSR 

load is decreased.    In order to confirm Eq. (10) we have also computed the sparking probability .   To compute 
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ݏ  numerically we hold ൌ 0.5 for a duration ߬௦ ൌ ݏ after which ,ݏ15݉ ൌ 0.04.    We then compute the fraction 

of independent simulation runs in which the RyR cluster has fired within 50݉ݏ.   In these simulations we designate 

a cluster to have fired when the number of open RyR channels reaches ݊ ൌ ܰ/2.   In Figure 4C (red dashed curve) 

we plot   computed numerically, along with the prediction of Eq. (10) (black solid line), showing good 

quantitative agreement.    These results indicate that  has a sigmoid dependence on the JSR load which is due to 

the exponential dependence of the MFPT.   

 

D.  The nonlinear properties of stochastic signaling between RyR clusters 

 Our results indicate that stochastic signaling between clusters will exhibit a strong nonlinear dependence on system 

parameters.  In this section, we will analyze the parameters that control the onset of this nonlinearity.   As a starting 

point, we evaluate the dependence of the barrier height ΔΦ on system parameters such as the JSR load.   Also, for 

simplicity we will consider the case ߛ ൌ 2, which is the exponent used in the Restrepo model, and which allows for 

an analytic computation of the stationary points.     In this case we can solve for the approximate stationary points 

and evaluate ΔΦ.   For the parameters considered here we have that ߟܰݏ ൏ 1, so that to leading order we have 

 ܰΔΦ ൎ ߟ1ܰ    െ ሺ1ݏ2 െ logሺܰݏߟሻሻ .   (12)

 

Within this approximation we can solve for the onset of the exponential nonlinearity by finding the critical SR load 

ܿ௦כ  such that  ΔΦ൫ ܿ௦כ ൯ ൌ 0.  Solving for the critical JSR load yields 

 

ܿ௦כ ൎ ඨ݇െ݇ ߚߙݍܰ ,   (13)

 

where ݍ ൎ 0.19 is the solution to the algebraic equation 0 ൌ 1 െ ሺ1ݔ2 െ logሺݔሻሻ.   For the parameters given in 

Table 2 this gives an estimate for the onset of exponential dependence as ܿ௦כ ൎ  Eq. (10) suggests that    .ܯߤ1000

the onset of the exponential dependence of the MFPT should be well approximated by the threshold of the sigmoid 

dependence of .  In Figure 4D we plot our analytic estimate (Eq. 13) for a range of cluster sizes ܰ, and compare 

to the threshold concentration ܿ௧  such that ሺܿ௧ሻ ൌ 1/2 , where   is computed from the exact stochastic 

simulation.     Indeed we find that Eq. (13) gives a good quantitative estimate of the threshold of the transmission 

probability .   

 

In summary, our results indicate that the probability that a Ca spark activates a nearby cluster can be mapped to a 

barrier hopping process.  This hopping process is governed by an effective potential that is determined by the 
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nonlinear dependence of the RyR channel opening rate on the local Ca concentration.  Thus, signaling between 

clusters will be highly nonlinear, since the transmission probability is dependent on the mean first passage time, 

which itself is exponentially sensitive to parameters that determine the barrier height.  In the following section, we 

argue that this exponential sensitivity provides a precise criterion for the onset of Ca waves in a computational cell 

model, and is the underlying nonlinearity that drives alternans under certain physiological conditions. 

 

III.  Wave propagation onset in the 3D stochastic cell model 

In this section, we apply the Restrepo cell model to determine the relationship between the transmission probability  and the onset of Ca wave propagation.   In this model Ca waves occur at elevated SR loads where spontaneous 

Ca sparks can nucleate a Ca wave in the 3D array of CRUs.   In Figure 5A, we show the spatial distribution of Ca 

in a 2D cross section of a cell with 60 ൈ 20 ൈ 20 CRUs.    In this example, we see that Ca waves originate from 

two nucleation sites and proceed to activate all CRUs in the cell.     To characterize the timing of these waves we 

measured the average diastolic Ca, defined as ܿሺݐሻ ൌ ሺ1 ሻܯ ∑ ܿሺݐሻெୀଵ⁄  where ܯ is the total number of CRUs in 

the cell.  This average concentration is roughly  ܿ   in the absence of Ca waves, and then rises to a ,ܯߤ0.2

maximum concentration in the range   1 െ  when a Ca wave occurs in the cell.   Thus, the mean waiting ܯߤ 3

time for a Ca wave to occur can be estimated by measuring the time ݐௐ when an intermediate concentration, in this 

case  ܿሺݐௐሻ ൌ  is crossed for the first time.   Using this approach we have computed the average waiting ,ܯߤ0.7

time to a wave, denoted as ௪ܶ ൌ  ௪ۧ, by averaging over 100 independent simulations at a fixed initial JSR loadݐۦ

concentration ܿ௦.   In these simulations the action potential (AP) is fixed at the resting potential of ܸ ൌ െ85ܸ݉.  

At this voltage the LCC channels are shut and Ca wave nucleation is due only to fluctuations of RyR channels.   In 

Figure 5B, we plot ௪ܶ vs ܿ௦ showing that the MFPT to a Ca wave exhibits a strong nonlinear dependence on JSR 

load.    In effect, as the JSR load decreases below the concentration ܿ௦  ܯߤ1100  the MFPT increases 

exponentially.   In fact, for concentrations below ܿ௦   Ca waves essentially do not occur within our total ܯߤ1000

simulation time of 3500݉ݏ .   In order to present these results within a more physiological setting we have 

computed the probability that a Ca wave occurs within a 200݉ݏ interval.  To compute this quantity we set the JSR 

load to a fixed concentration ܿ௦ at time ݐ ൌ 0 and then compute the number of times a Ca wave occurred within 200݉ݏ in 100 independent simulation runs.   In Figure 5C we plot the probability of a wave occurring within a 200݉ݏ interval, denoted as ௪ (blue solid line), as a function of the initial ܿ௦.   As expected, we find a sharp 

sigmoid dependence of the wave nucleation probability as a function of the JSR load.   

 

To explain our findings above, we first note that the transmission probability  determines the interaction between 

CRUs.   Thus, we expect that the threshold of the wave nucleation probability should coincide with the threshold of  .   To confirm this hypothesis, we have computed the transmission probability  directly from simulations of 

the Restrepo cell model.    To compute this probability we simply trigger a Ca spark at a specific CRU and compute 
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the fraction of times that a nearest neighbor site also fires within 20݉ݏ.  In this way we compute the JSR load 

dependence of the tranmission probability, which we denote as   (Figure 5C, red dashed line), directly from the 

3D stochastic model.   On the same graph we also plot our theoretical prediction for  using Eq. 10 (black dash-

dotted line).   Here, we find that the threshold for wave nucleation occurs at roughly the same range of 

concentrations as predicted by the transmission probability.  However,  the wave probability is substantially 

sharper, as a function of JSR load, than both the theoretical and numerically computed transmission probability.    

 

To quantify the relationship between the wave threshold and the transmission probability we have computed these 

quantities for a range of cluster sizes ܰ.   In Figure 5D we plot the JSR load concentration ܿ௪ such that ௪ሺܿ௪ሻ ൌ1/2 (blue dash-dotted line).  This quantity gives a measure of the onset of Ca wave nucleation as a function of 

system parameters.   On the same graph we have also plotted the threshold of the transmission probability 

computed directly from the Restrepo model.     This quantity is denoted as  ܿ̃ which satisfies   ሺܿ̃ሻ ൌ 1/2 (red 

dashed line).   Finally, we also show our theoretical prediction ܿ௦כ  from Eq. (13) (black line).    Indeed, we see that 

the onset of wave propagation coincides approximately with the threshold of the transmission probability.     Thus, 

our results indicate that ܿ௦כ  gives a quantitative approximation for the onset of Ca waves.    

 

IV.   Nonlinear wave onset as a mechanism for alternans 

The nonlinear relationship between the wave propagation probability and the JSR load will influence the dynamics 

of Ca cycling at the whole cell level.   Here, we explore how this relation influences the beat-to-beat response of a 

cardiac cell when it is paced with a periodic AP clamp.   As a starting point, we first analyze the response of the Ca 

cycling system to a single AP under varying initial JSR loads.   In this case, the membrane depolarization during 

the AP upstroke induces LCC channels to open and trigger Ca sparks in the cell.   The amount of Ca released 

during the AP clamp will be crucially dependent on two factors: (i) The onset of the JSR load dependence of the 

wave propagation probability ௪, which will dictate the conditions for waves to propagate.  (ii) The fraction of 

clusters that are triggered by LCC channels, which determines the number of available RyR clusters, which can 

support Ca wave propagation.  Note that the fraction of RyR clusters in the vicinity of LCC channels can vary 

between different cell types and under conditions of heart failure.       To explore the role of these features we 

compute the peak diastolic Ca transient, denoted as ܿ௫, in response to an AP and under a range of JSR loads.  In 

Figure 6A we plot ܿ௫ vs ܿ௦ in the case where 30, 50, 70 percent of the clusters have LCC channels.   Indeed, 

we find that when most clusters are triggered by LCC channel openings then the presence of Ca waves plays little 

role in the response to an AP, since there are no available RyR clusters to sustain waves.  However, when the 

density of LCC channels is reduced then ܿ௫ exhibits a highly nonlinear response as a function of JSR load, since 

above the propagation transition Ca waves are induced and the amount of Ca release increases substantially.   
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Under periodic pacing conditions, the nonlinear response between Ca wave propagation and JSR load can drive Ca 

alternans.  In Figure 6B, we plot the steady state JSR load as a function of time using a 3D cell model where only 

30% of the dyadic junctions contain LCC channels.  Indeed, we find that when the cell is paced at  ܶ ൌ  ݏ200݉

then Ca release alternates from one-beat to the next.   Simultaneous line scan imaging (Figure 6C) reveals that on 

the large beat Ca release is enhanced since LCC channel openings initiate Ca waves which propagate into the cell. 

Indeed, the JSR load clearly alternates above and below the threshold concentration for wave propagation (Figure 

6B).  To explore the rate dependence of alternans we have also computed the bifurcation diagram of the system.     

In Figure 7 we show the peak of the Ca transient for the last two beats after pacing for 20 beats at a cycle length ܶ.    

In this case we simulate the condition where the fraction of release sites with LCC channels is 30% (black circles) 

and 50% (red squares).  Indeed, we find that the system exhibits a typical period doubling bifurcation as the pacing 

cycle length is decreased.   Furthermore, we observe that the onset of alternans shifts to smaller cycle lengths as the 

fraction of LCC channels is increased.  This result is consistent with Figure 6A which shows that the amount of Ca 

released into the cell as a function of SR load becomes more steep as the density of LCC channels is reduced.    

Hence, the system is more prone to the alternans instability when the signaling fidelity between LCC and RyR 

clusters is reduced.   

 

Discussion 

In this paper, we have shown that the onset of Ca waves is a sharp sigmoid function of the SR load.   This result is 

consistent with experimental studies showing that Ca waves occur only at elevated SR loads, a feature referred to 

as store-overload-induced Ca release (SOICR) [31].   In particular, Jiang et al. [12] measured the occurrence of Ca 

waves in populations of cells and showed that the fraction of cells displaying waves exhibited a sigmoid 

relationship on the Ca content in the cell.  Also Diaz et al. [32] measured the frequency of Ca waves in isolated 

myocytes and found that below a critical SR load Ca waves did not occur, but occurred with high frequency above 

that threshold.  This result is consistent with several studies showing that the SR load dependence of Ca release 

exhibits a highly nonlinear threshold relationship[33].  In this study, we have identified the key features of the Ca 

signaling architecture that determines the onset and nonlinearity of this SR load dependence.    Our main result is 

that the onset of Ca waves is dictated by the transmission probability , which is the probability that a Ca spark 

induces a nearest neighbor to fire.   Using a master equation approach we have shown that the transmission 

probability is nonlinear function of SR load, since spark activation can be mapped to a barrier hopping process that 

is exponentially sensitive to system parameters.   It is this exponential sensitivity which underlies the nonlinearity 

of signaling between RyR clusters, and consequently determines the onset of Ca waves in cardiac cells.    Based on 

this result we have developed a quantitative estimate, given by Eq. 13, for the onset of Ca waves in cardiac 

myocytes.    In particular, we point out the dependence of the onset on the parameter ߚ, which is the ratio of the rise 

in local Ca concentration due to the diffusive flux from a nearest neighbor, to the SR load.   This quantity is 

dependent on a variety of factors such as the distance between the clusters, the diffusion coefficient of Ca in the 
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intracellular space, and also the presence of Ca buffers.   Hence, ߚ serves as a measure of the effective strength of 

the diffusion mediated coupling between RyR clusters in the cell.  Also, the threshold depends on the parameter ߙ, 

which gives the ratio of the rise in local Ca concentration due to an RyR channel opening to the SR load.   This 

quantity also depends on a variety of factors such as the volume of the dyadic junction, and the conductance of the 

RyR channel.  Hence, our findings give a quantitative relationship between local signaling at the ion channel scale 

to arrhythmogenic whole cell events such as Ca waves. 

 

The analysis in this paper reveals that the underlying nonlinearity can be traced to the architecture of Ca signaling 

in cardiac myocytes.  In particular we identify two essential features leading to the nonlinear sigmoid dependence 

of the transmission probability: (i)  An RyR channel has multiple Ca binding sites that regulate the transition from 

the closed to open state of the channel.   This property is well known from experiments on isolated RyR channels 

which show that the open probability increases in a nonlinear fashion with the Ca concentration on the cytoplasmic 

side of the channel [34].   To incorporate this feature in our model we make the RyR closed to open rate 

proportional to the square of the local Ca concentration (ߛ ൌ 2ሻ.    (ii)  RyR clusters have 50-150 channels that gate 

cooperatively due to the local diffusion of Ca.   This feature has been established by super resolution imaging of 

subcellular Ca proteins in rat ventricular cells which reveal that the average channel number is roughly 60 channels 

[35,36].   Incorporating both of these features within our master equation approach revealed that the dynamics of an 

RyR cluster can be mapped to a nonlinear birth-death process.  This process can be described by an effective 

potential which exhibits two local minima separated by a potential barrier, so that spark activation is equivalent to a 

barrier hopping process where the system transitions between these minima.     A crucial requirement for this 

feature is that ߛ  2, which indicates that Ca binding cooperativity underlies the main features of stochastic Ca 

signaling.   The main consequence of this property is that all the statistical features of spark activation acquire an 

exponential dependence on system parameters that modulate the barrier height.    Therefore, the observed nonlinear 

onset of Ca waves is a direct consequence of basic features of the Ca signaling architecture.    In several studies it 

has been shown that RyR channels are sensitive to the Ca concentration in the SR [31,33].   In our analysis luminal 

gating can be described by allowing the RyR forward rate ݇ା to depend on the JSR concentration.  Indeed,  Eq. 13 

predicts that such a dependence will have a direct effect on the Ca wave onset.  However, we point out that the 

sharp nonlinearity does not rely on luminal gating.   Thus,  luminal gating will serve to shift the onset of Ca waves 

but is not essential to explain the nonlinear behavior of Ca signaling.   

 

Our findings reveal that the threshold for wave propagation is well predicted by , which is the transmission 

probability between clusters on the same Z-plane.  However, this probability only dictates propagation within a Z-

plane, and does not imply propagation between planes.     This is because the cluster spacing within a Z-plane 

) 500݊݉ሻ is typically smaller than the spacing between adjacent Z-planes (  Thus, it is necessary to  .(݉ߤ2

compare  in both the transverse and longitudinal directions in the cell.   Our simulations reveal that, for the 
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parameters of the Restrepo model, both of these distributions are similar.   The reason for this is that in the 

Restrepo model the diffusion time constant in the longitudinal and transverse directions are similar.  This choice of 

time constants are based on experimental observations which reveal that Ca waves are approximately spherical, 

which implies that longitudinal coupling between clusters should be roughly the same as that in the transverse 

direction [37].  This is likely due to a higher density of diffusional barriers in the transverse rather than longitudinal 

direction, which compensates for the distance anisotropy.    This result explains why  between sites on the same 

Z-plane is sufficient to predict the Ca wave onset in the cell.      

 

An important finding in this paper is that the probability of wave propagation ௪, shown in Figure 5C (solid blue 

line) is a sharp sigmoid function of the SR load.  In particular we note that the wave threshold increases from ௪  0  to ௪  1 for a change of SR load of roughly 30ܯߤ, which is substantially sharper than the SR load 

dependence of    .   Thus, while the transmission probability correctly predicts the onset of wave propagation it 

does not directly account for the sharpness of the nonlinear dependence.   To explain this result we note that wave 

nucleation is likely due to spontaneous Ca sparks which induce a chain reaction of sparks, which can then summate 

to sustain a propagating wave front.     Let us assume that a critical number of sparks, denoted as ݊, will have to 

fire in order to nucleate a propagating wave.   The probability that a spontaneous spark in the cell leads to a chain 

reaction of ݊ sparks is then   .     Therefore, the average waiting time for a wave can be approximated as 

௪ܶ௩  ௦ܶ ൗ , where ௦ܶ is the mean time between spontaneous Ca sparks.    Thus, the cooperativity necessary to 

nucleate a wave amplifies the nonlinearity of  by the critical number of sparks ݊.     However, the critical 

number of sparks ݊ , which itself depends on the SR load, is not known and is likely difficult to determine 

analytically.   Here, we emphasize our basic finding that cooperativity between clusters amplifies the intrinsic 

nonlinear signaling between clusters, so that the onset of Ca waves is substantially sharper than the local signaling 

nonlinearity.    

 

In this study, we have also analyzed the beat-to-beat response of a spatially distributed Ca cycling model.    

Interestingly, we find that the nonlinear dependence of Ca wave onset on the SR load has a strong influence on the 

response of the system to periodic pacing.    In particular, we showed that when the system is paced close to the Ca 

wave onset then the beat-to-beat response of the system displays Ca transient alternans.    This finding is consistent 

with experimental and theoretical studies [19,21,22] showing that large amplitude alternans of the Ca transient 

during alternans correspond to a release sequence where Ca waves are observed on the large beat, but not on the 

small.   This nonlinear response is due to the steep release load relationship that is observed near the wave onset 

transition.  However, it should be noted that this nonlinearity is only exposed under specific conditions where the 

number of sparks recruited at pacing rates below the alternans transition is small.  This condition applies in the case 

where a large fraction of release units lack LCC channels, so that only a small fraction of units fire in response to 
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an action potential.   Under these conditions, a cell paced near the threshold for Ca waves will be unstable to Ca 

transient alternans.   This mechanism is particularly relevant in heart failure where it is known that the close 

positioning between LCC and RyR clusters is disrupted[23].  In this case a large number of RyR clusters lack 

nearby LCCs so that the cell is more prone to propagating Ca waves, and is therefore more unstable to alternans.   

An important finding of this study is that these wave induced alternans are due to the nonlinear signaling between 

Ca release units.    Thus, our theory of the nonlinear onset of Ca waves can be used to quantify the underlying 

mechanism for wave induced alternans.   Here we also point out that alternans can also occur due to an alternative 

mechanism that is due to an order-disorder transition in large ensembles of Ca release units [25,38].    There, global 

alternans occurred when local all-or-none responses at Ca release units where synchronized by local Ca diffusion.   

In the mechanism presented here, the global response is due to a propagating Ca wave and not to the onset of 

synchronization which occurs at rapid rates.      However, in both cases the underlying nonlinearity can be traced to 

local stochastic signaling that is due the architecture of Ca signaling in cardiac cells.   

 

In this study, we have presented a quantitative theory of the nonlinear onset of Ca waves.  These findings identify 

the important physiological parameters that set the threshold and degree of nonlinearity of the SR load dependence 

of Ca waves.  Thus, these findings can serve as a guide in the development of therapeutic approaches, which target 

both Ca waves and alternans.    In particular, our study highlights the importance of the quantity ߚ which is the 

ratio of the rise of local Ca concentration, due to diffusion from a nearest neighbor, to the JSR load.   This quantity 

is dependent on a variety of factors such as the distance between RyR clusters, the diffusion of Ca in the 

intracellular space, and also the distribution and kinetics of buffers.   Our analysis reveals that if ߚ is reduced then 

the threshold for Ca waves shifts to larger SR loads (Eq. 13).  Thus, any mechanism that decreases ߚ will reduce 

the frequency of Ca waves and the degree of Ca transient alternans in the cell.    Perhaps the most natural approach 

to control this parameter is by changing the concentration and distribution of Ca buffers in the cell.   For example, 

buffers located in the subcellular volume between Z-planes will reduce the probability of plane-to-plane excitations 

and shift the onset of Ca waves to higher SR loads.    However, it should be stated that a basic limitation of all 

proposals seeking to perturb the Ca cycling system is that these changes may disrupt Ca signaling processes, which 

are vital to other cellular process.   Here, we point out that buffers offer a unique flexibility to control the rise in 

local Ca concentration since buffer kinetics can be tuned to act only at the elevated Ca levels that are relevant 

during Ca overload.  In addition, immobile buffers can be targeted to specific sites in the cell where they will serve 

as diffusion barriers, while having a potentially minimal effect on the overall rise in Ca concentration in other parts 

of the cell.   For instance, a major Ca buffer in the cell is Troponin C which is bound to actin myofilaments located 

between Z-planes.    It may be worthwhile to explore the possibility of tuning the binding affinity of Troponin C to 

Ca in order to suppress large Ca fluxes which induce activation between Z-planes.    In this way it may be possible 

to reduce dynamical instabilities by controlling the rate of Ca diffusion between different parts of the cell.     Thus, 
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our approach, by uncovering the essential mechanism for the nonlinearity underlying Ca wave onset and alternans, 

suggests novel antiarrhythmic strategies, which have yet to be explored.   
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Table 1. Model parameters modified from the original Restrepo computational cell model. 

 

Parameter Description Value ߬݅ܶ  Transverse cytosolic diffusion time ݏܶ߬ ݏLongitudinal cytosolic diffusion time 1.16݉ ܮ݅߬ݏ1.47݉  Transverse submembrane diffusion time 0.71݉ܮݏ߬ ݏ Longitudinal submembrane diffusion time 0.85݉ݏ ܴ߬ܰܵܶ  Transverse NSR diffusion time 3.60݉ܮܴܵܰ߬ ݏ  Longitudinal NSR diffusion time 12.0݉ݑܭ ݏ CSQN-unbound opening rate 1.5 ൈ 10ିସሺܯߤሻെ2݉ݏെ1 ܰ Number of channels in RyR cluster 100 
 

 

Table 2.   Parameters used to compute effective potential. 

 

 

Parameter Description Value ݇ା RyR opening rate 1.5 ൈ 10ିସሺܯߤሻെ2݉ݏെ1 ݇ି RyR closing rate 1.0 ሺ݉ݏሻିଵ  ݏExponent of Ca binding 2 ܰ Number of channels in cluster 100 ߬௦ Spark lifetime 15݉ ߛ 

 ߚ
Ratio of the peak Ca concentration due to the diffusive 
flux from a neighboring spark to the JSR load. 
 

2.5/1000 

 ߙ
Ratio of the dyadic junction concentration due to one 
open RyR channel to the JSR load.  
 

5.0/1000 

     ݏ
Dimensionless parameter during nearest neighbor 0.5 
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spark. 
 

  ݏ 
Dimensionless parameter in the absence of a nearest 
neighbor spark.  0.04 
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Figure Captions  

 

Figure 1. (A) Schematic illustration of the spatial architecture of Ca signaling in a cardiac ventricular cell.  

Signaling between channels occur within dyadic junctions distributed in the 3D volume of the cell.   (B) Illustration 

of two nearest neighbor signaling units (CRUs) showing the subcellular compartments.   Here, the superscript ݊ 

denotes the ݊௧ CRU in a 3D grid representing the cell.  (C)  Spatial architecture of the cell interior showing Z-

planes.    

 

Figure 2. (A)  The local Ca concentration  ܿ  at junction ݅ in which a Ca spark occurs.  In this simulation a spark is 

induced in that junction by raising the local concentration above the threshold for spark activation.  Here, the initial 

JSR load is ܿ௦ ൌ and the Ca concentration rises to a peak of roughly ܿ ,ܯߤ1000   The local (B)     .ܯߤ 300

concentration ܿ at a nearest neighbor junction ݆ on the same Z-plane.    Here, the local flux due to the RyR cluster 

is set to zero so that the rise in concentration is due only to the diffusive flux from junction ݅.   At this site the local 

concentration rises to      .ܯߤ3

 

Figure 3. (A) The effective potential Φሺݔሻ for spark off (black solid line, ݏ ൌ 0.04), and spark on (red dashed 

line, ݏ ൌ 0.5).   As ݏ is increased the barrier height between the stable stationary point at ݔ and the unstable 

point at ݔଵ is reduced.  (B)  Plot of the stationary points ݔ and ݔଵ as a function of the parameter ݏ.   

 

Figure 4. (A) The effective potential barrier ܰΔΦ as a function of the JSR load ܿ௦ for the spark on case ݏ ൌ 0.5.     

(B) The waiting time vs the JSR load computed using an exact stochastic simulation of an isolated cluster of ܰ ൌ 100 RyR channels. (C) The transmission probability  as a function of the JSR load computed using the 

exact stochastic simulation (red dashed line) and from Eq. (10) (black solid line).   (D)  The threshold for 

transmission probability ܿ௧ is computed as the JSR load where ሺܿ௧ሻ ൌ 1/2, where  is computed with the 

exact stochastic simulation (black circles).  ܿ௦כ  (red squares) is computed using our analytic approximation given 

by Eq. (13).   

 

Figure 5. Ca wave nucleation and propagation in a 3D stochastic cell model.  (A)  Spatial distribution of dyadic 

junction Ca concentration ܿ visualized across a 2D cross section of a cell with  20 ൈ 20 ൈ 60 CRUs.   (B) The 

mean waiting time ௪ܶ for a Ca wave as a function of JSR load.  Points shown are averaged over 100 independent 

simulations.  (C)  The probability ௪ of a Ca wave occuring within a 200݉ݏ time interval as a function of the JSR 

load (blue solid line).  Line is computed by averaging over 100 independent simulations.   The transmission 

probability between two adjacent units, denoted as  , computed using the Restrepo model (Red dashed line).   
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The transmision probability computed using Eq. 10  (black dash-dotted line).  (D) The threshold as a function of 

the number of channels in the cluster ܰ.   Blue dash-dotted line corresponds to the wave propagation onset ܿ௪ 

defined as ௪ሺܿ௪ሻ ൌ 1/2.  Red dashed line is the SR load such that  ሺܿ̃ሻ ൌ 1/2 computed directly from the 

Restrepo model, and black solid line is the analytic threshold given by Eq. 13.   

 

Figure 6. (A) The calculated peak of diastolic Ca concentration, ܿ௫, as a function of ܿ௦ for cases where 30% 

(black, bottom line), 50% (red, middle line), and 70% (top, blue line), percent of the clusters have LCC channels.  

(B) Time dependence of the steady state JSR load simulated using a 3D cell model where only 30% of the clusters 

are driven by LCC channels. In this case the cell is paced with an AP clamp with a period of ܶ ൌ  The   .ݏ݉ 200

shape of the AP clamp is the same as that used in the original Restrepo model.   (C)  Simulated line scan of 

subcellular Ca release during alternans.   

 

Figure 7.  Plot of the peak Ca transient ܿ୫ୟ୶ for the last 2 beats after pacing the cell for 20 beats.  Black circles and 

red squares correspond to 30% and 50% LCC density respectively.   
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