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Abstract

The paradigm of layered networks is used to describe many real-world systems – from biological

networks, to social organizations and transportation systems. While recently there has been much

progress in understanding the general properties of multilayer networks, our understanding of how to

control such systems remains limited. One fundamental aspect that makes this endeavor challenging

is that each layer can operate at a different timescale, thus we cannot directly apply standard ideas

from structural control theory of individual networks. Here we address the problem of controlling

multilayer and multi-timescale networks focusing on two-layer multiplex networks with one-to-one

interlayer coupling. We investigate the practically relevant case when the control signal is applied

to the nodes of one layer. We develop a theory based on disjoint path covers to determine the

minimum number of inputs (Ni) necessary for full control. We show that if both layers operate on

the same timescale then the network structure of both layers equally affect controllability. In the

presence of timescale separation, controllability is enhanced if the controller interacts with the faster

layer: Ni decreases as the timescale difference increases up to a critical timescale difference, above

which Ni remains constant and is completely determined by the faster layer. We show that the

critical timescale difference is large if Layer I is easy and Layer II is hard to control in isolation. In

contrast, control becomes increasingly difficult if the controller interacts with the layer operating on

the slower timescale and increasing timescale separation leads to increased Ni, again up to a critical

value, above which Ni still depends on the structure of both layers. This critical value is largely

determined by the longest path in the faster layer that does not involve cycles. By identifying the

underlying mechanisms that connect timescale difference and controllability for a simplified model,

we provide crucial insight into disentangling how our ability to control real interacting complex

systems is affected by a variety of sources of complexity.

∗ posfai@ucdavis.edu
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I. INTRODUCTION

Over the past two decades, the theory of networks proved to be a powerful tool for

understanding individual complex systems [1, 2]. However, it is now increasingly appreciated

that complex systems do not exist in isolation, but interact with each other [3, 4]. Indeed,

an array of phenomena – from cascading failures [5, 6] to diffusion [7] – can only be fully

understood if these interactions are taken into account. Traditional network theory is not

sufficient to describe the structure of such systems, so in response to this challenge, the

paradigm of multilayer networks is being actively developed. Here we study a fundamental,

yet overlooked aspect of multilayer networks: each individual layer can operate at a different

timescale. Particularly, we address the problem of controlling multilayer, multi-timescale

systems focusing on two-layer multiplex networks. Recently significant efforts have been made

to uncover how the underlying network structure of a system affects our ability to influence

its behavior [8–16]. However, despite the appearance of coupled systems from infrastructure

to biology, the existing literature – with a few notable exceptions [17–20] – has focused on

control of networks in isolation, and the role of timescales remains unexplored.

Control of multilayer networks is important for many applications. For example, consider

a CEO aiming to lead a company consisting of employees and management. Studying the

network of managers or the network of employees in isolation does not take into account im-

portant interactions between the different levels of hierarchy of the company. On the other

hand, treating the system as one large network ignores important differences between the

dynamics of the different levels, e.g. management may meet weekly, while employees are in

daily interaction. In general, the interaction of timescales plays an important role in orga-

nization theory [21]. Or consider gene regulation in a living cell. External stimuli activate

signaling pathways which through a web of protein-protein interactions affect transcription

factors responsible for gene expression. The activation of a signaling pathway happens on the

timescale of seconds, while gene expression typically takes hours [22]. As a third example,

consider an operator of an online social network who wants to enhance the spread of certain

information by interacting with its users. However, a user may subscribe to multiple social

networking services and may opt to share news encountered in one network through a differ-
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ent one – out of reach of the operator. The dynamics of user interaction on different websites

can be very different depending on user habits and the services offered [23–25]. For example

the URL shortening service Bit.ly reports that the half-life of shared links depends on the

social networking platform used: half the clicks on a link happened within 2.8 hours after

posting on Twitter, within 3.2 hours on Facebook and within 7.4 hours on Youtube [26].

Common features of these examples are that (i) each interacting subsystem is described

by a separate complex network; (ii) the dynamics of each subsystem operate on a different,

but often comparable timescale and (iii) the external controller directly interacts with only

one of the subsystems. Here we study the control properties of a model that incorporates

these common features, yet remains tractable. More specifically, we study discrete-time lin-

ear dynamics on two-layer multiplex networks, meaning that we assume one-to-one coupling

between the nodes of the two layers. This choice ensures both analytical tractability and the

isolation of the role of timescales from the effect of more complex multilayer network struc-

ture. Identifying the underlying mechanisms that govern the controllability of this simple

model provides crucial insight into disentangling how our ability to control real interacting

complex systems is affected by a variety of sources of complexity.

So far only limited work investigated controllability of multilayer networks. Menichetti

et al. investigated the controllability of two-layer multiplex networks governed by linear

dynamics such that the dynamics of the two layers are not coupled, but the input signals in

the two layers are applied to the same set of nodes [18]. Yuan et al. identified the minimum

number of inputs necessary for full control of diffusion dynamics, allowing the controller to

interact with any layer [19]. Zhang et al. investigated the controllable subspace of multilayer

networks with linear dynamics without timescale separation if the controller is limited to

interact with only one layer; showing that it is more efficient to directly control peripheral

nodes than central ones [20]. Here we also limit the controller to one layer, yet by exploring

the minimum input problem, we offer a direct metric which allows us to compare our findings

to previous results for single-layer networks [10]. More so, the key innovation of our work is

that we take into account the timescale of the dynamics of each layer, a mostly overlooked

aspect of multilayer networks.

It is worth mentioning the recent work investigating the related, but distinct problem of
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controllability of networks with time-delayed linear dynamics [27]. The key difference between

time-delay and timescale difference is that for time-delayed dynamics the state of a node will

depend on some previous state of its neighbors; however, the typical time to change the state

of a node remains the same throughout the system. While in case of timescale difference, the

typical time needed for changes to happen can be different in different parts of the system.

In the next section, we introduce a simple model that captures some common properties

of multilayer networks and we describe the problem setup. In Sec. III, we develop a theory to

determine the minimum number of inputs required for controlling multiplex, multi-timescale

networks with discrete-time linear dynamics relying on graph combinatorial methods. In

Sec. IV, we use networks with tunable degree distribution to systematically uncover the

role of network structure and timescale separation. We study three scenarions: no timescale

separation, Layer I operates faster and Layer II operates faster. Finally, in Sec. V we provide

a discussion of our results and we outline open questions.

II. MODEL DEFINITION

We aim to study the controllability of coupled complex dynamical systems with the follow-

ing properties: (i) each subsystem (layer) is described by a complex network; (ii) the operation

of each layer is characterized by a different timescale and (iii) the controller only interacts

directly with one of the layers. We propose a model that satisfies these requirements and

yet is simple enough to remain tractable. We focus on two-layer multiplex systems, meaning

that there is a one-to-one correspondence between the nodes of the two layers.

The model is defined by a weighted directed two-layer multiplex networkM which consists

of two networks LI and LII called layers and a set of links EI,II connecting the nodes of

the different layers. Each layer Lα (where α ∈ {I, II}) consists of a set of nodes Vα =

{vα1 , vα2 , . . . , vαN} and a set of links Eα, where a directed link (vαi , v
α
j , w

α
ij) ∈ Eα is an ordered

node pair and a weight representing that node vαi influences node vαj with strength wαij. The

two layers are connected by link set EI,II = {(vIi , vIIi , w
I,II
i )|i = 1, 2 . . . , N}, in other words,

there is directed one-to-one coupling from Layer I to Layer II (Fig. 1a). Although the links

are weighted, the exact values of the weights do not have to be known for our purposes.
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Our goal is to control the system by only interacting directly with Layer I. We study

linear discrete-time dynamics

xI(t) = AIxI(t− τI) + Bu(t− τI)

xII(t) = AIIxII(t− τII) + ∆τI(t)DxI(t− τI)

if (t mod τI) = 0,

if (t mod τII) = 0,
(1)

where xI(t) and xII(t) ∈ RN represent the state of nodes in Layer I and II; the matrices

AI and AII ∈ RN×N are the transposed weighted adjacency matrices of Layer I and II,

capturing their internal dynamics. The weighted diagonal matrix D ∈ RN×N captures how

Layer I affects Layer II.

Vector u(t) ∈ RM provides the set of independent inputs and the matrix B ∈ RN×M

defines how the inputs are coupled to the system. To differentiate between the function u(t)

and an instance of the function at a given time step, we refer to a component ui(t) of vector

u(t) as an independent input, and we call its value at time step t′, ui(t = t′), a signal.

Finally, τI, τII ∈ {1, 2, . . .} are the timescale parameters of each subsystem, meaning that

the state of Layer I is updated according to Eq. (1) every τIth time step; and Layer II is

updated every τIIth time step. And

∆τI(k) =

 1 if (k mod τI) = 0,

0 if (k mod τI) 6= 0,
(2)

is the Kronecker comb, meaning that Layer I directly impacts the dynamics of Layer II if the

two layers simultaneously update. We investigate three scenarios: (i) the subsystems operate

on the same timescale, i.e. τI = τII = 1; (ii) Layer I updates faster, i.e. τI = 1 and τII > 1;

and (iii) Layer II updates faster τI > 1 and τII = 1.

We seek full control of the system as defined by Kalman [28], meaning that with the

proper choice of u(t), we can steer the system from any initial state to any final state in

finite time. To characterize controllability, we aim to design a matrix B such that the system

is controllable and the number of independent control inputs, M , is minimized. The minimum

number of inputs, Ni, serves as our measure of how difficult it is to control the system.

To find a robust and efficient algorithm to determine Ni, we rely on the framework of

structural controllability [29]. We say that a matrix A∗ has the same structure as A, if
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the zero/nonzero elements of A and A∗ are in the same position, and only the value of

the nonzero entries can be different, in other words, in the corresponding network the links

connect the same nodes, only the link weights can differ. A linear system of Eq. (1) de-

fined by matrices (AI,AII,D,B) is structurally controllable if there exists matrices with the

same structure (A∗I ,A
∗
II,D

∗,B∗) such that the dynamics defined by (A∗I ,A
∗
II,D

∗,B∗) are

controllable according to the definition of Kalman. Note that ultimately we are interested

in controllability and not structural controllability. Yet, structural controllability is a useful

tool because (i) if a linear system is structurally controllable, it is controllable for almost all

link weight combinations [29] and (ii) determining structural controllability can be mapped

to a graph combinatorial problem allowing for efficient and numerically robust algorithms.

III. MINIMUM INPUT PROBLEM

Before addressing the minimum input problem of multiplex networks, we revisit the case of

single-layer networks by providing an alternative explanation of the Minimum Input Theorem

of Liu et al. [10]. This new approach readily lends itself to be extended to multiplex, multi-

timescale networks. Thus providing the basis for Sec. III B, in which we develop an algorithm

to determine Ni for two-layer multiplex networks.

A. Single-layer networks

The linear discrete-time dynamics associated to a single-layer weighted directed network

L are formulated as

x(t+ 1) = Ax(t) + Bu(t), (3)

where x(t), A, B and u(t) are defined similarly as in Eq. (1) (Fig. 2a). To obtain a graph

combinatorial condition for structural controllability we rely on the dynamic graph DT ,

which represents the time evolution of a system from t = 0 to t = T [30–32]. Each node vi

in L is split into T + 1 copies {vi,0, vi,1, . . . , vi,T}, each copy vi,t represents the state of node

vi at time step t. We add a directed link (vi,t → vj,t+1) for t = 0, 1, . . . , T − 1 if they are

connected by a directed link (vi → vj) in the original network, representing that the state of
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node vj at time t+ 1 depends on the state of its in-neighbours at the previous time step. To

account for the controller, for each independent input we create T nodes ui,t (i = 1, 2, . . . ,M ;

t = 0, 1, . . . , T − 1) each representing a control signal (i.e. the value of the ith input at time

step t). We draw a directed link (ui,t → vj,t+1) for t = 0, 1, . . . , T − 1 if bji 6= 0, where bji is

an element of matrix B.

According to Theorem 15.1 of Ref. [30], a linear system (A,B) is structurally controllable

if and only if in the associated dynamic graph DN node sets U = {ui,t|i = 1, 2, . . . ,M ; t =

0, 1 . . . , N − 1} (green nodes in Fig. 2b) and VN = {vi,t=N |i = 1, 2 . . . , N} (blue nodes)

are connected by N disjoint paths (red links), i.e. there exists a set of disjoint paths C =

{P1, P2, . . . , PN} such that U contains the set of starting points and VT is the set of endpoints.

A path P of length l between node vi0 and vil is a sequence of l consecutive links [(vi0 →

vi1), (vi1 → vi2), . . . , (vil−1
→ vil)] such that each node is traversed only once. Node vi0 is the

starting point and vil is the endpoint of P . Two paths P1 and P2 are disjoint if no node is

traversed by both P1 and P2, a set of paths is disjoint if all paths in the set are pairwise

disjoint.

A possible interpretation of this result is that if a Pi path has starting point uj,t0 and

endpoint vk,t1 , we say that the signal uj(t0) is assigned to set xk(t1), the state of node vk at

time t1, through path Pi. Therefore we refer to path Pi as a control path. The clear meaning

of the dynamic graph and the control paths makes this condition useful to formulate proofs

and to interpret results. However, it is rarely implemented to test controllability of large

networks, because the size of the dynamical graph grows as N2, rendering such algorithms

too slow. In the following, we provide a condition that only requires the dynamic graph D1

as input; therefore it is more suitable for practical purposes.

It was shown in Refs. [10, 30, 33] that a linear system (A,B) is structurally controllable

if and only if (i) in D1 we can connect nodes U ∪ V0 = {ui,t=0|i = 1, 2, . . . ,M} ∪ {vi,t=0|i =

1, 2 . . . , N} (green nodes in Fig. 2c) and nodes V1 = {vi,t=1|i = 1, 2 . . . , N} (blue nodes) via

N disjoint paths (red links) and (ii) all nodes are accessible from the inputs. This result can

be understood as a self-consistent version of the previous condition involving DN : Instead

of keeping track of the entire control paths as we previously did, we concentrate on a single

time step. Consider the dynamic graph D1 representing the time evolution of the system from
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t = 0 to t = 1, and assume that the system is controllable. By definition we can set the state

of each node independently at t = 0; therefore we can treat them as control signals to control

the system at a later time step. Now let us aim to control the system at t = 1, according to

our previous condition, it is necessary that N disjoint paths exist between nodes U ∪ V0 =

{ui,t=0|i = 1, 2, . . . ,M} ∪ {vi,t=0|i = 1, 2 . . . , N} and nodes V1 = {vi,t=1|i = 1, 2 . . . , N}. This

is exactly requirement (i), together with the accessibility requirement (ii) it is a sufficient and

necessary condition. Note that D1 is a bipartite network (each link is connected to exactly

one node in U ∪ V0 and one node in V1) and each disjoint path in D1 is a single link.

The minimum input problem aims to identify the minimum number of inputs that guar-

antee controllability for a given network, in other words, the goal is to design a B ∈ RN×M

for a given A such that M is minimized. For this we consider the dynamic graph D1 without

nodes representing control signals. We then find a maximum cardinality matching, where a

matching is a set of links that do not share an endpoint. The matching is a set of disjoint

paths connecting node sets V0 and V1. Controllability requires N disjoint paths between

U ∪V0 and V1; therefore Ni = N−Nmatch, where Nmatch is the size of the maximum matching

(if Nmatch = N , Ni = 1). Allowing the inputs to be connected to multiple nodes we can

guarantee that all nodes are accessible from the inputs. Thus we recovered the Minimum

Input Theorem of Liu et al. [10].

In summary, by relying on a self-consistent condition for structural controllability we re-

derived the known result that identifying Ni is equivalent to finding a maximum matching

in D1. In the next section we show that this new self-consistent approach lends itself to be

extended to the multiplex, multi-timescale model defined by Eq. (1), allowing us to derive

analogous method to identify Ni.

B. Multiplex networks

To find the minimum number of inputs Ni for multiplex, multi-timescale networks, we

first extend the definition of the dynamic graph. We define the dynamic graph DτII such that

it captures the time evolution of a multiplex system defined by (AI,AII,D,B) and Eq. (1)

from t = 0 to t = τII. For sake of brevity, we assume that τI = 1 and τII ≥ 1, the case

9



of τI > 1 and τII = 1 is treated similarly (Fig. 1d). Each node vIi in Layer I is split into

τII +1 copies {vIi,0, vIi,1, . . . , vIi,τII}; each node vIIi in Layer II is split into two copies {vIIi,0, vIIi,τII},

because Layer II does not update during the intermediate time steps. We draw a link from

vIi,t to vIj,t+1 (t = 0, 1, . . . , τII−1) if they are connected in Layer I by a directed link (vIi → vIj),

and similarly we connect vIIi,0 to vIIj,τII if they are connected in Layer II. In addition we draw

a link between each pair vIi,0 and vIIi,τII to account for the interconnectedness.

As a natural extension of self-consistent approach introduced in Sec. III A, assume that

the system is controllable. If the system is controllable, we can set the state of each node in-

dependently at t = 0. To control the system at t = τII, all nodes at t = τII in DτII (blue nodes

in Fig. 1) have to be connected to a node at t = 0 or to a control signal (green nodes) via a

disjoint path (red links). In other words, a linear two-layer system (AI,AII,D,B) is struc-

turally controllable only if there exists 2N disjoint paths in the dynamic graph connecting

node set U ∪V0 = {ui,t|i = 1, 2, . . . ,M ; t = 0, 1, . . . , τII− 1}∪{vIi,0|i = 1, 2, . . . , N}∪{vIIi,0|i =

1, 2, . . . , N} and node set VτII = {vIi,τII |i = 1, 2, . . . , N} ∪ {vIIi,τII |i = 1, 2, . . . , N}. In other

words, a linear two-layer system (AI,AII,D,B) is structurally controllable only if there

exists 2N disjoint paths in the dynamic graph connecting node set U ∪ V0 = {ui,t|i =

1, 2, . . . ,M ; t = 0, 1, . . . , τII − 1} ∪ {vIi,0|i = 1, 2, . . . , N} ∪ {vIIi,0|i = 1, 2, . . . , N} and node set

VτII = {vIi,τII |i = 1, 2, . . . , N} ∪ {vIIi,τII |i = 1, 2, . . . , N}.

To test whether the system is controllable by M independent inputs, we need to find a

B ∈ RN×M such that the system is controllable. We do not have to check all possibilities,

because if such B exists, then the system is also controllable for B′ ∈ RN×M where B′ has no

zero elements; therefore, we only check the case when each input is connected to each node

in Layer I. Given matrices (AI,AII,D,B
′), we now have to count the number of disjoint

paths connecting U ∪ V0 and VτII in the corresponding dynamic graph DII. We find these

paths using maximum flow: We set the capacity of each link and each node to 1, we then

find the maximum flow connecting source node set U ∪ V0 to target node set VτII using any

maximum flow algorithm of choice. If the system is structurally controllable, the maximum

flow equals to 2N ; if it is less than 2N , additional inputs are needed.

We can now identify the minimum number of inputsNi by systematically scanning possible

values of M . A simple approach is to first set M = 1, and test if the system is controllable.
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If not, increase M by one. Repeat this until the smallest M yielding full control is found.

Significant increase in speed is possible if we find the minimum value of M using bisection.

We initially know that Nupper
i = N ≥ Ni ≥ N lower

i = 1. We set M = (Nupper
i +N lower

i )/2, and

test if the system is controllable. If yes, we set Nupper
i = M ; if no, we set N lower

i = M . We

repeat this until Nupper
i = N lower

i , which provides Ni. For implementation, we used Google

OR-tools and igraph python packages [34, 35].

The one-to-one coupling between Layer I and Layer II guarantees that full control is

possible with at most N independent inputs; therefore we often normalize Ni by N , i.e.

ni = Ni/N .

Note that in the above argument we rely on the test of structural controllability based on

the dynamic graph, which was originally introduced for single-timescale networks [30]. The

sufficiency of the condition relies on the fact that the zero is the only degenerate eigenvalue

of a matrix A if the nonzero elements of A are uncorrelated. However, this might not remain

true for the spectrum of Aτ , where τ > 1, due to correlations arising in the nonzero elements

of Aτ . If a λ 6= 0 eigenvalue has larger geometric multiplicity than the multiplicity of 0,

Ni would be larger than predicted by the dynamic graph; if a λ 6= 0 eigenvalue has larger

geometric multiplicity than 1 but smaller than the multiplicity of zero, it does not affect

Ni, but may require connecting an input to multiple nodes [12]. In the τI > 0 and τII = 1

case, a control signal is only injected into Layer II every τI time step (Fig. 1d); therefore, the

spectrum of AτI
II becomes relevant. However, we are interested in large and sparse complex

networks whose spectra is dominated by the zero eigenvalue [12]. Therefore it is reasonable

to expect that the spectrum of Aτ will be dominated by zero eigenvalues as well. Meaning

that the minimum number of inputs is correctly given by this graph combinatorial condition.

Furthermore the one-to-one coupling between the layers guarantees that control is possible

by only interacting with Layer I directly.

So far, we developed a method to characterize controllability of a multiplex, multi-

timescale system based on the underlying network structure and the timescale of each of

its layers. In the next section, we rely on these tools to systematic study how network char-

acteristics and timescales affect Ni.
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IV. RESULTS

In this section we investigate how different timescales and the degree distribution of each

layer affect controllability. For timescales, we consider three scenarios: (i) the subsystems

operate on the same timescale, i.e. τI = τII = 1; (ii) Layer I updates faster, i.e. τI = 1 and

τII > 1; and (iii) Layer II updates faster τI > 1 and τII = 1. To uncover the effect of degree

distribution, we consider layers with Poisson (ER) or scale-free (SF) degree distribution, the

latter meaning that the distribution has a power-law tail.

We generate scale-free layers using the static model [36]: We start with N unconnected

nodes. Each node vi is assigned two hidden parameters win(i) = i−ζout and wout(i) = i−ζout ,

where i = 1, 2, . . . , N . The weights are then shuffled to eliminate any correlations of the in-

and out-degree of individual nodes and between layers. We then randomly place L directed

links by choosing the start- and endpoint of the link with probability proportional to win(i)

and wout(i), respectively. For large N this yields the degree distribution

P SF
in/out(k) =

[
c(1− ζin/out)1/ζin/out

]
ζin/out

Γ(k − 1/ζin/out, c[1− ζin/out])
Γ(k + 1)

, (4)

where c = L/N is equal to the average degree, and Γ(n, x) is the upper incomplete gamma

function. For large k, P SF
in/out(k) ∼ k−(1+1/ζin/out) = k−γin/out , where γin/out = 1 + 1/ζin/out is the

exponent characterizing the tail of the distribution.

To reduce the number of parameters we only study layers with symmetric degree distri-

bution, e.g. P (k) = Pin(k) = Pout(k); however, the in- and out-degree of a specific node can

be different.

A. No timescale separation (τI = τII = 1)

In the special case when both layers operate on the same timescale, i.e. τI = τII = 1

(Fig. 1b), there is no qualitative difference between the dynamics of the layers. The reason

why the system cannot be treated as a single large network is that we are only allowed to

directly interact with Layer I. Recently Iudice et al. developed methodology to identify Ni if

the control signals can only be connected to a subset of nodes [16]. However, the one-to-one
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coupling between the layers enables us to find Ni using a simpler approach.

Finding Ni for a single-layer network is equivalent to finding a maximum matching of

the network [10]. A matching is a set of directed links that do not share starting or end

points, and a node is unmatched if there is no link in the matching pointing at it. Liu et al.

showed that full control of a network is possible if each unmatched node is controlled directly

by an independent input; therefore Ni is provided by the minimum number of unmatched

nodes. To determine Ni for a two-layer network, we first find a maximum matching of the

combined network of Layer I and Layer II. If there are no unmatched nodes in Layer II, we

only have to interact with Layer I; therefore we are done. If a node vIIi is unmatched in Layer

II, vIi is necessarily matched by some node vIj, otherwise the size of the matching could be

increased by adding (vIi → vIIi ). By taking out the link (vIj → vIi) from the matching and

including (vIi → vIIi ) the size of the maximum matching does not change, and we moved the

unmatched node from Layer II to Layer I. We repeat this for all unmatched nodes in Layer

II. (Note that it may be necessary to connect inputs to additional nodes so that all nodes

are reached by the control signals. Due to the one-to-one coupling between the layers this

too can be accomplished by interacting only with Layer I.) This simplified method allows

faster identification of Ni using the Hopcroft-Karp algorithm [37] and analytically solving

ni = Ni/N for random networks based on calculating the fraction of always matched nodes

as described in Appendix A [38–41].

First, we measure ni while fixing the average degree of Layer II (cII) and varying the

average degree of Layer I (cI). For both ER-ER and SF-SF networks, we find that ni decreases

for increasing values of cI and converges to nII
i = N II

i /N , the normalized number of inputs

needed to control Layer II in isolation (Fig. 3a). The latter observation is easily understood:

ni is determined by the fraction of unmatched nodes in the combined network of the two

layers; if cI is high enough, Layer I is perfectly matched; therefore all unmatched nodes are

in Layer II. Based on the same argument, nI
i also serves as a lower bound for ni.

Varying both cI and cII for ER-ER and both γI and γII for SF-SF with constant average

degrees cI = cII, we find that dense networks require less inputs than sparse networks (Fig. 3b)

and degree heterogeneity makes control increasingly difficult (Fig. 3c) – in line with results

for single-layer networks [10]. We also observe that ni is invariant to exchanging Layer I and
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Layer II. This is explained by the fact that the size of the maximum matching is invariant

to flipping the direction of all links, and on the ensemble level this is the same as swapping

the two layers for networks with P (kin) = P (kout).

In summary, for no timescale separation controllability is equally affected by the network

structure of both layers, and ni is greater or equal to the number of inputs necessary to

control any of its layers in isolation. Similarly to single-layer networks, networks with low

average degree and high degree heterogeneity require more independent inputs than sparse

homogeneous networks.

B. Layer I updates faster (τI = 1, τII > 1)

In the previous section we found that the network structure of the two layers equally

affect ni if τI = τII = 1. This is not the case if the timescales are different, for example if

Layer I updates faster than Layer II, we expect that we need fewer inputs than in the same

timescale case by the virtue of having more opportunity to interact with the faster system

(Fig. 1b). In this section we systematically study this effect using the algorithm described

in Sec. III B and analytical arguments.

By measuring ni for ER-ER and SF-SF networks as a function of τII, we find that ni

monotonically decreases with increasing τII (Fig. 4a), confirming our expectations. For both

ER-ER and SF-SF networks ni(τII) converges to nI
i = N I

i /N which is the normalized number

of inputs needed to control Layer I in isolation. This can be understood by the following

argument: Suppose that τII = N , the maximum number of time steps needed to impose

control on any network with N nodes [42]. We use the state of Layer I at t = 0 to set the

state of Layer II at t = N , and we have N time steps to impose control on Layer I as if it

was just by itself. For a given network we define the critical timescale parameter τ cII as the

minimum value of τII for which ni(τII) = nI
i . Above the critical timescale separation, Layer I

completely determines ni(τII) independent of the structure of Layer II, in other words, the

multiplex nature of the system no longer plays a role in determining ni.

Measuring τ cII we find that for both ER-ER and SF-SF networks τ cII monotonically increases

with increasing cI for fixed cII, and decreases with increasing cII for fixed cI (Fig 4b). That is
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τ cII is the highest if Layer I is dense and Layer II is sparse. SF-SF networks have significantly

lower τ cII than ER-ER networks with the same average degree.

To understand the observed pattern we provide an approximation to calculate τ cII. We

call a node vIi externally controlled if in the dynamic graph vIi,τII is connected to an external

signal uj,t via a disjoint control path (e.g. nodes vIA and vIB in Fig. 1c), and the number of

such nodes is denoted by Ne(τII). We have previously shown that we require N I
i independent

inputs at τ cII. For each independent input and each time step, we have one control signal ui,t;

therefore we need timescale parameter

τ cII = dNe(τ
c
II)/N

I
i e (5)

to insert enough signals required by the Ne(τ
c
II) externally controlled nodes, where d·e is the

ceiling function. Equation (5) is not yet useful as it contains τ cII on both side. Observing that

Ne(τII) is a monotonically increasing function of τII and Ne(τII = 1) = Ni(τII = 1), we can

write

Ni(τII = 1) ≤ Ne(τ
c
II) ≤ N. (6)

In the special case when Layer II is fully connected, τ cII = 1 and Ne(τ
c
II = 1) = Ni(τII =

1). In the case when Layer II is entirely disconnected, i.e. is composed of isolated nodes,

Ne(τII) = N = Ni(τII = 1). These two opposite limiting cases suggest that it is reasonable to

approximate Ne(τ
c
II) by its lower bound:

τ cII ≈ dNi(τII = 1)/N I
i e, (7)

which entirely depends on quantities that we can easily measure or analytically compute.

We find that Eq. (7) preforms remarkably well: Figure 4b compares direct measurements of

τ cII to approximations obtained by using measurements and analytically computed values of

Ni(τII = 1) and N I
i . The approximation based on measurements out performs the analytical

calculations, because the analytical results provide the expectation value of the numerator

and denominator for ER and SF network ensembles; and therefore the ceiling function is

applied to the fraction of averages, instead of averaging after applying the ceiling function.

To further test the Eq. (7), we fix ni(τII = 1) and nI
i and we analytically calculate cI and cII for

SF-SF networks with varying degree exponent γ = γI = γII using the framework developed
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in Appendix A. Then we generate SF-SF networks and measure τ cII as a function of γ. The

approximation predicts that τ cII remains constant, in line with our observations (Fig. 4c).

The good performance of Eq. (7) is partly due to the role of the ceiling function, as it is

insensitive to changes in the numerator that are small compared to N I
i . Indeed, errors are

more pronounced if Ni(τII = 1)/N I
i is close to an integer (e.g. data point cI = 4.5 and cII = 1

in Fig. 4b for ER-ER), or Ni(τII = 1)� N I
i (e.g. data points nI

i = 0.084 in Fig. 4c).

What we learn from this approximation is that τ cII depends only indirectly on the degree

distribution of Layer I and Layer II through the control properties of the system without

timescale separation – Ni(τII = 1) and N I
i . In Sec. IV A, we showed that Ni(τII = 1) ≥ N II

i ,

therefore τ cII is expected to be large if Layer I is easy to control (e.g. it is dense and has

homogeneous degree distribution) and Layer II is hard to control (e.g. it is sparse and has

heterogeneous degree distribution).

In summary, if Layer I updates faster, timescale separation enhances controllability up

to a critical timescale parameter τ cII, above which ni(τII) = nI
i and is completely determined

by Layer I. The critical timescale parameter τ cII largely depends on the controllability of the

system without timescale separation, it is expected to be large if Layer I is easy and Layer

II is hard to control.

C. Layer II updates faster (τI > 1, τII = 1)

Finally we investigate the case when Layer II operates faster than Layer I, i.e. τI > 1

and τII = 1 (Fig. 1d). Measurements show that ni monotonically increases in function of

τI for both ER-ER and SF-SF networks, and ni remains constant if τI ≥ τ cI , where τ cI is

defined for a single network (Fig. 5a). To understand these results consider the following

argument: Some nodes of Layer II are internally controlled, meaning that the state of these

nodes at t = τI is set by the state of nodes within Layer II at t = 0 connected to them via

disjoint control paths (node vIIC in Fig. 1d); while the rest of the nodes of Layer II have to be

controlled by nodes of Layer I. The maximum number of internally controlled nodes is set

by the number of disjoint paths of length τI. A directed open path traversing l links in Layer

II yields a path in the dynamic graph of at most length l; therefore if τI > l the path can
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no longer be used for control. For example, in Fig. 1a path (vIIB → vIIA) consists of a single

link; therefore, we can use it for control if τI = 1 (Fig. 1b) and it is no longer useful if τI > 1

(Fig. 1d). However, a cycle can support a path in the dynamic graph of any length, e.g. the

self-loop (vIIC → vIIC) in Fig. 1. This predicts that

ni(τI =∞) ≥ 1− ncycle, (8)

where ncycle = Ncycle/N is the maximum fraction of nodes that can be covered with cycles

in Layer II. Furthermore, it also means that

τ cI ≤ lmax + 1, (9)

where lmax is the maximum length of a control path that does not involve cycles, a quantity

that only depends on the structure of Layer II. We provide the formal definition lmax and

algorithms to measure ncycle and lmax in Appendix B.

Both lmax and ncycle only depend on Layer II, furthermore both strongly depend on

whether Layer II contains a strongly connected component (SCC) or not. Uncorrelated ran-

dom directed networks – both ER and SF – undergo a percolation transition at c = 1 [43].

If c < 1, the network is composed of small tree components, meaning the ncycle = 0 and

lmax is equal to the diameter D of the network. If the system is in the critical point c = 1,

the size of the largest component S diverges as N → ∞, but the relative size S/N remains

zero. The largest component contains a small number of cycles; therefore D is only approx-

imately equal to lmax. If c > 1, a unique giant SCC emerges which contains cycles; therefore

ncycle > 0 and lmax is no longer directly connected to the diameter. Rigorous mathemati-

cal results show that the diameter of the ER model scales as D ∼ log(N) for c 6= 1, and

D ∼ N1/3 for c = 1, the latter corresponding to percolation transition point [44], suggesting

that the critical timescale parameter τ cI also depends on N . Indeed, Figure 6 shows that τ cI

monotonically increases with N for both ER-ER and SF-SF networks.

We now scan possible values of cI while keeping cII and N fixed, we find that ni(cI)

and τ cI (cI) quickly converges to its respective lower and upper bound provided by Eqs. (8)

and (9) (Fig. 5b-c). Varying cII and keeping cI fixed shows more intricate behavior: τ cI (cII)

increases, peaks and decreases again (Fig. 5d). This is explained by changes in the structure
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of Layer II: For small cII the network is composed of small components with tree structure,

increasing cII agglomerates these components, thus increasing lmax. For large cII, a giant SCC

exists supporting many cycles, as cII increases more and more nodes can be covered with

cycles reducing lmax. At the critical point c∗II = 1 the giant SCC emerges, and the largest

component consists of Nα nodes (0 < α < 1) with only few cycles, providing the peak of

τ cI (cII). Although c∗II = 1 for both ER and SF networks in the N → ∞ limit, finite size

effects delay the peak of τ cI for SF-SF networks. Below the transition point, τ cI is smaller for

ER-ER networks than for SF-SF networks with the same average degree. In contrast, above

the transition point SF-SF networks have larger τ cI . A likely explanation is that the cycle

cover of SF networks is smaller than the cycle cover of ER networks with the same average

degree, thus more nodes can potentially participate in the longest control path that does not

involve cycles.

The number of inputs above the critical timescale parameter ni(τI = ∞) is also affected

by the cycle cover of Layer II (Fig. 5e): For cII < 1, Layer II does not contain cycles yielding

ni(τI =∞) = 1; for large cII, Layer II can be completely covered with cycles, and ni(τI =∞)

is determined by nI
i, the number of inputs needed to control Layer I in isolation.

In summary, if Layer II updates faster, timescale separation reduces controllability up

to a critical timescale parameter τ cI . For the model networks, the value of τ cI depends on

whether Layer II has a giant SCC; τ cI has the highest value at the percolation threshold of

Layer II. If Layer II does not contain a giant SCC, degree heterogeneity decreases τ cI ; above

the percolation threshold homogeneous networks have lower τ cI . For all timescale parameters,

it remains true that ER-ER networks require less independent inputs than SF-SF networks

with the same average degree.

V. CONCLUSIONS

Here we explored controllability of interconnected complex systems with a model that

incorporates common properties of these systems: (i) it consists of two layers each described

by a complex network; (ii) the operation of each layer is characterized by a different, but

often comparable timescale and (iii) the external controller only interacts with one layer

18



directly. We focused on two-layer multiplex networks, meaning that we assume one-to-one

coupling between the nodes of the two layers. Our motivation for this choice was to ensure

analytical tractability and to isolate the specific role of timescales from the effect of more

complex multilayer network structure. Results obtained for more general multilayer networks

will ultimately be shaped by a variety of features such as complex interconnectivity structure,

correlations in network structure and details of dynamics. However, even by studying mul-

tiplex networks, we uncovered nontrivial phenomena, attesting that without understanding

each individual effect, it is impossible to fully understand a system as a whole.

Using structural controllability we were able to solve the model, thereby directly link-

ing controllability to a graph combinatorial problem. We investigated the effect of network

structure and timescales by measuring the minimum number of independent inputs needed

for control, Ni. Overall we found that dense networks with homogeneous degree distribu-

tion require less inputs than sparse heterogeneous networks, in line with previous results

for single-layer networks [10]. We showed that if we control the faster layer directly, Ni de-

creases with increasing timescale difference, but only up to a critical value. Above the critical

timescale difference, Ni is completely determined by the faster layer and we do not have to

take into account the multiplex structure of the system. This critical timescale separation is

expected to be large if the faster layer would be easy to control and the slower layer would

be hard to control in isolation. If we interact with the slower layer, control is increasingly

difficult for increasing timescale difference, again up to a critical value, above which Ni still

depends on the structure of both layers. In this case the critical timescale difference largely

depends on the longest control path that does not involve cycles in the faster layer.

Although our model offers only a stylized description of real systems, it is a tractable first

step towards understanding the role of timescales in control of interconnected networks. By

identifying the network characteristics that affect important measures of controllability, such

as minimum number of inputs needed for control and critical timescale difference, our results

serve as a starting point for future work that aims to relax some of the model’s assumptions.

Some of these extensions are relatively straightforward using the tool set developed here, for

example, the effect of higher order network structures can be studied by adding correlations

to the underlying networks. Other extensions are more challenging, e.g. if the interconnection
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between the layers is incomplete or the layers contain different number of nodes, the minimum

input problem is computationally more difficult; therefore investigating such systems would

require development of efficient approximation schemes. Structural control theory does not

take the link weights into account; therefore answering questions that depend on the specific

strength of the connections require the development of different tools. For example, for

continuous-time systems the timescales are encoded in the strength of the interactions; or

the minimum control energy also depends on value of the link weights.
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gratefully acknowledge support from the US Army Research Office Cooperative Agreement

No. W911NF-09-2-0053 and MURI Award No. W911NF-13-1-0340, and the Defense Threat

Reduction Agency Basic Research Awards HDTRA1-10-1-0088 and HDTRA1-10-1-00100.

Appendix A: Analytical solution for τI = τII = 1

In this section we derive an analytical solution of ni = Ni/N in case of τI = τII = 1

for two-layer random networks with predefined degree distribution as defined in Sec. IV.

This network model is treelike in the N →∞ limit; therefore it lends itself to the generating

function formalism. The approach described here is based on calculating the fraction of nodes

that are matched in all possible maximum matchings [39]. This solution is substantially

simpler than the one described in Ref. [10]; however, it only applies to bipartite networks (or

to bipartite representations of directed networks), and cannot be generalized to unipartite

networks.

We aim to calculate the expected size of the maximum matching of the following undi-

rected bipartite network B. Layer I LI and Layer II LII are generated independently either

using the ER or the SF model; VI and EI are the node and link sets of LI and VII and EII

are the node and link sets of LII. Each node in vIi ∈ VI is split into two copies vIi,0 ∈ V I
0

and vIi,1 ∈ V I
1 , we draw a link (vIi,0 − vIj,1) if there exists a link (vIi → vIj) in LI. We treat LII
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similarly. We then add links (vIi,0 − vIIi,1) for all i. That is all links in B connect exactly one

node in V I
0 ∪ V II

0 to one node in V I
1 ∪ V II

1 . Nodes in V I
0 ∪ V I

1 belong to Layer I, and nodes

in V II
0 ∪ V II

1 belong to Layer II. The network B is the undirected version of the dynamical

graph D1 without control signals.

In general, multiple possible maximum matchings may exist in a network. We first cal-

culate the fraction of nodes that are matched in all possible maximum matchings. It was

shown in Ref. [39] that in any network G a node v is always matched if and only if at least

one of its neighbors is not always matched in G \ v, where G \ v is the network obtained

by removing node v from G. We translate this rule to a set of self-consistent equations to

calculate the expected fraction of always matched nodes in our random network model in

the N →∞ limit. We provide comments on the issues of applying the rule proven for finite

networks to infinite ones at the end of this section.

To proceed we define a few probabilities. We randomly select a link e connecting two

nodes vIi,0 ∈ V I
0 and vIj,1 ∈ V I

1 . Let θI0 be the probability that vIi,0 is always matched in B \ e,

and θI1 be the probability that vIj,1 is always matched in B \ e. Similarly we randomly select

a link e connecting a node vIi,0 ∈ V I
0 with a node vIIi,1 ∈ V II

1 . Let θI,II0 be the probability that

node vIi,0 is always matched in B \ e, and θI,II1 be the probability that node vIIi,1 is always

matched in B \ e. The probabilities θII0 and θII1 are defined similarly. According to the rule

described above these quantities can be determined by the following set of equations:

θI0 = 1−H I(θI1)θ
I,II
1 ,

θI1 = 1−H I(θI0),

θI,II0 = 1−GI(θI1),

θI,II1 = 1−GII(θII0 ),

θII0 = 1−H II(θII1 ),

θII1 = 1−H II(θII0 )θI,II0 ,

(A1)

where GI/II(x) =
∑∞

k=0 P
I/II(k)xk are the generating functions of the degree distributions

and H I/II(x) =
∑∞

k=1 k/ 〈k〉P I/II(k)xk−1 are the generating functions of the excess degree

distributions.

If we remove a node v which is not always matched, the size of the maximum matching
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does not decrease. However, if v is matched in all maximum matchings, the number of

matched nodes will decrease by two. Therefore to count the size of the maximum matching,

we first count the number of nodes that are always matched. By doing so, we have double

counted the case when an always matched node is matched by another always matched one.

This case occurs for each link e that connects two nodes that are not always matched in

G \ e. Combining these two contributions, the expected number of links in the matching is

Nmatch =N [1−GI(θI1)θ
I,II
1 ] +N [1−GI(θII0 )] +N [1−GII(θI1)] +N [1−GII(θII0 )θI,II0 ]−

−cIN(1− θI0)(1− θI1)−N(1− θI,II0 )(1− θI,II1 )− cIIN(1− θII0 )(1− θII1 ),
(A2)

where the first four terms count the number of nodes that are always matched in V I
0 , V I

1 ,V II
0

and V II
1 , respectively; and the last three terms correct the double counting. The expected

number of independent inputs needed is determined by the number of unmatched nodes in

V I
1 and V II

1 :

Ni = 2N −Nmatch. (A3)

Due to the links between Layer I and Layer II, the size of the maximum matching is at least

N , meaning that Ni ≤ N . Therefore we normalize Ni by N , yielding

ni =GI(θI1)θ
I,II
1 +GI(θII0 ) +GII(θI1) +GII(θII0 )θI,II0 − 2+

+cI(1− θI0)(1− θI1) + (1− θI,II0 )(1− θI,II1 ) + cII(1− θII0 )(1− θII1 ).
(A4)

Comments on matchings in the configuration model

The method we described to calculate the expected size of the maximum matching does

not work for unipartite ER or SF networks generally. The reason for this is that above a

critical average degree c∗ a densely connected subgraph forms, which is referred to as the

core of the network (sometimes leaf removal core or computational core) [45–47]. To derive

Eq. (A1), we assume that the neighbors of a randomly selected node v are independent of

each other in B \ v and removing a single node does not influence macroscopic properties,

e.g. θ. The effect of the core is that these assumptions no longer hold and removing just

a few nodes may drastically change the number of always matched nodes. Possible way of

circumventing this problem is to introduce a new category of nodes: in addition to keeping

22



track of nodes that are sometimes matched and always matched, we separately account for

nodes that are almost always matched [38].

The reason why the calculation works for bipartite networks is that a core in the bipartite

network will have two sides: all nodes on one side will be always matched and all nodes on

other will be some times matched [39–41]. If the expected size of the core on the two sides

is different, finite removal of nodes will not change macroscopic properties. If the expected

size of the two sides of the core is the same, removal of finite nodes may change which side

is always matched and which side is sometimes matched [39]. However, this does not change

expected fraction of matched nodes; therefore does not interfere with the calculations.

Appendix B: Algorithms

1. Cycle cover (Ncycle)

To find the maximum cycle cover of a directed network L, we assign weight 0 to each

link in L; and we add a self-loop with weight 1 to each node that does not already have a

self-loop. Then we find the minimum weight maximum directed matching in L augmented

with self-loops by converting the problem to a minimum cost maximum flow problem. The

maximum matching is guaranteed to be perfect, because each node has a self-loop. The

minimum weight perfect matching in the directed network corresponds to a perfect cycle

cover where the number of self-loops with weight 1 is minimized. Therefore the maximum

cycle cover in L without extra self-loops is

Ncycle = N −W, (B1)

where W is the sum of the weights of the links in the minimum weight perfect matching.

2. Longest control path not involving cycles (lmax)

In this section we provide the algorithm to measure the longest control path not involving

cycles lmax of Layer II of a two-layer network for the case τI ≥ 1 and τII = 1. The algorithm

itself serves as the precise definition of lmax.
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Given a two-layer directed networkM, let Ncycle be the maximum number of nodes that

can be covered by node disjoint cycles in Layer II. To measure lmax, first we construct the

dynamical graph DII
l representing the time evolution of the Layer II between time t = 0 and

t = l as if it would be isolated as defined in Sec. III A. We search for disjoint control paths

connecting nodes at time step t = 0 with nodes at time step t = l, e.g. each control path

connects a node vIIi,0 with vIIj,l. The maximum number of such paths Npath(l) provides the

maximum number of internally controlled nodes if τI = l. To determine Npath(l) we convert

the problem to a maximum flow problem: We set the capacity of each link and each node

in DII
l to 1. We then find the maximum flow connecting source node set V II

0 = {vIIi,0|i =

1, 2, . . . , N} to target node set V II
l = {vIIi,l|i = 1, 2, . . . , N} using a maximum flow algorithm

of choice. The maximum flow provides Npath(l). And lmax is defined as one less than the

smallest value of l such that

Npath(l) = Ncycle. (B2)

Figures 7 and 8 provide two examples to illustrate the calculation of lmax.
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FIG. 1. Structural controllability of two-layer multiplex networks. (a) A two-layer network.

(b-c) To determine Ni, we construct the dynamic graph representing the time evolution of the

system from t0 = 0 to t1 = max(τI, τII). The system is controllable only if all nodes at t1 (blue)

are connected to nodes at t0 or nodes representing control signals (green) via disjoint paths (red).

(b) In case of no timescale separation (τI = τII = 1), each disjoint control path consists of a single

link, yielding Ni = 2. (c) If Layer I updates twice as frequently as Layer II (τI = 1, τII = 2), we

are allowed to inject control signals at time steps t = 0 and 1, reducing the number of inputs to

Ni = 1. (d) On the other hand, if Layer II is faster (τI = 2, τII = 1), Layer II needs to support

longer control paths, yielding Ni = 3.
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FIG. 2. Structural controllability of single-layer networks. (a) A single-layer network, we

apply inputs to nodes vA and vB. (b) The dynamic graph DN representing the time evolution of

the dynamics from t = 0 to t = N . The system is controllable, because we can connect the set of

nodes representing control signals (green) to the set of nodes at t = N (blue) via disjoint paths

(red). (c) The dynamic graph D1 representing the time evolution of the dynamics from t = 0 to

t = 1. The system is controllable, because we can connect the control signals and nodes at t = 0

(green) to the set of nodes at t = 1 (blue) via disjoint paths (red), and all nodes are accessible from

control signals.
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FIG. 3. No timescale separation. (a) Number of inputs ni in function of cI for ER-ER and

SF-SF (γI = γII = 2.5) networks. The circles represent simulations, the continuous line is the

analytical solution, and the dashed line is the analytical solution of nIIi , the number of independent

inputs necessary to control Layer II in isolation [10]. (b) ni for ER-ER networks with varying

average degrees cI and cII. In both layers P (k) = P (kin) = P (kout), therefore the heatmap is

symmetric with respect to the diagonal. Increasing c in either layer enhances controllability. (c) ni

for SF-SF networks with cI = cII = 4.0 and varying degree exponents γI and γII. Increasing degree

heterogeneity in either layer increases ni. Each data point is the average over 10 randomly generated

networks with N = 10, 000. The standard deviation of the measurements remains below 0.01.
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γII = 2.5) networks with N = 10, 000 and varying timescale parameter τII. The number of inputs

ni monotonically decreases with increasing τII, and for τII ≥ τ cII, ni = nIi . (b) The critical timescale

parameter τ cII for ER-ER and SF-SF (γI = γII = 2.5) networks with varying average degree cI and cII.

The crosses represent direct measurements of τ cII; the squares represent the approximation obtained

by applying Eq. (7) to measurements of ni(τII = 1) and nIi ; and the dashed line is an approximation

obtained using analytically calculated expectation values of ni(τII = 1) and nIi . (c) We measure τ cII

for SF-SF networks with the same ni(τII = 1) and nIi as a function of γ = γI = γII. Equation (7)

predicts that τ cII remains constant (dashed line), in line with our observations. For (b-c), each data

point is the average over 10 randomly generated networks with N = 10, 000 and error bars represent

the standard deviation.
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FIG. 5. Layer II updates faster. (a) Number of inputs ni for single ER-ER and SF-SF (γI =

γII = 2.5) networks with N = 10, 000 and varying timescale parameter τI. The number of inputs ni

monotonically increases with increasing τI; for τI ≥ τ cI , ni = ni(τI =∞). (b) τ cI as a function of cI.

For cI ≤ 1, τ cI quickly reaches its upper bound; for cI > 1, the convergence is somewhat delayed.

(c) ni(τI =∞) as a function of cI. Increasing cI facilitates control, until ni reaches its lower bound.

(d) τ cI as a function of cII with fix cI = 4.0. The peak of τ cI corresponds to the critical point where

the giant strongly connected component in Layer II emerges. (e) ni(τI = ∞) as a function of cII

with fix cI = 4.0. For cII < 1, Layer II does not contain cycles, therefore ni(τI =∞) = 1; for large

cII, Layer II can be completely covered with cycles, and ni(τI =∞) is determined by nIi . For (b-e),

each data point is the average over 10 randomly generated networks with N = 10, 000 and error

bars represent the standard deviation.
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FIG. 6. Layer II updates faster – Network size effects. Critical timescale parameter for ER-

ER networks and SF-SF networks with varying network size N . (a) Layer II has no giant strongly

connected component (cII = 0.5 < 1), lmax equals the diameter D of Layer II which scales as

D ∼ logN for ER networks, and the diameter of SF networks is smaller than the diameter of ER

networks with the same average degree. The fact that lmax + 1 ≥ τ cI suggest that τ cI ∼ log(N).

(b) At the critical point cII = 1.0 the diameter of ER networks scales as D ∼ N1/3, suggesting

that τ cI scales as a powerlaw of N . (c) Above the critical point (cII = 4.0 > 1) there is no direct

connection between D and τ cI , nonetheless observations suggest τ cI ∼ logN . In contrast with the

cII ≤ 1 case, τ cI increases more rapidly for SF-SF networks than for ER-ER networks. Each data

point is the average over 100 randomly generated networks with cI = 4.0 and error bars represent

the standard deviation.
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FIG. 7. lmax – Example 1. (a) A directed network with tree structure; therefore not containing

cycles. The diameter D = 2 is the length of the longest path. (b) We count the maximum number

of disjoint control paths Npath(l) which connect nodes at time step 0 with nodes at time step l. We

find that l′ = 3 is the smallest value of l such that Npath(l) = Ncycle = 0; therefore lmax = 2. There

are no cycles; therefore lmax = D.
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FIG. 8. lmax – Example 2. (a) A directed network containing a cycle. The size of the maximum

cycle cover is Ncycle = 1. (b) We count the maximum number of disjoint control paths Npath(l)

which connect nodes at time step 0 with nodes at time step l. We find that l′ = 2 is the smallest

value of l such that Npath(l) = Ncycle = 1; therefore lmax = 1. Npath(l) remains non-zero for l > lmax,

showing that cycles can support control paths of any length.
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