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Hybrid dynamics in delay-coupled swarms with “mothership” networks

Jason Hindes, Klementyna Szwaykowska, and Ira B. Schwartz
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Nonlinear Dynamical Systems Section, Washington, DC 20375

Swarming behavior continues to be a subject of immense interest because of its centrality in many
naturally occurring systems in physics and biology, as well as its importance in applications such
as robotics. Here we examine the effects on swarm pattern formation from delayed communication
and topological heterogeneity, and in particular, the inclusion of a relatively small number of highly
connected nodes, or “motherships”, in a swarm’s communication network. We find generalized forms
of basic patterns for networks with general degree distributions, and a variety of new behaviors
including new parameter regions with multi-stability and hybrid motions in bimodal networks. The
latter is an interesting example of how heterogeneous networks can have dynamics that is a mix
of different states in homogeneous networks, where high and low-degree nodes have simultaneously
distinct behavior.

PACS numbers: 89.75.Hc, 05.65.+b, 05.45.-a, 47.54.-r

I. INTRODUCTION

Much attention has been given to the study of multi-
agent swarms that can self organize and form complex
spatiotemporal patterns from very basic rules governing
individual dynamics, in the manner of phase transitions
in statistical physics. [1–3]. This is motivated by many
fascinating phenomena such as schooling fish, flocking
birds, swarming locusts, and colonizing bacteria [4–6].
Also of great interest is the application of principles un-
derlying such behaviors to the design of networks of au-
tonomous robots and mobile sensors, with the aim of
producing scaleable and robust swarms that can perform
complicated tasks without constant human intervention
[8–10].

Several recent works in swarm pattern formation have
focused on time-delay effects, which can produce new
patterns and bistability [11–13]. Delays model the finite
time required for agents to send and process information
in real systems. They are ubiquitous in both natural and
engineered settings, and often can be comparable to other
relevant timescales. Salient examples of natural systems
where delays can significantly affect the dynamical be-
haviors include bat flights; predator-prey population dy-
namics; and blood cell production [14–16]. Significant
delays can also occur in robotic swarms communicating
over wireless networks with low bandwidth – affecting
swarm stability and task performance [17–20].

Most studies of multiagent robotic systems with time
delay have assumed global interactions or homogeneous
topology [11, 13, 21]. In general, the effects of complex
network structure on swarm behavior are much less ex-
plored, particularly with time-delayed interactions, even
though topology is known to strongly influence many
processes and produce interesting new dynamics [1, 22–
24]. Here, we focus on delay-coupled swarms interacting
through heterogeneous networks that have a relatively
small fraction of highly connected nodes, or “mother-
ships.” Such nodes can mimic the influence of leaders
in social networks or the insertion of highly interacting

controllers into a network of autonomous mobile robots–
intended to alter the motion to a different form.

To understand dynamic pattern formation in swarms
with delay and heterogeneity, we consider a general
model for N interacting, self-propelled agents [25]:

r̈i(t) = (1− ṙ2i )ṙi

− J
N∑
j=1

Aij(ri(t), rj(t− τ))∇ri
U(ri(t)− rj(t− τ)),

(1)

where ri is the position of the ith agent in 2-dimensions,
dots denote time derivatives, Aij is the connection ma-
trix, J is the coupling strength between neighbors in the
network, and τ is the characteristic time delay between
agent interactions [12, 21]. For simplicity and analytic
tractability, we assume that the mutual forces are spring-
like: ∇ri

U(ri(t)− rj(t− τ)) = ri(t)− rj(t− τ), though
sufficiently small repulsive terms do not alter the dynam-
ics [11].

In this work, we examine the behaviors for Eq.(1) given
simple heterogeneous topology. In addition to generaliz-
ing the patterns from homogeneous networks to heteroge-
neous networks with a specified degree distribution, we
show that heterogeneity can produce novel hybrid mo-
tions, where different parts of the network have different
collective dynamics depending on the degree of local con-
nectivity. The production of new states that are mixes of
distinct behaviors for homogeneous networks is an inter-
esting feature of nonlinear processes occurring on hetero-
geneous networks and is seen in other systems, e.g., cou-
pled oscillators [24], though other mechanisms for swarm
splitting are known [26, 27]. Hybrid behaviors are practi-
cally interesting in this context as well because they offer
the possibility for synthetic swarms to perform multiple
tasks simultaneously.
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FIG. 1. Patterns for swarms with time-delayed interactions and an underlying network with a small fraction of highly connected
nodes, or “motherships”. CM and annealed network patterns are shown on the top and bottom rows, respectively, for bimodal
networks with p0 = 0.95, k0 = 5 (blue), K = 50 (red), and N = 500. Arrows indicate the direction of motion. (a) Translating
(b) Ring (c) Hybrid (d) Rotating patterns.
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FIG. 2. Phase diagram for bimodal networks found by adi-
abatically changing J and τ for each pattern until it loses
stability[31]. (a) heterogeneous network: i. Translating,
Ring, and Hybrid states, ii. Ring state, iii. Ring and Hy-
brid states, iv. Hybrid states, v. Rotating states[32], where
p0 = 0.9, K = 60, k0 = 3 and N = 300. The red circle marks
a degenerate−Hopf bifurcation. (b) less heterogeneous net-
work: i’. Translating, Ring, and Hybrid states, ii’. Ring and
Hybrid states, iii’. Ring, Hybrid, and Rotating states, iv’.
Hybrid states, v’. Hybrid and Rotating states vi’. Rotating
states, where p0 = 0.95, K = 25, k0 = 5, and N = 1000.

II. PATTERNS AND DYNAMICS

In this paper, we study dynamic pattern formation in
static networks satisfying predefined degree distributions.
We first describe how such a network can be constructed.
Let pk denote the network degree distribution, where the
degree, k, is the number of links of a node, and pk spec-
ifies the fraction of nodes in the network with degree
k. Networks can be constructed from a prescribed pk
with the configuration model (CM) by first generating
N nodes, each with a number of link “stubs” drawn from
pk, and then connecting pairs of “stubs” to form links,
chosen uniformly at random [28]. For simplicity, all links
are bidirectional and unweighted, where the connection
matrix Aij = 1 if nodes i and j are linked, and zero
otherwise.

Primarily, we focus on bimodal distributions, as a
simple construction for networks with both weakly and
strongly connected nodes, where pk has a simple form:

pk =

p0, if k = k0
1− p0, if k = K
0, otherwise,

(2)

with k0 � K. We choose p0 close to 1 so that agents
with large degree K occupy a small portion of the net-
work, and are called “motherships”, while most nodes
have degree k0 [29, 30]. However, many results are gen-
eralized for any pk, in which case equations are given in
terms of general k and pk (additional example in Sec.V).

Given the stated assumptions, a variety of dynamical
behaviors are possible depending on the values of cou-
pling strength, J , and delay, τ . We first provide brief
descriptions of the basic swarming patterns in Sec.II A,
and analyze their dynamics in more detail in Sec.II B
with comparisons to simulations.

A. Dynamical behaviors

Before analyzing the dynamics in detail, it is useful to
discuss how different model parameters affect the swarm
behavior. In the limit J → 0, all agents are independent
and self-propelling, and will travel at unit speed in their
initial direction of motion. For relatively small values
of J and τ , the propulsion force dominates, and speeds
remain near unity. If the swarm has nearly uniform ini-
tial conditions, then the coupling will tend to align the
directions of motion and favor coherent velocities. This
is known as the translating state – shown in Fig.1(a), in
which we can see that the entire swarm moves together
in the direction of the large arrow, while agents trace
out similar orbits (see Sec.II B 2). On the other hand,
if the initial directions are random, then the swarm can
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organize into a state with no coherent velocity, where
propulsion keeps the agents’ speeds at unity, but the av-
erage directions cancel. This is known as the ring state,
which can be seen in Fig.1(b). For the bimodal network
case shown, we see that agents travel in one of four cir-
cular orbits with example directions given by the small
arrows.

In general, if J is large such that the spring force is
comparable to the self propulsion, then the agents tend to
have coherent positions and velocities – moving together
with the swarm’s centroid. Moreover, if τ is also large,
then the motion must remain confined – any large dif-
ference between the current and delayed positions would
result in a large spring force (Eq.1). This typically leads
to coherent rotation, known as the rotating state, which
is shown in Fig.1(d). Together the three states comprise
the known dynamical modes for swarming networks with
delay [11, 12]. Phase diagrams are shown in Fig.2 for bi-
modal networks. Interestingly, several parameter regions
contain three stable states. This is a novel feature of
swarms with heterogeneous networks.

If the underlying network is very heterogeneous, how-
ever, it is possible that different parts of the network
may converge to different dynamical modes. For exam-
ple, for bimodal networks, high and low-degree nodes can
split into a state that is a composite of ring and rotating
motions – mixing the behaviors in Fig.1 (b) and (d), re-
spectively. For example, we find that each degree class’s
order-parameter (e.g., its centroid) has dynamics analo-
gous to the distinct states [24]. Therefore, we call this
a hybrid state, which is shown in Fig.1(c). Detailed de-
scriptions of each state are given in Sec.II B.

B. Analysis

In order to understand the patterns described in
Sec.II A, it is useful to treat nodes with the same de-
gree as topologically indistinguishable. Moreover, we
can approximate Aij with its expectation value in an
ensemble of networks, Aij ≈ 〈Aij〉, which for uncorre-
lated networks takes the form, 〈Aij〉 = kikj/(N 〈k〉), in
the limit of large N . This is known as the annealed net-
work approximation, and represents a mean-field theory
for heterogeneous networks – allowing for qualitatively
accurate descriptions of dynamical processes on such net-
works [23]. Though analyzing the motion directly from A
would result in quantitative improvement, especially in
networks with low average degree, the simple annealed
approximation is able to capture much of the behavior
[33].

Let Rk denote the centroid for each degree class:

Rk =
∑
i|ki=k

ri

/
Npk. (3)

Given the annealed form for A, the equations of motion

can be expressed in terms of Rk as

r̈i = (1− | ṙi |2)ṙi − Jki
(
ri −

∑
k

kpk
〈k〉

Rk(t− τ)
)
, (4)

suggesting Eq.(3) as a useful order-parameter to charac-
terize the net motion of nodes with degree k. Compar-
isons between similar patterns of CM and annealed bi-
modal networks are shown in the top and bottom rows of
Fig.1, respectively. The different motions are described
in more detail below.

1. Ring state

For relatively small time delays the ring state is a stable
swarm motion pattern. In the ring state, the agents form
concentric rotating rings about a fixed center, such that
the swarm has no net motion, Rk = 0. The radius and
angular velocity of the rings depends on the degrees of
the constituent agents, as we can find by substituting the
ansatz: ri = (xi, yi) = ρi

[
cos(ωit+φi), sin(ωit+φi)

]
and

Rk=0 into Eq.(4):

ρi =
1√
Jki

, ωi = ±
√
Jki. (5)

This shows that the ring state is composed of pairs of
counter-rotating currents for each degree class with unit
speed and with radii and frequencies decreasing and in-
creasing with the square root of the agent degree, re-
spectively (as shown in Fig.1(b)). The dependence on
degree generalizes homogeneous network results, and in
particular, predicts a disordered state with large ampli-
tude and frequency variation for networks with broad
pk, such as multi-modal or power-law distributions (see
Sec V) [21]. A comparison between Eq.(5) predictions
and simulation results for bimodal networks are shown
in Fig.3 as a function of J . Error bars correspond to the
standard deviation for each degree class.
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FIG. 3. Ring state rotation radii (a) and frequencies (b) for
simulated CM (green) and annealed (blue) bimodal networks
compared to predictions (red, Eq.(5)): τ = 0.02, p0 = 0.9,
k0 = 3, K = 60, and N = 300. Parameters correspond to
regions beneath the red line in Fig.2(a).
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2. Translating state

When the time delay is relatively small, many initial
conditions converge to the translating state, in which
each degree-class’s centroid, Eq.(3), travels at a constant,
non-zero velocity. Moreover, for networks with multiple
degree classes each centroid is separated in space by some
constant displacement from the global center of mass,
dk : Rk(t) = V t + dk, with a velocity V . Individual
nodes in each degree-class trace out periodic,“bow-tie”-
like orbits, as shown in Fig.1(a), which is a novel feature
of the heterogeneous network pattern.

We can numerically compute the speed and shape of
the orbits by inserting the ansatz

∑
k
kpk
〈k〉Rk(t) = V t

into Eq.(4) and putting all particles in the co-moving
frame, z = r−V t (for simplicity, propagation is typically

assumed along the line y = x, or V =
[
V t/
√

2, V t/
√

2
]
).

This gives a set of single particle ODEs for each degree
class, parameterized by the swarm’s collective speed:

z̈k =
(

1− | żk + V |2
)

(żk + V )− Jk
(
V τ + zk

)
. (6)

In practice, for random initial conditions, Eq.(6) has a
family of stable “bow-tie” solutions, with a k-dependent
period, Tk: zk(t, Tk;V ). These solutions can be used to
condition the speed if combined with the self-consistent
criterion,

∑
k
kpk
〈k〉Rk(t) = V t or

∑
k
kpk
〈k〉 dk = 0, by

assuming that the swarm density for each degree class
is uniform along the orbits, and therefore, replacing dk
(the average position from a sum over particles) with a
time average of zk(t, Tk;V ):

F (V ) =
∑
k

kpk
〈k〉

∫ Tk

0

zk(t, Tk;V )dt

Tk
= 0. (7)

For instance, the prediction curve shown in Fig.(4), was
found by generating solutions to Eq.(6), zk(t, Tk;V ),
from an initial guess for V , computing the integral in
Eq.(7), and updating the guess with a simple Newton
method.

Interestingly, we find that the periods are approxi-
mately equal to the ring state values, Tk ≈ 2π/

√
Jk,

as shown in the power spectrum of Fourier modes in
Fig.(6)(a). This indicates that even though networks
have coherent average velocities in the translating state,
the individual node dynamics will vary significantly for
broad pk.

3. Rotating states

As explained in Sec.II A, for sufficiently large J and τ ,
all nodes collapse to their respective centroids, such that
ri|ki=k ≈ Rk:

R̈k = (1− |Ṙk |2)Ṙk+Jk
(∑

k′

k′pk′

〈k〉
Rk′(t− τ)−Rk

)
,

(8)
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FIG. 4. Translating state centroid speeds (a) and displace-
ments (b) for simulated CM (green) and annealed (blue) bi-
modal networks compared to predictions (red Eq.(7)) from
region (i) in Fig.2(a): J=0.333, p0 =0.9, k0 =3, K=60, and
N=300.

with confined rotations about a common center. In gen-
eral, many dynamical states can satisfy Eq.(8). How-
ever, simulations from broad initial conditions with large
J and τ typically converge to a simple frequency syn-
chronized rotation, with amplitudes and phases that
vary with degree. Substituting the ansatz Rk(t) =
ak[cos(ωRt+ αk), sin(ωRt+ αk)], into Eq.(8), we find
that the synchronized rotation must satisfy:

∑
k

kpk
〈k〉

akcos(αk−ωRτ) = (9)

ak
Jk

[(
Jk−ω2

R

)
cosαk+ωR

(
1−a2kω2

R

)
sinαk

]
,

∑
k

kpk
〈k〉

aksin(αk−ωRτ) = (10)

ak
Jk

[(
Jk−ω2

R

)
sinαk−ωR

(
1−a2kω2

R

)
cosαk

]
,

which generalizes a similar result for the special case of
an Erdős-Rényi network, but for arbitrary pk (see Fig.5),
and predicts a broad range of amplitudes and phases
for very heterogeneous networks, such as multi-modal or
power-law pk (see Sec V) [21]. In general, Eqs.(9-10)
must be solved numerically and have many solutions de-
pending on the parameters, though most are found to be
unstable.

Additionally, we find that such frequency synchronized
rotations emerge through a set of Hopf bifurcations of
rj=0, where perturbations with uniform amplitudes and

k-dependent phases, rj = εei(αkj
+ωRt), are dynamically

neutral to linear order in ε with ωR 6= 0. The general pk-
dependent form of the Hopf bifurcation for synchronized
rotations can be found by taking ak→ a→ 0 in Eqs.(9-
10), solving for cosαk and sinαk, multiplying by kpk/〈k〉,
summing over k, and eliminating the k-independent con-
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FIG. 5. Rotating state phase-differences for simulated bi-
modal CM (green) and annealed network (blue) swarms com-
pared to predictions (red Eqs.(9-10)): J = 0.8, p0 = 0.95,
k0 = 5, K = 25, and N = 1000. Parameters correspond to
regions above the magenta line in Fig.2(b).

stants
∑
k
kpk
〈k〉 cosαk and

∑
k
kpk
〈k〉 sinαk, giving:

tan(ωRτ) =
ωR

J 〈k〉 − ω2
R

, (11)

∣∣∣∣∣∑
k

kpk
〈k〉

eiαk

∣∣∣∣∣
2

=

√√√√(1−
ω2
R

J 〈k〉

)2

+

(
ωR
J 〈k〉

)2

. (12)

In general, Eqs.(11-12) specify existence conditions for
synchronized rotations, but not necessarily stability, and
therefore only bound the region above the magenta line
in Fig.2(b), for example.

4. Hybrid states

As hinted in Sec.II A and shown in Fig.2, for both large
and small delays hybrid motions can be stable, in which
high-degree nodes collapse to their centroid and rotate
approximately uniformly with a constant radius and fre-
quency, while weakly driving low-degree nodes around a
motion that is similar to the ring state. By neglecting
the small coherence from low-degree nodes and looking
for solutions of Eq.(4): Rk0 = 0 and ri|ki=K =RK(t) =

R(h)(cos(ω(h)t), sin(ω(h)t), we find the hybrid rotation
satisfies

ω(h)2 = JK

(
1− K(1− p0)

〈k〉
cosω(h)τ

)
, (13)

ω(h)(1−R(h)2ω(h)2)=
JK2(1− p0)

〈k〉
sinω(h)τ , (14)

where the two centroids have dynamics analogous to the
ring and rotating states simultaneously. Like the rotat-
ing state, many solutions are possible to Eqs.(13-14) in
general, depending on the parameter values, including
multiple stable branches. This can lead to discontinuous
jumps between hybrid states with different frequencies
(as shown in Fig.7).

On the other hand, the low-degree node dynamics can
be found by substituting the mothership rotation from

1 2 3 4 5 6
0

50

100

150

ω1 5

0.1

0.3

ω
ωi (h)

1 1.5 2 2.5 3
0

20

40

60

80

100

120

140

160

180

200

1 2 3 3
ω

(a) (b)

P

0.1

0.5

0.2

ωi
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ulated CM (green) and annealed (blue) bimodal networks.
(a) translating state spectrum for τ = 0.05 compared to pre-
dictions (red (Eq.7)). (b) hybrid state spectrum for τ = 0.65
compared to predictions (red (Eq.15)). Large peaks in (a)
and (b) correspond to the ring frequency. J=0.333, p0 =0.9,
k0 =3, K=60, and N=300.

Eqs.(13-14) into Eq.(4). This gives a four dimensional
set of single-particle ODEs to be integrated:

r̈ − (1− | ṙ |2)ṙ + Jk0r = Jk0
K(1− p0)

〈k〉
R(h)(t− τ).

(15)

The expected form of the dynamics – a ring-like motion
driven by a periodic force – is found by examining the
left and right hand sides of Eq.(15). In particular, when
RK → 0, the equations of motion for a ring state are re-
covered. Both dynamical signatures can be seen clearly
in the power spectrum of Fourier modes of Eq.(15), which
has a large peak at the ring frequency, ωi, and a small
peak at the hybrid frequency, ω(h). Comparisons be-
tween the predicted and simulated dynamics for the hy-
brid state are shown in Fig.(6)(b) and Fig.(7). In gen-
eral, two rotation directions are possible simultaneously
depending on the initial conditions for Eq.(15)– similar
to the ring state.

In addition, we can find approximately where hybrid
states emerge, and thus bound their stability regions in
Fig.2, by taking R(h) → 0 in Eq.(14). This is coincident
with another set of Hopf bifurcations of rj = 0 (in ad-
dition to those corresponding to rotating states), where

perturbations rj = εe(iω
(h)t)δkj ,K are dynamically neu-

tral to linear order in ε with ω(h) 6= 0. Eliminating τ in
Eqs.(13-14) gives a polynomial expression for the bifur-

cation frequency, ω
(h)
∗ :(

1− ω
(h)
∗

2

JK

)2

+

(
ω
(h)
∗

JK

)2

=

(
K(1− p0)

〈k〉

)2

, (16)

that can be combined with Eq.(13) to predict the black
curves in Fig.2(a).

Interestingly, Eq.(16) has degenerate solutions for ω
(h)
∗ ,

if

1 = 4JK

[
1− JK

(
K(1− p0)

〈k〉

)2
]
, (17)
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corresponding to degenerate−Hopf bifurcations, shown
in Fig.(2) where the Hopf bifurcations meet.
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FIG. 7. Mothership rotation radius (a) and frequency (b)
in the hybrid state for simulated CM (green) and an-
nealed (blue) bimodal networks compared to predictions (red,
Eqs.(13-14)): J=0.333, p0 =0.9, k0 =3, K=60, and N=300.
Parameters correspond to regions (iii) and (iv) in Fig.2(a).

III. DISCUSSION

For many swarm models in biology, emergent behavior
due to the coupling of mobile agents includes a basis of
dynamical patterns, such as translation and ring dynam-
ics about a stationary center of mass [25]. Moreover, it is
known that time-delays in the agent interactions can pro-
duce a rotating state in which a swarm becomes highly
aligned and localized [12, 13]. The current research builds
on the previous results for homogeneous networks, by
generalizing the network topology. In particular, in con-
trast to all-to-all coupling, we consider communication
networks with a finite degree for all agents chosen from a
given distribution. One interesting distribution we con-
sidered in detail was bimodal, in which the network was
constructed with a few high-degree nodes and a large
number of low-degree nodes. The topology is a cross be-
tween a star network in which all agents communicate
through a single “mothership”, and all-to-all communi-
cation with no special nodes. For the bimodal topology,
we described novel hybrid patterns, both numerically and
analytically, consisting of a nonlinear combination of ba-
sis modes from homogeneous networks. In particular, we
found a state where high and low-degree nodes have si-
multaneous dynamics that are analogous to the rotating

and ring states, respectively. Though relatively simple
in this case, we suggest that hybrid behaviors may be a
general feature of nonlinear processes on networks with
highly heterogeneous communication topologies, where
the local order-parameters for parts of a network have
qualitative differences in their dynamics, corresponding
to separate states in homogeneous networks.

In addition, we demonstrated how to generalize sev-
eral known patterns for networks with general degree
distributions, including the translating, ring, and rotat-
ing states. This was done by applying a mean-field ap-
proximation scheme, which enabled us to develop lower-
dimensional analytic and numerical procedures for cap-
turing the swarming patterns, such as the amplitudes,
phases, and frequencies of rotation, and the velocities of
translating states. Similar techniques may be generally
useful for other nonlinear problems on networks with de-
lay. Predictions were compared to both quenched and
annealed network simulations with good agreement. We
note that in addition to those states predicted here, there
exist several other complex states which appear as a re-
sult of the infinite dimensional dynamics of the delay
coupled network. The full unfolding of these states is
beyond the scope of this work, but is of interest when
considering basins of attraction of the states discussed.

Since we can port our model to a real experimen-
tal workspace, as a next step we plan to realize the
predicted patterns in both two-wheeled and quad-rotor
robotic swarms [21]. Further experiments will lead to
interesting questions, such as how to design parametric
controls that can steer a swarm among targeted behav-
iors in real environments by exploiting topology. Since
fluctuations and uncertainty are an inevitable feature of
most environments, it will be necessary to understand the
effects of noise on swarming dynamics, and how different
networks respond to fluctuations [13, 25, 34]. Control-
ling networks with stochastic dynamics is a rich area for
practical and theoretical research [30, 35].
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[23] A. Barrat, M. Barthélemy, and A. Vespignani, Dynamical
Processes on Complex Networks (Cambridge University
Press, 2008).

[24] J. Hindes and C. R. Myers, Chaos 25, 073119 (2015).
[25] U. Erdmann, W. Ebeling, and A. S. Mikhailov, Phys.

Rev. E 71, 051904 (2005).
[26] Z. Chen, T. Chu, J. Zhang, Proc. IEEE CDC, 4577

(2010).
[27] S. Zhao, S. Ramakrishnan, M. Kumar, Proc. ACC, 481

(2011).
[28] M. E. J. Newman, Networks: An Introduction (Oxford

University Press, 2010).
[29] J. Hindes, S. Singh, C. R. Myers, and D. J. Schneider,

Phys. Rev. E 88, 012809 (2013).
[30] J. Hindes and I. B. Schwartz, Phys. Rev. Lett. 117,

028302 (2016).
[31] Here, stable refers to no discernable fluctuations over
O(τ ∗ 104) timescales.

[32] The rotation in Fig.2(a) satisfies Eq.(8) but is not a sim-
ple circular motion as described in Sec.II B 3.

[33] Spectral techniques that use A directly can provide quan-
titative improvements in accuracy.

[34] B. S. Lindley, L. Mier-y-Teran Romero, and I. B.
Schwartz, Proc. Am. Control Conf., 4587 (2013).

[35] D. K. Wells, W. L. Kath, and A. E. Motter, Phys. Rev.
X 5, 031036 (2015).

V. APPENDIX

The above comparisons between mean-field predictions
and network simulations focused on bimodal networks
for clarity, though many results were stated for gen-
eral distributions. As an example, we show a CM net-
work with a truncated power-law degree distribution,
pk =k−2.5/

∑100
k′=10 k

′−2.5, in the ring and rotating states
in Fig.8. A similar comparison can be done for the trans-
lating state, and there is some numerical evidence for the
existence of hybrid motion, but a more complete analysis
remains for future work.
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FIG. 8. Spatial patterns for a power-law network in the ring
(a) and rotating (b) states. (a) Ring state where clockwise
and counter clockwise rotation are shown with red circles and
squares, respectively, and with colors darkening with increas-
ing k (legend in (b)). Predictions from Eq.(5) are shown in
blue for degree classes in multiples of 5, i.e., k = 10, 15...100.
Simulation parameters are N = 1000, J = 0.15, and τ = 1.5.
(b) Rotating state with the same legend as (a). Prediction
from Eqs.(9-10) are shown in blue for all k. Simulation pa-
rameters are N = 1000, J = 0.15, and τ = 4.0.


	Hybrid dynamics in delay-coupled swarms with ``mothership" networks
	Abstract
	 INTRODUCTION
	 PATTERNS AND DYNAMICS
	 Dynamical behaviors
	 Analysis
	 Ring state
	 Translating state
	 Rotating states
	Hybrid states


	DISCUSSION
	ACKNOWLEDGMENTS
	References
	APPENDIX


