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Drawing upon the bursting mechanism in slow-fast systems, we propose indicators for the predic-
tion of such rare extreme events which do not require a priori known slow and fast coordinates. The
indicators are associated with functionals defined in terms of Optimally Time Dependent (OTD)
modes. One such functional has the form of the largest eigenvalue of the symmetric part of the
linearized dynamics reduced to these modes. In contrast to other choices of subspaces, the proposed
modes are flow invariant and therefore a projection onto them is dynamically meaningful. We il-
lustrate the application of these indicators on three examples: a prototype low-dimensional model,
a body forced turbulent fluid flow, and a unidirectional model of nonlinear water waves. We use
Bayesian statistics to quantify the predictive power of the proposed indicators.
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I. INTRODUCTION

Complex irregular behavior is a characteristic of chaotic systems, which is usually visualized through the time series
of an observable. Many natural and engineering systems exhibit a second level of complexity typified by rare extreme
bursts in the time series of certain observables. They are rare in the sense that they are short-lived and the frequency
at which they occur is significantly smaller than the typical frequency of the time series; and they are extreme in
the sense that they correspond to the values of the observable that are several standard deviations away from its
mean value. Examples of such rare, extreme phenomena in nature include oceanic rogue waves [1, 2], intermittent
fluctuations in turbulent models [3–5] and extreme events in climate dynamics [6, 7]. While the prediction of extreme
events is of utmost importance, our dim understanding of their origins and precursors has impeded our ability to
predict them.
A promising approach is to predict the rare events directly from the time series of the observable. If the system

has a compact, finite-dimensional attractor, the dynamics can in principle be reconstructed from the observations by
delay-coordinate embedding techniques [8–10], or linear and/or nonlinear order reduction methods [11–15]. However,
for high-dimensional chaotic attractors the reconstructed dynamics have a poor forecasting skill (see e.g. [15, 16])
which is comparable with Mean Square Models (models based on carefully tuned Langevin equations [17]). Since rare
extreme events are associated with strong nonlinearities and intermittently positive Lyapunov exponents (i.e., high
sensitivity to perturbations), their prediction from a finite set of observations is challenging and remains an active
area of research (see, e.g., Giannakis and Majda [18], Bialonski et al. [19]).
A more physically illuminating approach comes from multiscale analysis, where a dynamical system model is

decomposed into slow and fast variables [20–24]. The bursting mechanism in these models is rather well-understood [25,
26]. For the most part, the dynamics takes place on the slow manifold. The slow dynamics may be chaotic, but no
bursting event occurs on the slow manifold itself. The bursts occur along the unstable manifold (of the slow manifold)
and correspond to the growth of the fast variables. The unstable manifold is typically homoclinic to the slow manifold
such that the flow returns eventually to the slow manifold [27]. This cycle can repeat indefinitely and, if the slow
dynamics is chaotic, irregularly (see figure 1, for an illustration).
While this geometric approach is certainly illuminating, it is of little applicability to complex systems, since a clear

separation of time scales is often not available in realistic models (e.g., Navier–Stokes equations). Nor does there exist
a general recipe to transform the coordinates into slow and fast variables [28]. This becomes particularly prohibitive
in high dimensional systems.
Here, we introduce a diagnostic indicator for the prediction of rare extreme events in high dimensional systems.

The indicator is based on the aforementioned observations on the multiscale systems but does not require a priori
known fast-slow coordinates. More precisely we show that a small number of optimally time-dependent (OTD) modes
[29], obtained through a minimization principle and the history of the system state up to the current time instant,
allows for the description of the currently most unstable subspace in a dynamically consistent fashion.We show that
the linearized dynamics projected in this optimal, time-dependent subspace, can predict an upcoming rare extreme
event. We note that simply computing the eigenvalues of the linearized dynamics is costly and, in many cases, the
results are completely oblivious to transient instabilities (e.g. instabilities associated with non-normal dynamics, [29]).
Going beyond visual inspections, we quantify the forecast skill of the indicators by examining the conditional

statistics of the rare events. More precisely, using the Bayesian formula, we compute the probability of a future
rare event, given the value of the indicator at the present time. For indicators with predictive power, the resulting
conditional probability density functions exhibit a ‘bimodal’ structure separating regular dynamics from extreme
events.
In Section II, we review the OTD modes and introduce our indicator. We demonstrate the application of the

indicator on three examples: a low dimensional prototype system (Section III), a body forced Navier–Stokes equation
(Section IV) and a modified nonlinear Schrödinger equation as a model for unidirectional water waves (Section V).
The concluding remarks are presented in Section VI.

II. PRELIMINARIES

A. Set-up

Consider the general nonlinear system of ordinary differential equations (ODEs),

u̇ = F(u), u ∈ R
n, (1)

where the vector field F : Rn → R
n is sufficiently smooth. We denote the solutions of (1) with the initial condition

u0 at time t0 by u(t; t0,u0) = ϕt
t0
(u0) where ϕt

t0
is the flow map. Infinitesimal perturbations around an arbitrary
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trajectory u(t) satisfy the linear equation of variations

v̇ = Luv, v ∈ R
n, (2)

where L
u(t) :=∇∇∇F(u(t)). For notational simplicity, we will write L instead of Lu.

For a given trajectory u(t; t0,u0), there exists a two-parameter family of linear maps Φt
t0
(u0) : R

n → Rn such that
the solutions of the linear equation (2) satisfy v(t; t0,v0) = Φt

t0
(u0)v0 [30]. For notationally simplicity, we denote the

solutions of the equation of variations (2) by v(t) and write v(t) = Φt
t0
v0 along a given trajectory u(t) = u(t; t0,u0)

of the nonlinear system (1).
In order to introduce the OTD modes, we will need the following definition.

Definition 1. A time-dependent r-dimensional subspace Er(t) of R
n is flow invariant under the system (2) if, for a

fixed initial time t0, we have

v(t) = Φt
t0
v0 ∈ Er(t), ∀v0 ∈ Er(t0), ∀t ≥ t0. (3)

B. Optimally time-dependent modes

For r = n in Definition 1, we have En(t) = Rn for all t and therefore the space is trivially flow invariant. Lower
dimensional flow invariant subspaces can in principle be constructed as follows. Consider a prescribed set of r vectors
{v1(t0), · · · ,vr(t0)} spanning an r dimensional subspace Er(t0). For any later time t > t0, let vi(t) be the solutions
of the liner equation (2) with the initial condition vi(t0) and define Er(t) = span{v1(t), · · · ,vr(t)}. If the vector field
F is at least once continuously differentiable, the map Φt

t0
is a bijection, and therefore the dimension of the linear

subspace Er(t) is equal to r for all t ≥ t0. Moreover, the subspaces Er(t), constructed as such, are flow invariant by
definition.
This procedure is, however, known to be numerically unstable: typically the lengths of the vectors vi grow exponen-

tially fast and the angle between them vanishes rapidly. As a result, many numerical techniques have been introduced
to compute the flow invariant subspace in a numerically robust fashion (see, e.g., Greene and Kim [31], Dieci and Elia
[32]).
The OTD equations, introduced recently by Babaee and Sapsis [29], is a modification to the equation of variations (2)

such that its solutions (the OTD modes) remain orthonormal for all times, yet they span the same flow invariant
subspaces as the solutions of the equation of variations.
Here, we briefly review the OTD equations and the main properties of their solutions, referring the interested reader

to [29] for details. The OTD equations read

v̇i = Luvi −
r∑

k=1

〈Luvi,vk〉vk, i ∈ {1, 2, · · · , r}, (4)

where 〈·, ·〉 denotes an appropriate inner product and 1 ≤ r ≤ n is some prescribed integer. Equations (4), together
with the original system (1), form a set of (r+1) coupled nonlinear differential equations for vectors vi ∈ Rn and the
state u. Note that without the summation term, the OTD equation (4) coincides with the equation of variations (2).
The summation terms impose the constraint that the solutions vi remain orthonormal with respect to the inner
product 〈·, ·〉.
We refer to the solutions vi of the OTD equation as the OTD modes, which have the following appealing properties.

1. The OTD equations preserve orthonormality: Let the initial condition for the OTD equations (4) be a set
of orthonormal vectors {v1(t0),v2(t0), · · · ,vr(t0)}. Then the solution {v1(t),v2(t), · · · ,vr(t)} of the OTD
equation remains orthonormal for all times t [see 29, Theorem 2.1].

2. The OTD modes span flow invariant subspaces: Define

Er(t) = span{v1(t),v2(t), · · · ,vr(t)}, (5)

with {v1(t),v2(t), · · · ,vr(t)} being an orthonormal solution of the OTD equation (4). Then the subspaces Er(t)
are flow invariant under the linear system (2) [see 29, Theorem 2.4].

3. If u is a hyperbolic fixed point, the OTD modes generically converge to the subspace spanned by the r least
stable eigenvectors of Lu [see 29, Theorem 2.3].

Figure 2 illustrates the geometry of OTD modes for r = 2. Note that evaluating the OTD modes requires the
simultaneousness evolution of the OTD equations (4) and the original system (1), which together form a coupled
nonlinear system of (n+ r × n) equations.
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C. Reduction to the OTD modes

Due to the flow invariance of the OTD modes, we can reduce the linear operator Lu to the OTD subspaces
Er(t) in a dynamically consistent fashion. More precisely, consider the solutions of the form v(t) = V(t)ηηη(t) where
V = [v1|v2| · · · |vr] ∈ R

n×r is the time dependent matrix whose columns are the OTD modes obtained from (4). The
vector ηηη ∈ Rr is the solution v expressed in the OTD basis.
Substituting v(t) = V(t)ηηη(t) in (2) yields the reduced linear equation

η̇ηη = V
†
LVηηη. (6)

Conversely, if ηηη(t) solves the reduced equation (6), then v(t) = V(t)ηηη(t) solves the full linear equation (2) [see 29,
Theorem 2.4]. We refer to the linear map Lr : Rr → Rr,

Lr(t) := V
†(t)L(t)V(t), (7)

as the reduced linear operator.
The reduced system (6) is a linear system of differential equations with a time dependent stability matrix Lr(t).

As a result, the eigenvalues of Lr may not be used to assess linear growth or decay of perturbations. Instead we use
the invariants of the symmetric part of Lr as an indicator.
It follows from (6) that

1

2

d

dt
|ηηη|2 = 〈ηηη,Lrηηη〉 = 〈ηηη,Srηηη〉, (8)

where Sr denotes the symmetric part of the matrix Lr, i.e.,

Sr :=
1

2

[
Lr + L

†
r

]
. (9)

The eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λr of the symmetric tensor Sr ∈ Rr×r, therefore, measure the instantaneous
linear growth (or decay) of perturbations within the OTD subspace Er(t). Furthermore, the identity (8) implies the
inequality

|ηηη(t0)|eλmin(t−t0) ≤ |ηηη(t)| ≤ |ηηη(t0)|eλmax(t−t0), ∀t ∈ [t0, t0 + T ], (10)

for T > 0 and λmin ≤ λmax defined as

λmin := min
τ∈[t0,t0+T ]

λr(τ), λmax := max
τ∈[t0,t0+T ]

λ1(τ). (11)

In particular, if λmin is positive, the perturbations within the OTD subspace Er(t0) grow exponentially fast over the
time interval [t0, t].
Based on the above observation, we use the eigenvalue configuration of the symmetric tensor Sr as the indicator

for an upcoming burst. In so doing, we assume that, after the initial transients, the OTD modes capture the most
unstable flow invariant subspace along a time-dependent trajectory. As pointed out in Section II B, this has been
proved by Babaee and Sapsis [29, Theorem 2.3] for hyperbolic fixed points, but remains an open problem for time-
dependent trajectories.
In case the slow manifold is known as a graph over the slow variables, the connection between the largest eigenvalue

λ1 of the reduced symmetric tensor Sr and the instabilities transverse to the slow manifold can be made rigorous as
shown by Haller and Sapsis [33]. In practice, this graph is rarely known.

III. CONCEPTUAL MODEL

For illustrative purposes, we construct a prototype system which has simple dynamics with bursting episodes. The
system is described by the set of nonlinear ODEs,

ẋ = αx+ ωy + αx2 + 2ωxy + z2

ẏ = −ωx+ αy − ωx2 + 2αxy

ż = −λz − (λ+ β)xz, (12)
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where α, ω, λ, β > 0 are constant parameters. We define u = (x, y, z) and denote the right-hand-side of (12) by F(u).
The plane z = 0 is an invariant manifold containing the two fixed points

u1 = (0, 0, 0), u2 = (−1, 0, 0).

Linearizing around these fixed points, we obtain

∇∇∇F(u1) =




α ω 0
−ω α 0
0 0 −λ


 , ∇∇∇F(u2) =



−α −ω 0
ω −α 0
0 0 β


 . (13)

The plane z = 0 is the linear unstable manifold Eu of u1 corresponding to the eigenvalues α± iω. The plane z = 0 is
also the linear stable manifold Es of the fixed point u2 with eigenvalues −α± iω. In the following, we set α = 0.01,
ω = 2π and λ = β = 0.1.
Figure 3 shows a trajectory of the system starting near the origin. Perturbations around the fixed point u1 spiral

away from the origin due to the instability in the z = 0 plane. Since z = 0 is also the stable manifold of the fixed
point u2, the perturbed trajectory is attracted towards u2. Due to the small stability exponent α = 0.01, this process
takes place over a long period of time during which the z component of the trajectory stays small. Once close enough
to the fixed point u2, its unstable manifold repels the trajectory away from z = 0 plane, resulting in a rapid growth of
the z component. Finally the trajectory is carried back to the fixed point u1 along the heteroclinic orbit connecting
the two fixed points. The above process repeats once the trajectory is back in the neighborhood of the origin u1.
Now we investigate the ability of the OTD modes to capture the instability responsible for the bursts. It is clear from

the linearization that around the fixed point u1 the most unstable direction is within the x−y plane. Near fixed point
u2 however the z-direction becomes the most unstable. We solve equation (12) together with the OTD equation (4)
with a single OTD mode (r = 1). We choose the initial conditions u = (0, 0.01, 0.01)⊤ and v1(0) =

1√
2
(1, 1, 0)⊤.

Figure 4(a) shows the evolution of
√
v21,1 + v21,2 and v1,3 where v1,i denote the components of v1, i.e., v1 =

(v1,1, v1,2, v1,3). For a long time, while the trajectory is spiraling away from u1, the z-component v1,3 remains almost
zero. As the trajectory moves towards the fixed point u2, a sharp transition occurs around time t = 550 where the
OTD mode v1 becomes almost orthogonal to the x−y plane and aligns with the z direction. Note that this transition
(at t = 550) occurs well before the first burst (at t = 950) is observed (compare to figure 3(b)).
Figure 4(b) shows the eigenvalue λ1 of the reduced symmetric matrix Sr as a function of time. Since we only use

one mode, the eigenvalue is trivial: λ1(t) = 〈v1(t),∇∇∇F(u(t))v1(t)〉. Over the initial 550 time units, where the OTD
mode v1(t) is almost parallel to the x − y plane, the eigenvalue λ1 oscillates rapidly around zero. As a result any
instantaneous growth in the OTD subspace is rapidly counteracted by an instantaneous decay. After time t = 550,
when the OTD mode reorients orthogonally to the x − y plane, the eigenvalue λ1 becomes uniformly positive for a
long period of time up until the bursting happens. This allows for persistent growth in the OTD subspace which
aligns with the z axis in this period (cf. equation (10)). This instability persists up until the burst eventually happens
around t = 960. After the burst the eigenvalue λ1 returns to rapid oscillations around zero.

IV. TURBULENT FLUID FLOW

A ubiquitous feature of turbulent fluid flow is the intermittent bursts observed in the time series of their measured
quantities such as energy dissipation [34, 35]. Even at moderate Reynolds numbers, the dimension of the turbulent
attractors are high. Best available estimates suggest that the attractor dimension scales almost linearly with the
Reynold number [36–38]. Moreover, no appropriate change of coordinates is available to decompose the system into
slow and fast variables [39]. Consequently, intermittencies of turbulent fluid flow are particularly difficult to analyze
and hence serve as a challenging example to test our indicator.

A. Governing equations and preliminaries

The two-dimensional Kolmogorov flow is the incompressible Navier–Stokes equations

∂tu = −u · ∇∇∇u−∇∇∇p+ ν∆u+ f , ∇∇∇ · u = 0, (14)

with the sinusoidal forcing f = sin(ny)e1 where e1 = (1, 0)⊤ and n is a positive integer [40]. The flow is defined on the
torus x = (x, y) ∈ T2 = [0, 2π]× [0, 2π] (i.e., periodic boundary conditions). The solution is the time dependent pair
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of velocity field u(x, t) and pressure p(x, t). The non-dimensional viscosity ν is the inverse of the Reynolds number,
ν = 1/Re.
The energy E, energy dissipation D and energy input I of the system are defined as

E(t) =
1

2L2

∫∫

T2

|u(x, t)|2dx, D(t) =
ν

L2

∫∫

T2

|ω(x, t)|2,

I(t) =
1

L2

∫∫

T2

u(x, t) · f(x, t)dx, (15)

where L = 2π is the size of the domain and ω is the vorticity field. One can show, from the Navier–Stokes equation (14),

that these three quantities satisfy Ė = I −D along any trajectory.
The Kolmogorov flow has a laminar solution,

ulam =
Re

n2
sin(ny)e1, (16)

which is asymptotically stable for forcing wave number n = 1 and any Reynolds number Re [41, 42]. For n > 1
and sufficiently high Re, however, the laminar solution is unstable. Moreover, numerical evidence suggests that, for
high enough Reynolds number and n > 1, the Kolmogorov flow is chaotic [40, 43]. Figure 5, for instance, shows the
evolution of the energy dissipation measured along a trajectory of the Kolmogorov flow with n = 4 and Re = 40. The
energy dissipation mostly oscillates irregularly around D = 0.1 and never settles down to a regular pattern. More
interestingly, the energy dissipation exhibits intermittent, short-lived episodes of higher energy dissipation that we
wish to predict.

B. OTD modes for the Kolmogorov flow

In Section II B, we introduced the OTD modes for ordinary differential equations. The OTD modes for partial
differential equations (PDEs) are defined in a similar manner, although more care should be exercised due to the
infinite dimensionality of the system. In analogy with the ODEs, we define

F(u) = P(−u · ∇∇∇u+ ν∆u+ f), (17)

where P denotes the projection onto space of divergence-free vector fields, ∇∇∇ ·u = 0. As opposed to the ODEs, where
F is a vector field, here it is a nonlinear differential operator acting on functions u : T2 ×R → R2 that are sufficiently
smooth.
We denote the linearization of F around the state u by Lu whose action on sufficiently smooth functions v :

T2 × R → R2 is given by

Luv := P(−u · ∇∇∇v − v · ∇∇∇u+ ν∆v). (18)

The OTD modes {v1,v2, · · · ,vr} then satisfy the set of coupled PDEs

∂vi

∂t
= Luvi −

r∑

j=1

〈Luvi,vj〉vj , i ∈ {1, 2, · · · , r}, (19)

where 〈·, ·〉 denotes some appropriate inner product. Here, we use the L2 inner product

〈v,w〉 :=
∫∫

T2

v(x, t) ·w(x, t)dx. (20)

We integrate equations (19) with initial conditions

vk(x, 0) =
1

π
√
2

(
sin(ky)

0

)
, k = 1, 2, · · · , r , (21)

which are divergence free, mutually orthogonal and have unit L2 norm.
The restriction of the infinite-dimensional operator Lu to the time-dependent OTD subspace {vk}1≤k≤r is a reduced

finite-dimensional linear operator Lr. In the OTD basis, the reduced operator Lr is given by the r × r matrix whose
entries are given by

[Lr ]ij = 〈vi,Luvj〉, i, j ∈ {1, 2, · · · , r}. (22)



7

Although the linear operator (18) acts on an infinite dimensional function space, the reduced operator Lr is a finite
dimensional linear map whose symmetric part Sr is defined by (9).
We numerically integrate the Kolmogorov equation (14) and its associated OTD equations (19). To evaluate the

right hand sides of the equations, we use a standard pseudo-spectral scheme with 2/3 dealiasing [44]. Unless stated
otherwise, 128× 128 Fourier modes are used for the simulations reported below. For the time integration, we use the
Runge–Kutta scheme RK5(4) of Dormand and Prince [45] with relative and absolute error tolerances set to 10−5.

C. Asymptotically stable regime

As mentioned earlier, for the forcing wavenumber n = 1, the laminar solution (16) of the Kolmogorov equation (14)
is asymptotically stable at any Re number. Moreover, the laminar solution is also the global attractor [42]. This
regime is not our primary interest. It, however, does help illustrate the evolution of the OTD modes in an unambiguous
setting.
We numerically solve the Kolmogorov equation and its associated OTD equations with r = 2. The state u is

initially random in phase with an exponentially decaying energy spectrum. The initial conditions for the OTD modes
are given in (21). Figure 6 shows the initial condition and the evolution of the state u and the OTD modes v1 and
v2 at select time instances.
The eigenvalues of the symmetric tensor S2 are shown in figure 7. As the flow evolves towards the laminar solution,

the eigenvalues of S2 oscillate before they converge to their asymptotic value of −0.025. One of the eigenvalues
assumes positive values during this transition, signaling perturbations that can instantaneously grow. Since the
laminar solution is the global attractor, the instantaneous growth cannot be sustained and decays eventually. As the
state u(t) converges to the laminar solution (16), the OTD modes v1 and v2 converge to the least stable eigenspace
of the linear operator (18) corresponding to eigenvalue −0.025 whose algebraic and geometric multiplicities happen
to be equal to 2.

D. Chaotic regime

We turn now to a set of parameters for which the Kolmogorov flow is chaotic. Numerical evidence suggests that,
for n = 4 and Re = 40, the Kolmogorov flow has a strange attractor [43]. More importantly, the energy dissipation
D exhibits an intermittent behavior along the trajectories on the strange attractor (see figure 5).
Figure 8 shows the energy input I versus the energy dissipation D for a long turbulent trajectory. During the

evolution, the energy input and dissipation assume smaller values and are very close to each other sitting near the
diagonal. The Kolmogorov flow is driven by the external forcing f such that growth in the energy input I corresponds
to the alignment of the velocity field u and the forcing (see equation (15)). This alignment leads to an abrupt
increase in the energy input I. Consequently, the energy dissipation also increases bringing the trajectory back to the
statistically stationary background.
Based on this observation, one may argue that the growth of the perturbations aligning with the forcing should

signal an upcoming burst in the energy input (and consequently the energy dissipation). The instantaneous growth
of such a perturbation is measured by 〈f ,Luf〉 (cf. equation (8)). For any divergence free velocity field u(t) with
zero mean, however, a straightforward calculation yields 〈f ,Luf〉 ≃ −7.896. This seemingly paradoxical result is the
consequence of the fact that the forcing f is not a flow invariant subspace and, as such, the instantaneously negative
value of 〈f ,Luf〉 does not imply decay over finite time intervals. The OTD subspaces, in contrast, are flow invariant
and therefore a projection onto them is dynamically meaningful.
The evolution of the eigenvalues of the symmetric tensor S12 along a turbulent trajectory are shown in figure 9.

The first four eigenvalues are positive for all t in this time window, signaling the very unstable nature of the flow.
Figure 10 shows select OTD modes at time t = 34.6 right before a burst in the energy dissipation occurs. The modes

themselves do not exhibit a distinguished structural feature that could suggest an immediate connection to the burst.
We notice, however, that the largest eigenvalue λ1 of the symmetric part of the reduced linear operator Lr increases
significantly just before the bursting (see figure 11) while the energy dissipation is within one standard deviation from
its mean value at that time. Since the eigenvalue tends to oscillate rapidly and irregularly, mere visual inspection
does not yield a satisfactory conclusion. In the next section, we quantify the correlation between the eigenvalue λ1

and the energy dissipation D through conditional statistics.
These statistics are computed from a large set of numerical simulations that are generated in the following manner.

We solve the Kolmogorov equation (14) from 17 separate initial conditions which are random in phase and have
exponentially decaying energy spectra. For each of the 17 simulations, we simultaneously solve the coupled OTD
equations (19) with the initial conditions (21). The solutions of the Kolmogorov equation and the associated OTD
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equations are evolved for 1100 time units and saved to the disk every 0.2 time unit. To ensure that the results are
not influenced by the initial transients, we discard the data from the first 100 time units of each simulation. The
following statistics are computed from the remaining 85, 000 saved data points.

E. Conditional statistics

In order to quantify the predictive power of the eigenvalues of reduced symmetric matrix Sr, we use Bayesian
statistics [46]. First, for a given scalar quantity q(t), we define

q̄(t; ti, tf ) = max
τ∈[t+ti,t+tf ]

q(τ), (23)

where 0 < ti < tf are prescribed numbers. At any time t, the quantity q̄(t; ti, tf) equals the maximum value of q over
a future time interval [t+ ti, t+ tf ]. For notational simplicity, we use the shorthand notation q̄(t) for q̄(t; ti, tf ).
We would like to quantify the predictive power of a given indicator α(t). In particular, we would like to assess

whether large peaks of the indicator α(t) at a time t coincide with large values of the observable q over a future time
interval [t+ ti, t+ tf ].
To this end, we use the joint probability density function (PDF) of q̄ and α. The joint PDF of q̄ and α is defined

as the scalar function pq̄,α : R× R → R+ that satisfies

P(q1 ≤ q̄ ≤ q2, α1 ≤ α ≤ α2) =

∫ q2

q1

∫ α2

α1

pq̄,α(q̄
′, α′)dq̄′ dα′, (24)

for all q1, q2, α1, α2 ∈ R where P denotes the probability. The conditional probability density function of q̄ (conditioned
on α) is then given by

p(q̄|α) = pq̄,α(q̄, α)

pα(α)
, (25)

where pα is the probability density function of the indicator α.
Roughly speaking, p(q̄(t) = q̄0|α(t) = α0) denotes the likelihood of the maximum of the scalar q over the time

interval [t+ ti, t+ tf ] being q0 given that the value of α at time t is α0. More precisely, the conditional probability of
q̄ over the time interval [t+ ti, t+ tf ] being greater than a prescribed value q0 is given by

P
(
q̄(t) > q0|α(t) = α0

)
= P

(
max

τ∈[t+ti,t+tf ]
q(τ) ≥ q0|α(t) = α0

)

=

∫ ∞

q0

p(q̄′|α0)dq̄
′. (26)

In particular, if an extreme event corresponds to values of q greater than a prescribed critical value qc, the probability
of the extreme event taking place over the time interval [t+ ti, t+ tf ], given that α(t) = α0, is measured by

PEE(α0) := P
(

max
τ∈[t+ti,t+tf ]

q(τ) ≥ qc|α(t) = α0

)
=

∫ ∞

qc

p(q̄′|α0)dq̄
′, (27)

where PEE denotes the probability of an extreme event taking place over the future time interval [t+ ti, t+ tf ].
In the case of the Kolmogorov flow, the observed quantity q is the energy dissipation D and the indicator α is

the largest eigenvalue λ1 of the reduced symmetric tensor Sr (see equation (9)). The value of the eigenvalue λ1(t)
depends on the subspace dimension r. Properties 1 and 2 of the OTD modes listed in Section II B imply that λ1

is an increasing function of the subspace dimension r. We have observed, however, that this eigenvalue eventually
approaches an upper envelope for large r (see figure 12). For the Kolmogorov flow at Re = 40, the eigenvalues λ1

with r ≥ 8 are virtually indistinguishable from each other. Based on this observation, we use r = 8 in the following
analysis.
The joint PDF pD̄,λi

and the PDF pλi
are approximated from a large set of numerical simulations containing roughly

85, 000 data points. The conditional PDF p(D̄|λi) then is computed through the Bayesian relation (25). Figure 13
shows the resulting conditional PDF p(D̄|λi) for the three largest eigenvalues of Sr. As the three conditional PDFs
are qualitatively similar, we will only discuss the one corresponding to the largest eigenvalue λ1.
The conditional PDF exhibits a ‘bimodal’ structure. For 0 < λ1(t) < 0.55, the maximal future value of the energy

dissipation maxτ∈[t+ti,t+tf ] D(τ) is most likely to lie between 0 and 0.15 (the lower left dark region in figure 13(a)).
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A sharp transition is observed for 0.55 < λ1(t) such that for this range of the eigenvalue λ1, the energy dissipation is
more likely to assume values larger that 0.15 over the future time interval [t+ ti, t+ tf ].
Using this conditional PDF, we compute the probability of extreme events PEE from equation (27). From the time

series presented in figure 5, it is reasonable to associate a burst with values of the energy dissipation larger than 0.2.
We use this value as the critical energy dissipation (i.e. Dc = 0.2) above which an extreme event is recorded. The
resulting probability function is plotted in figure 14(a). If at a time instant t, the value of λ1 is smaller than 0.4, the
probability of D(τ) > Dc over the future time interval τ ∈ [t+ ti, t+ tf ] is virtually zero. For larger values of λ1, the
probability of an extreme event increases monotonically. At λ1 = 0.55, the probability of an upcoming extreme event
is greater than 50%. Eventually, this probability grows to above 80% at λ1 ≃ 0.8.
Using the computed probability of extreme event PEE , we predict, at every given time t, the probability that an

extreme event takes place over the future time interval [t+ ti, t+ tf ]. Figure 14 (panels (b) and (c)), shows two select
time windows over which an extreme event occurs. Away from the extreme event, the probability PEE is very low.
Just before the extreme event, this probability grows predicting the upcoming extreme events at least ti = 3 time
units in advance.
The parameters ti = 3 and tf = 5 for the time window [t+ ti, t+ tf ] are chosen so that the resulting probability of

extreme events PEE is an increasing function of the indicator λ1 and eventually attains the value 1 for large λ1. This
ensures that larger values of the indicator do signal a higher probability of an upcoming extreme event over the future
time window [t+ ti, t+ tf ]. Furthermore, the largest values of the indicator (corresponding to PEE = 1) indicate that
an extreme event will almost surely take place over the future time window [t + ti, t + tf ]. We have observed that
this monotonic property of PEE holds for small ti. Increasing ti incrementally, the monotonicity of PEE is eventually
lost at ti = 3.6, indicating the upper limit on the predictability horizon of our indicator. The predictability horizon
ti = 3.6 is approximately one thirds of the decorrelation time of the energy dissipation D. We also find that the
results are insensitive to the length of the time window tf − ti. The results in figures 13 and 14 are reported for
tf − ti = 2 to ensure that each time interval [t+ ti, t+ tf ] contains at most one rare event.
While the above results are reported at Re = 40, we point out that similar conclusions hold at higher Reynolds

numbers. Figure 15, for instance, shows the conditional PDF and the probability of extreme events at Re = 100. To
fully resolve the flow, the higher resolution of 256 × 256 Fourier modes are used at this Re number. On the other
hand, to keep the computational cost reasonable, the linearized operator is reduced to four OTD modes, i.e., r = 4.

F. Comparison with dynamic mode decomposition

We carry out a caparison in this section to highlight that the correct choice of the modes to which the linear
operator Lu is reduced is essential. To this end, we repeat the analysis of Section IVE, but this time we reduce the
operator Lu to the modes obtain from Dynamic Mode Decomposition (DMD). DMD was proposed by Schmid [47]
for extracting a linear approximation to the flow map of a nonlinear dynamical system. The resulting dynamic modes

(or DMD modes) have proven insightful in the analysis of fluid flows [48, 49] and shown to have intricate connections
to the invariants of the Koopman operator along time-periodic orbits of the nonlinear system [50, 51].
Since the DMD modes are not flow invariant (see Definition 1), the reduction of the linear operator Lu to these

modes is not dynamically meaningful. As a result, the eigenvalues of the symmetric tensor reduced to DMD modes are
not expected to reflect the true growth (or decay) of perturbations. To illustrate this, we use the algorithm introduced
by Schmid [47] to compute DMD modes from 500 sequential snapshots of the Kolmogorov flow, each 0.2 time units
apart. Next we restrict the operator Lu to the eight most dominant DMD modes and compute the largest eigenvalue
of its symmetric part along all previously computed turbulent trajectories u(t). The resulting conditional PDF is
shown in figure 16. As opposed to the OTD modes (cf. figure 13), the extreme episodes of the energy dissipation do
not show a signature in the DMD-reduced operator.

V. SPATIALLY LOCALIZED EXTREME EVENTS

The energy dissipation in turbulent flows, as discussed in Section IV, is a global feature of the state. In spatiotem-
poral chaos, however, local rare extreme events, in the form of spatially localized structures, are possible . A famous
example of such localized extreme events is the ocean rogue waves. Such localized phenomena cannot be quantified
from global quantities such as the eigenvalues of the linear operator.
In this section, we illustrate that localized features of the OTD modes can still be of significance for the analysis

of spatially localized extreme events. To illustrate this, we consider the modified nonlinear Schrödinger (MNLS)
equation which is an approximation to the evolution of sea surface elevation in deep waters [52]. The MNLS equation
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is a higher order perturbative approximation compared to the nonlinear Schrödinger equation derived by Zakharov
[53].

A. MNLS equation

For a complex valued function u(x, t), the MNLS equation (in dimensionless variables) reads

∂tu = F (u), (28)

with

F (u) = −1

2
∂xu− i

8
∂2
xu+

1

16
∂3
xu− i

2
|u|2u− 3

2
|u|2∂xu− 1

4
u2∂xu

∗ − iuΦ(u), (29)

where i =
√
−1, x ∈ [0, L] and u(x, t) ∈ C. The asterisk sign denotes the complex conjugation. The function Φ is

derived from the velocity potential φ,

Φ(u) := ∂xφ
∣∣∣
z=0

= −1

2
F−1

[
|k|F [|u|2]

]
, (30)

where F denotes the Fourier transform. The modulus |u(x, t)| is the wave envelope for the surface elevation h(x, t).
To the leading order approximation, we have h(x, t) = Re [u(x, t) exp(i(x− t))].
We solve the MNLS equation with the initial conditions u(x, 0) = u0(x) with Gaussian energy spectra and random

phases. More precisely, the Fourier transform of the initial condition is given by

û0(k) =

√
2
2π

L
N(qk)e

iθk , (31)

where

N(qk) :=
ǫ2

σ
√
2π

e−
q2
k

2σ2 , (32)

is a normal distribution, θk are random phases uniformly distributed over [0, 2π] and qk = 2πk/L is the wave number
over the periodic domain of length L. There are three free parameters: ǫ that controls the wave height, σ which is
the standard deviation of the Gaussian distribution and controls the width of the spectrum of the wave and finally L
which is the length of the periodic domain, x ∈ [0, L].
It is well-known that the Gaussian wave groups (31) can grow due to the Benjamin-Feir instability [54] to form

extreme waves. The Benjamin-Feir Index (BFI) 2
√
2ǫ/σ provides an indicator for the probability of the extreme waves

taking place. For large enough BFI, the nonlinear terms dominate, leading to large amplitude waves [55]. If BFI is
too large, however, the extreme waves happen quite often. To realize rare extreme waves, therefore, a moderate BFI
value should be used. Following Mohamad et al. [56], we use the parameter values ǫ = 0.05, σ = 0.2 and L = 256π,
resulting in BFI= 0.71. This BFI value allows for the formation of extreme waves at a moderate frequency (not too
often and not too rare).
We solve the MNLS (29) equation and its associated OTD equation (19) where 〈·, ·〉 now denotes the standard L2

inner product on complex valued functions,

〈v, w〉 :=
∫ L

0

v(x)w∗(x)dx. (33)

The initial condition for the OTD modes are sinusoidal and are given by

vi(x, 0) =

√
2

L
sin

(
2πi

L
x

)
.

The computation of the OTD modes requires the linearization of the operator (29) as outlined in Appendix A.
For the numerical integration of the MNLS equation (and its associated OTD equation), we use a second-order

exponential time differencing scheme [57, 58] in time and a pseudo-spectral scheme for evaluating the spatial derivatives
with 211 Fourier modes. For the statistical analysis presented in the next section, we compute 200 MNLS trajectories,
each of length 1000 time units, from the initial conditions of the form (31).
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B. Extreme waves and the OTD modes

Figure 17 shows a time window over which an extreme wave appears at around t = 475 with a wave height of
approximately 0.34 (see panel (a)). Panel (b) shows a snapshot of the wave, 75 time units earlier at t = 400. It
exhibits a twin wave packet at around x = 610. Whether this twin wave packets lead to an extreme wave depends on
the energies and the phases of the packets. A simple extrapolation will rule out the possibility of an extreme wave
since the wave height has been decaying over the last 50 time units (the red shaded area in figure 17(a)).
During this decay period, however, the OTD mode v1 shows a persistent localized peak at the same location as

the twin wave packets. This signals a persistent localized instability that grows to lead to the extreme wave at time
t = 475 as shown in figure 17(c).
As in the case of the Kolmogorov flow, we use Bayesian statistics to quantify the relation between extreme MNLS

waves and the localized peaks of the associated OTD modes. Based on the foregoing observation, we use the maximum
height of the first OTD mode v1 as the indicator α. The quantity to be predicted is the maximum height of the MNLS
solution u. More precisely,

q(t) = max
x∈[0,L]

|u(x, t)|, α(t) = max
x∈[0,L]

|v1(x, t)|.

The conditional PDF p(q̄|α) is computed as in Section IVE. For a given critical wave height hc, the probability of
the rare event is given as in equation (27) by

PEE(α0) := P
(

max
τ∈[t+ti,t+tf ]

max
x∈[0,L]

|u(x, τ)| ≥ hc max
x∈[0,L]

|v1(x, t)| = α0

)
. (34)

Here we set the critical wave height to hc = 0.28 which is approximately the mean plus two standard deviation of
the wave heights maxx |u| for all the computed data. Figure 18(a) shows the resulting conditional PDF p(q̄|α). We
observe a strong correlation between the large time-t values of the indicator maxx |v1(x, t)| and the large wave heights
|u(x, τ)| over a future time window τ ∈ [t + ti, t + tf ]. The forecast skill of the indicator is further demonstrated in
figure 18(b), showing the probability of an extreme wave PEE as defined in equation (34). As in the Kolmogorov
flow, the time ti = 25 (approximately 4 wave periods) is chosen so that the probability function PEE is monotonically
increasing, thus ensuring that the high values of the indicator correctly forecast the high probability of an upcoming
extreme wave.

VI. SUMMARY AND CONCLUSIONS

We proposed operational indicators for the prediction of rare extreme events (or bursts) in high dimensional dy-
namical systems. The motivation for our indicators is based on the observations made about slow-fast systems where
the bursts occur along orbits that are transverse and homoclinic to the slow manifold [25–27]. This geometric picture
does not lead to an operational method in complex high-dimensional systems where a clear separation between the
slow and fast variables is unavailable [28].
We showed that for such systems a signature of bursting can be traced in the eigenvalues of the symmetric part

of the linearized dynamics. More precisely, we use the largest eigenvalue λ1 of the symmetric part of the linearized
operator as our indicator. Computing these eigenvalues in high dimensional systems is computationally expensive.
Thanks to the recently introduced notion of Optimally Time Dependent (OTD) modes [29], however, one can reduce
the linear operator, in a dynamically consistent fashion, to its most unstable subspace. The reduced operator is low
dimensional and its invariants can be readily computed.
We devised a low dimensional ODE in Section III which has an unambiguous bursting mechanism. For this simple

model we showed that the eigenvalue λ1 becomes uniformly positive several time units before the burst. This allows
for instantaneous perturbations within the corresponding subspace to grow. Moreover, the OTD mode aligns with
the direction of the growth (i.e. orthogonal to the x − y plane). These together successfully predict the upcoming
extreme event.
In the body forced Navier–Stokes equation considered in Section IV, the situation is more complicated as the

symmetric part of the reduced operator has several eigenvalues that are positive for all times. The largest eigenvalue
λ1, however, increases significantly before a burst in the energy dissipation takes place. Using Bayesian statistic, we
showed that large values of the eigenvalue λ1 do in fact predict upcoming bursts in the energy dissipation. While
the results are presented for prediction time ti = 3, they are robust to small variations of this time window. If the
prediction time is set too large (larger than ti = 3.6, here), however, the indicator fails to predict the bursts. The
predictability time, of course, is problem dependent and is expected to be inversely proportional to the dominant
Lyapunov exponent of the system [59].
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We also considered extreme waves in a unidirectional model of the nonlinear surface waves in deep ocean. As
opposed to the energy dissipation in Navier–Stokes equations, extreme waves are localized in space. Therefore, we
do not expect the eigenvalue λ1 (as a global quantity) to bear significance in their creation. We observe instead that
the most unstable OTD mode localizes and grows before an extreme wave appears. The spatial location where the
OTD mode localizes is precisely where the extreme wave occurs later in time. This observation indicates a promising
direction for space-time prediction of the extreme water waves, complementing the recent work of Cousins and Sapsis
[60, 61].
We point out that the OTD modes are instrumental to the evaluation of our indicators. This imposes an additional

computational cost as the OTD equations need to be solved simultaneously with the governing equations. Moreover,
it necessitates that a model of the system is available as a set of differential equations. Therefore, modifying the
indicator so that it is applicable to model-independent predictions is highly desirable.
The time varying nature of the OTD modes distinguishes them from the Lyapunov vectors [62, 63] and Oseledec

subspaces [64, 65] that deal with finite-time or infinite-time instabilities. Yet, the properties discussed in Sections II B
and II C indicate intimate connections with these concepts. A rigorous comparative analysis in this regard will be of
interest.
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A. THE LINEARIZATION OF THE MNLS EQUATION

We denote the linearization (or Gâteaux differential) of the differential operator F defined in equation (29) by Lu(·)
which reads

Lu(v) := lim
ǫ→0

F (u+ ǫv)− F (u)

ǫ

=− 1

2
∂xv −

i

8
∂2
xv +

1

16
∂3
xv

− i

2

(
2|u|2v + u2v∗

)

− 3

2

(
u∗v∂xu+ uv∗∂xu+ |u|2∂xv

)

− 1

4

(
2uv∂xu

∗ + u2∂xv
∗)

+
i

2
uF−1

[
|k| F [uv∗ + vu∗]

]
+

i

2
vF−1

[
|k|F(|u|2)

]
. (35)

The only nontrivial calculation above is the last line, corresponding to the linearization of the term uΦ(u) in (29),
which we detail below. First we note that

(u+ ǫv)Φ(u+ ǫv)− uΦ(u) = ǫu dΦ(u; v) + ǫvΦ(u) +O(ǫ2), (36)

where

dΦ(u; v) = lim
ǫ→0

Φ(u + ǫv)− Φ(u)

ǫ
. (37)

From the definition of Φ (see equation (30)), we have

F [Φ(u + ǫv)] = −1

2
|k| F [|u+ ǫv|2]

= F [Φ(u)]− ǫ
1

2
|k| F [uv∗ + vu∗] +O(ǫ2), (38)
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which yields

dΦ(u; v) = −1

2
F−1

[
|k| F [uv∗ + vu∗]

]
. (39)

This completes the derivation of (35).
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FIGURES

FIG. 1. An illustration of slow-fast systems with bursting orbits homoclinic to the slow manifold. While we depict the slow
manifold with a plane, it can in reality be a complicated high dimensional manifold.

FIG. 2. An illustration of the OTD modes. The OTD modes vi remain orthonormal for all times (the dark black squares mark
right angles). While differing from their images under the linear dynamics Φt

t0
, the OTD modes span the same subspace as

their images.

FIG. 3. A trajectory of the system (12) with parameters α = 0.01, ω = 2π, λ = 0.1 and β = 0.1. The initial condition is
(0, 0.01, 0.01). (a) The trajectory u(t) in the state space. (b) The time series of the z component of the trajectory for 4× 103

time units.

FIG. 4. (a) The evolution of
√

v2
1,1 + v2

1,2 =
√

1− v2
1,3 (blue) and v1,3 (red) where v1 = (v1,1, v1,2, v1,3). (b) The evolution of

the eigenvalue λ1 as a function of time. The dashed red line marks λ1 = 0. Three closeup views are shown in the insets.

FIG. 5. Evolution of the energy dissipation D along a trajectory of the Kolmogorov flow (14) with n = 4 and Re = 40.

FIG. 6. The Kolmogorov flow in the asymptotically stable regime with n = 1 and Re = 40. Top row: The vorticity field at
times t = 0, 2 and 100. Middle row: curl of the first OTD mode v1 at t = 0, 2 and 100. Bottom row: curl of the second OTD
mode v2 at t = 0, 2 and 100. The colors correspond to the only non-zero component of the curls. All panels show the entire
domain [0, 2π]× [0, 2π].

FIG. 7. Eigenvalues of the symmetric matrix S2 along a trajectory of the Kolmogorov flow in the asymptotically stable regime:
n = 1 and Re = 40.

FIG. 8. (a) Energy input I versus energy dissipation D shown for a long turbulent trajectory. The dots correspond to 5× 104

time instances each 0.2 time units apart. The trajectory spends approximately 91.8% of its lifetime inside the red box. The
black line is the diagonal I = D. (b) The probability density function (PDF) of the energy dissipation. The dashed black line
marks the PDF of a Gaussian districution with mean 0.103 and standard deviation 0.018.
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FIG. 9. Evolution of the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λ12 of the reduced symmetric tensor S12 along a chaotic trajectory of the
Kolmogorov flow.

FIG. 10. Snapshots of the curl of u, v1, v2, v3, v4 and v5 (from top left to bottom right, respectively) at time t = 34.6. The
colors correspond to the only non-zero component of the curls. All panels show the entire domain [0, 2π]× [0, 2π].

FIG. 11. Evolution of the energy dissipation D and the eigenvalue λ1 along two different trajectories (each column corresponds
to a separate trajectory). The horizontal dashed lines mark the mean, the mean plus one standard deviation and the mean
minus one standard deviation of the corresponding quantity.

FIG. 12. The largest eigenvalue λ1 of Sr as a function of time t for five different values of the subspace dimension r and the
Kolmogorov flow at Re = 40. The eigenvalue λ1 increases with r, eventually converging to an upper envelope.

FIG. 13. Conditional PDF of the first three eigenvalues of S8 and the maximal dissipation maxτ D where the maximum is
taken over τ ∈ [t+ ti, t+ tf ] with ti = 3 and tf = 5.

FIG. 14. (a) Probability of the extreme energy dissipation PEE as a function of the value of the indicator λ1. The probability
PEE is computed from the definition (27) with ti = 3 and tf = 5. (b,c) Closeup view of two episodes of extreme energy
dissipation and their corresponding probabilities PEE .

FIG. 15. Conditional PDF (a) and the probability of upcoming extreme energy dissipation (b) for Reynolds number Re = 100.

FIG. 16. Same as figure 13(a) but now the linear operator is reduced to the eight most dominant DMD modes.

FIG. 17. (a) The spatial maximum of |u| as a function of time t. An extereme event occurs at around t = 475 where
maxx |u| ≃ 0.34. (b, c) The surface elevation h(x, t) (blue color) and and the modulus of the OTD mode |v1| at times t = 400
(b) and t = 475 (c). The thick black curves in the plots of h(x, t) mark the envelopes ±|u(x, t)|.

FIG. 18. (a) Conditional PDF for the maximum modulus of the OTD mode v1 and the solution of the MNLS equation. The
maxima are taken over x ∈ [0, L] and τ ∈ [t+ ti, t+ tf ] with ti = 25 and tf = 26. (b) The probability of an extreme event PEE

computed from the conditional PDF.
























































