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Colloidal bodies of irregular shape rotate as they descend under gravity in solution. This rotational
response provides a means of bringing a dispersion of identical bodies into a synchronized rotation
with the same orientation using programmed forcing. We use the notion of statistical entropy to
derive bounds on the rate of synchronization. These bounds apply generally to dynamical systems
with stable periodic motion with a phase φ(t), when subjected to an impulsive perturbation. The
impulse causes a change of phase expressible as a phase map ψ(φ). We derive an upper limit on the
average change of entropy 〈∆H〉 in terms of this phase map; when this limit is negative, alignment
must occur. For systems that have achieved a low entropy, the 〈∆H〉 approaches this upper limit.

I. INTRODUCTION

An important phenomenon in systems of many inde-
pendent agents is synchronization: Some influence ex-
ternal to each agent induces them to evolve from uncor-
related motion to highly correlated motion. In physics,
the synchronization of nuclear spins creates the powerful
coherent signals that make magnetic resonance imaging
possible [1]. In physiology the body’s circadian rhythm
creates synchrony in numerous somatic processes [2]. In
the macroscopic world synchronization appears in ap-
plause [3], in birth-death cycles of organism populations
[4] and in the synchronized firing of neurons [5]. One
demonstrated means of synchronization is to expose all
the agents to a stochastic disturbance or noise identical
for all the agents [4, 6, 7]. Here we show how the rate of
synchronization is constrained by simple properties of the
noise. We demonstrate these constraints using a recently
identified form of synchronization from colloid science.
Usually, synchronization is thought to be achieved

through some mutual coupling or common periodic exter-
nal forces [8]. However, we focus on the less-considered
effect of common non-periodic forces or common noise on
synchronization. The synchronization of noninteracting
limit cycle oscillators with common noise pulses was first
studied by Pikovskii in 1984 [9]. Using phase-reduction
methods, it was later shown that broad classes of ran-
domly driven noninteracting limit-cycle oscillators will
synchronize to a single locally stable limit cycle [10] or
to a partially synchronized state [11].
When one restricts the common external signal to be

telegraph noise or impulse noise, the behavior of these
non-linear elements can be reduced to a phase map, re-
lating the phase immediately prior to an impulse to the
altered phase long after the impulse, when the system
has returned to stable periodic motion [7, 12]. Experi-
ments verified that the functional form of the phase map
governs the way small differences in phase between two
identical oscillators decay under repeated impulses [13].
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Here we take a statistical approach to the process of
synchronization. We quantify the rate of progress to-
wards the synchronized state in terms of statistical en-
tropy of a probability distribution [14]. Given the prob-
ability distribution of initial phases of the oscillators,
the phase map readily determines the distribution after
the impulse. The statistical approach allows powerful
bounds on how the entropy can change as the result of
an impulse. Extending previous work [15], we show that
the average entropy change from an impulse is necessar-
ily more negative than a quantity calculated from the
phase map called the “spreading parameter”. Moreover,
at late stages of synchronization, when the probability
is strongly concentrated, we show under weak conditions
that the entropy change becomes equal to the spread-
ing parameter, generalizing the results in [13]. Previous
work recognized that when this parameter was negative,
synchronization must occur [12]. The present work quan-
tifies the rate of this synchronization in a new way.
In order to show the utility of these new bounds, we

investigate a novel form of noise-induced synchronization
arising in colloidal dispersions. A colloidal dispersion is
an assembly of micron-scale bodies suspended in a liquid.
Within soft matter physics, there is increasing interest in
manipulating colloidal dispersions of identically-made bi-
ological or manufactured objects [16, 17]. Uses and prac-
tical limitations of their rotational response have been
much explored recently [18–21].
Under gravity these bodies gradually drift downward

[22]. Sufficiently irregular bodies respond to constant
force by rotating so that a specific axis in the body aligns
with the force. Thereafter these bodies precesses around
this axis with a constant angular velocity [23, 24]. A set
of identical bodies in a dilute dispersion rotate together,
with random orientations around this axis. This orien-
tation amounts to a phase angle. By suitable random
changes in the direction of forcing, the bodies evolve into
a common phase, so that they have a common orienta-
tion. This evolution amounts to noise-induced synchro-
nization.
In Section II we recall the equation of motion governing

the rotation of a colloidal body under external forcing;
we then describe a random forcing procedure leading to
a phase map. In Section III we define the spreading pa-
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rameter of a phase-map system and derive the bounds on
entropy dictated by it, as announced above. In Section
IV we illustrate how altering the forcing of a colloidal
system alters the phase map to create various synchro-
nization behaviors consistent with these bounds. Finally,
in Section V we discuss limitations of our work and im-
plications for future work.

II. ROTATIONAL RESPONSE TO EXTERNAL

FORCE

A. Linear response matrix

We consider a rigid body in a fluid with some external

force, ~F (t) acting at the center of buoyancy and hydrody-
namic drag forces acting on the body’s surface [15]. We
consider the dynamics in the “creeping flow” regime, in
which inertial forces are negligible and the force transmit-
ted to a moving particle by the medium is proportional to

the particle’s velocity. The hydrodynamic forces ~F and

torques ~M are related to the body’s velocity ~v and angu-
lar velocity ~ω via a proportionality matrix. This matrix
can be represented in dimensionless block form:

[

~v
~ωR

]

=
1

6πηR

(

A T
T

T S

)[

~F
~M/R

]

. (1)

Here η is the viscosity of the fluid, R is the hydrody-
namic radius of the object, and T, A, and S are 3 × 3
sub-matrices [19, 22]. These depend on the shape of the
body and the position of its center of buoyancy within
the body. For simplicity we choose units such that 6πη
and R are unity. We choose the center of buoyancy as
our origin, thus eliminating the external torque on the
body, and we describe the rotational motion of the body
by the 3× 3 “twist matrix” T:

~ω = T~F . (2)

This ~ω immediately gives the time derivative of a rotating
T [15]:

Ṫ =

[

(

T~F
)×

,T

]

, (3)

where the brackets denote a commutator and ~v× is the
cross product matrix of a vector ~v with entries given by
[~v×]ik := ǫijkvj [24].

Choosing a constant ~F in the lab frame, we consider
the dynamics in a rotating reference frame fixed in the
object. T becomes constant and we obtain a differential

equation for ~F : ~̇F = −~ω × ~F = ~F × T~F .
We now consider bodies whose T matrices have only

one real eigenvector. We refer to these as “axially-
aligning” bodies as explained below. Such bodies have

one real eigenvalue, denoted λ. The eigenvector of λ de-
fines two opposite directions denoted by unit vectors η̂

and −η̂. Evidently, ~̇F vanishes when ~F lies along ±η̂:
the motion is steady, with constant ~ω. The self-aligning
property is incompatible with a symmetric T (which has
three real eigenvalues). Thus a self-aligning T must have
an antisymmetric part. The antisymmetric part of T de-
pends linearly on the position of the center of buoyancy,
governed by the mass distribution within the object [24].
There is necessarily a position where this antisymmet-
ric part vanishes; this position is known as the center of
twist. Whenever the center of buoyancy is sufficiently
far from the center of twist, two eigenvalues of T become
complex and the object becomes axially-aligning. Thus
axially-aligning objects form a large class. We shall con-
sider only axially aligning T from now on.

For these T’s the two orientations η̂ and −η̂ behave
differently. One of these—denoted η̂∗—is a stable steady
state. That is, any initial force direction evolves to the
η̂∗ direction [25]. The force aligns along the η̂∗-axis—
hence the name “axially aligning”. For future use we
define a body-fixed basis ê1, ê2, ê3 where ê3 is the aligning
direction η̂∗ as shown in Figure 1.

Looked at from the lab frame, a body in a steady state

imposed by some constant ~F rotates about this ~F with a

constant angular speed given by ~ω = λ~F . In this frame
the stability of the η̂∗ direction means that any orienta-
tion of the body evolves to make its ê3 direction align

with ~F , i.e. ~F · ê3 = |F |. (If ê3 is initially in the − ~F
direction, the motion is steady but unstable: any slight
rotation of the body causes a large rotation of ê3 into the

stable + ~F direction.)

Without loss of generality, we assume our force is along
the z-axis of the laboratory and we now assume the body
is in steady state motion. In what follows we define τ :=
2π for notational convenience [26]. We then define an
azimuthal angle φ ∈ [0, τ ] to be the angle between ê2 and
the laboratory’s y-axis also shown in Figure 1. For any
particular body in steady state motion, this φ increases
at the constant rate ω. Given a normalized constant force
oriented along the body’s ê3-axis, then ω is given by:

~ω = T~F = λ~F = λê3 . (4)

The axis of rotation ê3 and the azimuthal angle φ then
completely specify the orientation of the body.

We now consider a dilute dispersion of many such bod-
ies with identical T matrices subjected to the same force
~F , but with negligible interactions. Once a steady state
is established, all bodies in the ensemble have a common
ê3 direction. They differ only in their φ angles. These
depend on the history of the sample.
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FIG. 1: a) An orthographic projection of an axially aligned
body with labeled body axes ê1, ê2, ê3. b) A top view of the
body with the φ angle being the angle between the ê2 and
the lab y-axis. The force is applied in the lab positive z-axis
as pictured.

B. Impulsive changes in forcing and phase map

In this section we first describe a very simple forcing
procedure that can be characterized by a phase map. Our
system, when perturbed, returns to its aligned state after
some transient period denoted T . In the lab frame, we
consider a simple tilt in the applied force by an angle θ
after waiting for a time t1 > T . This tilted force then
acts for a further time t2, also longer than the transient
time T . The force Fθ(t) thus obeys

~Fθ(t) =

{

ẑ for t ∈ (0, t1)

x̂ sin θ + ẑ cos θ for t ∈ (t1, t1 + t2)
. (5)

When we switch the direction of the applied force at a
time t1, each body rotates to align with the new axis. Af-
ter the transient motion, all of the bodies will return to

rotating around the tilted ~F . Since the angular velocity
is constant and the same for each body in the ensemble,
no further alignment of the bodies can be achieved after
the transient period. Thus at the final time t2 the bod-
ies again differ from one another by a constant amount
in their azimuthal angles, which we denote as φ̃. The
complicated transient may cause two similarly oriented
bodies to become more similar, or it may make them
more different.
To decide whether the ensemble as a whole is becom-

ing more aligned, we first make an explicit definition of
the azimuthal angles φ and φ̃. We note that both the

new and the old ~F in (5) lie in the x− z plane; thus, the
y-axis is common to both the new and old plane of rota-
tion. The instant before the switch in forcing angle and
the resulting transient motion, we use each body’s axis,
ê2 and our lab frame y-axis to define φ for each body in

the ensemble. After ~Fθ has switched into the x− z plane
and all of the bodies in the ensemble have re-aligned,
each body’s ê2 and the lab’s y-axis again differ by some
azimuthal angle φ̃(t). This allows us to define a smooth
function ψθ(φ) : S

1 → S1 that maps initial orientations

to final orientations. After the transient φ̃ increases lin-

early in time. This means that for times t2 > T φ̃(t2)
can be expressed as a time-dependent term ωt plus a
fixed offset ψθ(φ1), where φ1 is the phase angle at time
t1, immediately before the tilt.

φ̃(t2) = ω t2 + ψθ(φ1) . (6)

This equation defines the phase map ψθ(φ). It is evi-
dently the final phase difference extrapolated back to the
moment of tilt.
For θ = 0, there is no change in the applied force

and the object maintains its current steady state with
no transient motion. With no transient motion, ψ0 is
the identity function. Since our differential equations de-
pend smoothly on initial conditions, the deformation of
ψθ from ψ0 must also be smooth and ψθ must have a
conserved winding number around S1 [15]. This ψθ(φ) is
a phase map for our system [13].
This ψθ formulation captures everything important

about the dynamics of this system with regard to align-
ing axially-aligning bodies under the tilted force program
defined in (5). Using it, we may infer the distribution of
phase angles after a single tilt, or after many tilts.
We can characterize an axially aligned ensemble by a

probability distribution p(φ) which gives the probability
of a randomly selected body having the orientation φ as
measured in our lab frame. Then our goal, complete syn-
chronization, corresponds to the probability distribution
being a delta function.

III. ENTROPY CHANGE UNDER A PHASE

MAP

The preceding section showed that the effect of an im-
pulsive change in forcing on a colloidal object can be
described by the phase map. Thus in this section we
consider an arbitrary dynamical system which, like the
colloidal object, has a stable steady state characterized
by a phase φ that increases at a constant rate. The sys-
tem may be altered by some sort of impulsive perturba-
tion that changes this phase to ψ(φ) after the system has
returned to a steady state. Earlier work [27, p. 95] con-
sidered the effect of periodic impulses. Here we consider
the effect of randomly timed impulses [9].
We first consider the effect of allowing our ensemble to

rotate for a given time. This produces a uniform shift
in the initial orientation or phase angle φ for the entire
ensemble and, since there is no transient motion, does not
change the overall distribution of phases in the ensemble.
The phase φ̃ after the shift is then given by φ+ α where
φ is the initial phase and α is the size of the shift. The
new probability distribution, p̃(φ̃), is merely shifted to

the new phase angles, p(φ) = p̃(φ̃).
Now we consider how the probability distribution

transforms under the additional action of ψθ, which for
simplicity we now denote as ψ. The phase after this op-
eration is given by
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φ̃ := ψ(φ + α) . (7)

To diagnose the effectiveness of a ψ to achieve synchro-
nization, we do not attempt to show that the entire circle
eventually maps to a single angle. Instead we follow the
approach of [15] and quantify the decrease in randomness
of an initially uniform probability distribution p. We use
information theoretic entropy [14], H , to quantify the
disorder of the ensemble. Given some probability distri-
bution function p, the functional H [p] is defined as

H [p] := −

∫

p log (p) , (8)

where log is the natural logarithm. We note that as p ap-
proaches a delta function distribution, H [p] approaches
negative infinity. Additionally, H [p] is maximal when p
is constant.

A. Monotonic ψ

For a monotonic ψ function, our probability distribu-
tion transforms simply:

p̃(φ̃) =
p(φ)

ψ′(φ+ α)
, (9)

where φ = ψ−1(φ̃)− α. For this case Moths and Witten
[15] showed that on average the entropy must decrease
indefinitely with each impulse.

B. Non Monotonic ψ

Moths and Witten showed that it is always possible
to choose a θ > 0 small enough that ψθ will be mono-
tonic [15]. However from numerical simulations it was
observed that there were non-monotonic ψ that also led
to orientational ordering. Thus we seek a more general
condition, valid for non-monotonic ψ, that would guaran-
tee an indefinitely decreasing entropy. Here (9) no longer
applies and a generalized treatment is needed.
We consider some smooth ψ function with a finite

number K − 1 of extrema such as the one illustrated
in Figure 2 [28]. (Here we have shifted φ and φ̃ so that
ψ(0) = 0 and ψ(τ) = τ). Since ψ increases by τ over the
range of φ, these extrema divide the domain into K in-
tervals where ψ(φ) is monotonic. Labeling the extremal
φ’s as φ1, ..., φK−1, the K monotonic intervals are then
[0, φ1], [φ1, φ2], ..., [φK−1, τ ]. Since ψ is strictly monotonic
on each interval [φk−1, φk], ψ has K well-defined inverses

ψ−1
k : φ̃ → φ. The domain for each ψ−1

k is [φ̃k−1, φ̃k]

where φ̃k = ψ(φk +α). An example of such a ψ function

with labeled φ and φ̃ is shown in Figure 2a.

a)

φ0 φ1 φ2 φ3φ̃0

φ̃2

ψ(φ)

ψ−1

1
(φ)

ψ−1

2
(φ)

ψ−1

3
(φ)

φ̃0 φ̃2 φ̃2φ̃1 φ̃1 φ̃3

φ0

φ1 φ1

φ2 φ2

φ3

φ̃1

φ̃3

b)

FIG. 2: a) A sketch of a non-monotonic ψ to assist with
notation with the extrema shown as (red) dots. b) Sketch of
the three inverse functions related to our example ψ. We
highlight the domain of each inverse in (orange) color along
the horizontal axis and the associated target in (green) color
along the vertical axis.

Each monotonic interval in φ contributes separately to
the new probability distribution, p̃, according to the ab-
solute value of (9). We denote p̃k to be the contribution
to the new probability distribution from the kth interval.
Formally written,

p̃k(φ̃) =
p(φ(k))

∣

∣ψ′(φ(k) + α)
∣

∣

, (10)

where φ(k) = ψ−1
k (φ̃) − α. The p̃k vanishes when there

is no kth pre-image. Summing the contributions from all
intervals, we have p̃ =

∑

p̃k.

With a well-defined probability distribution character-
izing how the orientations of the ensemble change, we
can now ask whether or not the ensemble becomes more
ordered or less ordered.

We now consider the entropy after a transient with
shift α, H̃α = H [p̃]. Our goal is to rewrite H̃α into the

form H̃α = H + ∆Hα where H is the entropy of the
ensemble before the application of ψ(φ + α). To do so

we rewrite H̃α in terms of the individual contributions
p̃k defined above



5

H̃α = −

∮

S1

p̃(φ̃) log
(

p̃(φ̃)
)

dφ̃

= −

∮

S1

(

K
∑

k=1

p̃k(φ̃)

)

log





K
∑

j=1

p̃j(φ̃)



 dφ̃ ,

(11)

where each p̃k(φ̃) is given by (10) for φ̃ ∈ [φ̃k−1, φ̃k] and

p̃k(φ̃) = 0 elsewhere.
We note that the function f(t) = t log(t) is a continu-

ous and convex function satisfying the following inequal-
ity

−

(

K
∑

k=1

ak

)

log

(

K
∑

k=1

ak

)

≤ −
K
∑

k=1

ak log(ak) , (12)

where each ak is positive [29, p. 101].
We use this inequality to obtain an upper bound on

(11) which we denote as Hx for simplicity.

H̃α ≤ −

∮

S1

K
∑

k=1

[

p̃k(φ̃) log
(

p̃k(φ̃)
)]

dφ̃ := Hx . (13)

Since the limits of the sum are independent of φ̃ we
bring it outside of the integral. Additionally each p̃k(φ̃)
is non-zero only over a certain interval so the bounds of
integration for each integrand can be reduced.

Hx =−

K
∑

k=1

∮

S1

p̃k(φ̃) log
(

p̃k(φ̃)
)

dφ̃

=−

K
∑

k=1

sgn(φ̃k−1 − φ̃k)

∫ φ̃k

φ̃k−1

p̃k(φ̃) log
(

p̃k(φ̃)
)

dφ̃ .

(14)

The sgn factor assures that the limits of integration
are in the conventional increasing order. As we can see
in Figure 2b, this is not always the case, since for the

integral
∫ φ̃2

φ̃1

, φ̃1 is larger than φ̃2.

Having separated the integral into separate parts
summed together we are in a position to perform a change
of variables with φ̃ = ψ(φ + α) and then sgn(φ̃k−1 −

φ̃k)dφ̃ = |ψ′(φ + α)| dφ and Hx simplifies to

Hx = −
K
∑

k=1

∫ ψ
−1

k
(φ̃k)−α

ψ
−1

k
(φ̃k−1)−α

p (φ)

|ψ′ (φ+ α)|

log

(

p (φ)

|ψ′ (φ+ α)|

)

|ψ′(φ+ α)| dφ

= −

K
∑

k=1

∫ φk

φk−1

p (φ) log

(

p (φ)

|ψ′ (φ+ α)|

)

dφ .

(15)

By our construction of the intervals, [φk−1, φk], we can
combine our sum over integrals into one integral over the
unit circle and then substitute in H [p] using its definition
(8)

Hx = −

∮

S1

p (φ) log

(

p (φ)

|ψ′ (φ+ α)|

)

dφ

= H [p] +

∮

S1

p (φ) log |ψ′(φ+ α)| dφ .

Using H̃α ≤ Hx to compare H̃α = H [p] + ∆Hα with the
above we find that ∆Hα ≤

∮

S1 p (φ) log |ψ
′(φ+ α)| dφ.

Thus to ensure change in entropy ∆Hα < 0, it is sufficient
to require that

∮

S1 p (φ) log |ψ
′(φ+ α)| dφ < 0.

We cannot expect that ∆Hα will be less than zero for
all choices of p and α. Indeed, if p is concentrated in a
region where |ψ′| > 1 our ∆Hα would be positive and
the entropy would have increased.
Though the entropy may increase for particular p and

α, it need not increase when averaged over α. We let
the shift α ∈ [0, τ ] be chosen randomly and we obtain an
upper bound for the expected value of ∆Hα, denoted as
〈∆Hα〉α:

〈∆Hα〉α :=
1

τ

∮

S1

∆Hαdα

≤
1

τ

∮

S1

p (φ) dφ

∮

S1

log |ψ′(u)| du

≤
1

τ

∮

S1

log |ψ′(u)| du .

(16)

The right side of (16) is simply the average of
log |ψ′(u)| over the unit circle, denoted as 〈log |ψ′|〉. We
define this quantity derived from the phase map as the
spreading parameter. Evidently this upper bound on
〈∆Hα〉α is independent of the probability distribution
p(φ) although ∆Hα itself depends heavily on p(φ). The
importance of 〈log |ψ′|〉 is well appreciated in the litera-
ture. Previous work [7, 30] showed that it is equal to the
average Lyapunov exponent 〈Λ〉 governing the exponen-
tial spreading of two nearby phase angles under a phase
mapping. Eq. 16 goes farther by relating this property
of nearby points to the entropy, a general measure of dis-
order. We give further discussion of the entropy and its
relationship to other measures of synchronization in Sec.
V.
Thus far, we have only been considering the change in

entropy for a single iteration, but now we wish to consider
the change in entropy after many iterations. In general,
the average change in entropy after N iterations would

be given by ∆HN = 1
N

∑N

n=1 ∆Hαn
[pn], where pn is the

probability distribution function before the nth iteration
and αn is the randomly chosen shift angle at the nth
step.
To obtain the expected value for the average change

in H after N iterations, we take some random sequence
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of (α1, α2, ...αN ) in the space of [0, τ ]N . We know that
while each pn is dependent on all the previous αm, it is
independent of αn.

〈

∆HN

〉

=
1

N

N
∑

n=1

〈∆Hαn
[pn]〉αn

=
1

N

N
∑

n=1

〈∆Hα〉α

≤ 〈log |ψ′(u)|〉u .

(17)

From this we obtain our general constraint for our forc-
ing program to achieve complete alignment:

〈log |ψ′|〉 < 0 .

If the spreading parameter is negative, then
〈

∆H
〉

is

guaranteed to be negative as well. When
〈

∆H
〉

is neg-
ative, the entropy of the system, H will, on average, de-
crease indefinitely after many iterations. As the number
of iterations approaches infinity, H will approach nega-
tive infinity. As this occurs, our probability distribution
will, on average, be concentrated into a set of zero mea-
sure on the unit circle by the central limit theorem [15].
When the spreading parameter is negative, Eq, (16)

enforces a minimal average decrease of the entropy after
a pulse for any given state of the ensemble; thus Eqs.
(16) and (17) give a gauge of how well a given forcing
protocol reduces randomness.
One may now ask whether

〈

∆H
〉

can also remain neg-
ative when the spreading parameter is positive. Below
we argue that it cannot, so that alignment occurs if and
only if the spreading parameter is negative.

C. Entropy decrease when entropy is small

When the spreading parameter is negative, the previ-
ous section implies that the entropy becomes indefinitely
small after many iterations of the force shift. In this
regime we argue that the inequality of Eq. (16) becomes
an equality. That is, a new constraint pushes 〈∆H〉 to-
wards its upper bound. Indeed, 〈∆H〉 should approach
the spreading parameter as H [p] → −∞ even when the
spreading parameter is not negative. The simplification
occurs because a small H [p] means that the probability
measure p(φ) is concentrated into an arbitrarily small
fraction of the circle. Our arguments below consider a
subset of such p(φ)’s, namely those which vanish except
for a finite number of small segments of the circle whose
maximum width is ǫ. Evidently H → −∞ as ǫ → 0 for
such p(φ)’s.
The bound of (16) arises from the convexity property

given in (12), applied to the final entropy H̃α and the
quantity Hx. We now revisit this convexity property for
the case where the initial distribution p(φ) is strongly

φ0 φ1 φ2 φ3

φ̃3

φ̃0

φ̃1

φ̃2

ψ(φ)11

!"

FIG. 3: Illustration of multiplicity C when probability is
strongly concentrated. Dark colored (blue) bars denote
regions of nonzero probability on the φ axis. Here each bar
maps into a single bar on the vertical φ̃ axis and the
multiplicity C(φ̃) defined in the text is 1. The same
one-to-one mapping is preserved for generic shift angles α.
However, for certain α’s, shown by light colored (orange)
bars, the mapped regions overlap. The two bars in φ map
into a single bar in φ̃. For this α and φ̃ the multiplicity
C(φ) > 1. As the width of the segments decreases, the

fraction of φ̃ for which this overlap occurs becomes
vanishingly small.

concentrated. Now we seek a constraint limiting the sep-
aration between Hα and Hx. We may readily choose the
K weights ak in (12) so as to maximize or minimize the
difference between the left and right sides of (12). We
may reduce the difference to zero by choosing all but one
of the ak to vanish. To maximize the difference, we must
fix the sum of the ak, denoted A. Then, the difference
is maximal when all the ak are equal so that ak = A/K
[31]. Using this maximum condition we infer

K
∑

k=1

ak log

(

K
∑

k=1

ak

)

−

K
∑

k=1

ak log ak

≤ A logA−A log(A/K) = A log(K) .

(18)

We now apply this relation to Hx − H̃α from (11) and
(13) above. Using these equations

Hx − H̃α =

∮

S1

dφ̃





K
∑

k=1

p̃k(φ̃) log





K
∑

j=1

p̃j(φ̃)





−
K
∑

k=1

p̃k(φ̃) log
(

p̃k(φ̃)
)

]

.

(19)

The integrand in (19) has the same form as the left

side of (18), identifying ak as p̃k(φ̃). We may restrict φ̃

to those values with nonvanishing probability p(φ̃), since

the integrand vanishes where p̃(φ̃) vanishes. For values

of φ̃ where p̃(φ̃) does not vanish, at least one of the p̃k(φ̃)
must contribute. We call the number of nonzero p̃k the
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“multiplicity” for this φ̃ and denote it as C(φ̃). Evidently
C can be no larger than the number of monotonic regions
K. However, for strongly confined initial distributions
p(φ) that vanish over large regions, the multiplicity can
easily be smaller than K. Figure 3 shows an example
whereK = 3 but C = 1 or 2. The sums in (19) have C(φ̃)
nonzero terms in them. Thus we may replace K in (18)

by C(φ̃). The A factor is the sum of the p̃k contributions;

this is simply p̃(φ̃). Thus the right hand side of (18)

amounts to p̃(φ̃) logC(φ̃). Replacing the integrand in

(19) by p̃(φ̃) logC(φ) yields

Hx − H̃α ≤

∮

S1

dφ̃ p̃(φ̃) logC(φ̃) . (20)

As noted in Eq (15) H̃α −Hx is simply the difference
between the entropy change ∆Hα and the unaveraged
spreading parameter

∮

S1 p (φ) log |ψ
′(φ+ α)| dφ. Thus

the inequality of (20) amounts to

∮

S1

p (φ) log |ψ′(φ+ α)| dφ−∆Hα

≤

∮

S1

dφ̃ p̃(φ̃) logC(φ̃) .

(21)

Upon averaging over α, the left side becomes 〈log |ψ′|〉 −
〈∆Hα〉α, which was shown to be greater than zero in
(16). Combining with (21) we infer

0 ≤ 〈log |ψ′|〉 − 〈∆Hα〉α ≤

〈∮

S1

dφ̃ p̃(φ̃) logC(φ̃)

〉

α

.

(22)
This inequality is evidently strongest when the multi-
plicity C is smallest. We now argue that when p(φ) is
confined to arbitrarily narrow segments, C approaches 1
and the right side of (22) approaches 0. Figure 3 shows

why narrowing the segments leads to smaller C(φ̃)’s. At

a given value of φ̃ on the vertical axis, there is typically
no probability, and thus no contribution to C. For a
small fraction of this axis shown by colored bars, C is
defined. For the typical case, shown in dark color (blue),

the probability at every φ̃ comes from exactly one bar of
nonzero probability in p(φ). This C is only greater than
1 in situations like that shown by the light-colored (or-
ange) bars. Here two different bars of nonzero p(φ) have

mapped into the same φ̃ over a small subsegment, via
different monotonic intervals of ψ(φ). In general C can
only be greater than 1 when two or more bars overlap in
this way.
We now reduce the widths of the bars by some com-

mon factor. This has no effect on φ̃’s for which where
there was no overlap: C remains 1. However in cases
of overlap like the light bars, the subsegment of overlap
evidently decreases. There is no φ̃ for which C increases,
and there are overlap regions for which C decreases. Thus
p̃(φ̃) logC must decrease for any normalized distribution

p̃. There is no bound to this decrease except when C(φ̃)

approaches 1 for all φ̃. Thus the right side of (22) ap-
proaches 0 and 〈∆Hα〉α must approach 〈log |ψ′|〉. This
reasoning strongly indicates that for generic phase maps
ψ(φ) and generic concentrated p(φ), the change of en-
tropy must approach 〈log |ψ′|〉 as observed.

IV. NUMERICAL INVESTIGATION

In this section we investigate the effect of our tilting
protocol via specific numerical calculations. Our numer-
ical work is of two kinds. One set of tests is based on
integrating (2) through a sequence of tilting forces for a
given T. A second set of tests infers the final state from
the ψθ functions of this T. We wish to check that (a)
the orientational ordering behavior is as expected, (b)
whether or not the spreading parameter in (17) is a good
guide to how the entropy will evolve for a given case.
Our study is conducted via a sequence of four proce-

dures denoted A–D, which we now describe.

A. Creating an ensemble of initial objects

(A1) We first generate a 3 × 3 matrix with entries
randomly chosen from the unit interval until a matrix
with a complex eigenvalue is found. We designate this to
be our original axially-aligning body, represented by T0.
(A2) We apply a constant force along the z-axis. The

differential equation governing T0’s response to a general
force in the x− z plane is obtained from (3). We record
it here for later reference:

Ṫ(t) =







T ·





sin θ
0

cos θ









×

,T



 , (23)

where θ is the angle the force makes with the z-axis. Thus
to find the response of T to a force along the z-axis, we
solve (23) with θ = 0. We solve this differential equation
for sufficiently long time tmax, until the solution’s stable
real eigenvector, given by ê3, is properly aligned with the
lab’s z-axis. For simplicity, we designate this properly
axially aligned body and the matrix that describes its
orientation as T.
(A3) We then define the body axis ê2 such that ê2 of

T is parallel the y-axis of our lab frame. This gives us a
common axis to define our azimuthal angles, φ. Thus for
any T, the angle −φ is defined as the positive rotation
about ê3 needed to rotate ê2 into the y-axis.
(A4.1) To create an initial ensemble of identical bod-

ies, 500 angles were drawn randomly from [0, τ ], which
were used to make 500 different rotations of T about the
z-axis. In the language developed in Section III, we can
think of these 500 angles as our initial azimuthal angles,
φj , for the bodies in our ensemble j = 1, 2, ...500. No-
tationally, these initial 500 angles, {φj}0, designate 500
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φ1
φ2

φ3

ψ(φ3)

ψ(φ2)

ψ(φ1)

a)

b)

c)

d)

FIG. 4: A depiction of the B protocol that is used to
compute the ψθ(φ) function. In the two rows labeled a) we
show three representative bodies with from the ensemble j =
1, 2, and 3, as seen from the z-axis (top row) and from the
y-axis (second row). Each body’s ê3 (blue) is already aligned

with the lab z-axis as enforced by a common force ~F . The
initial angles φ are measured from the lab’s y-axis to the
body’s ê2 axis (green). Row b) shows the bodies

immediately after ~F has been tilted. Row c) shows the

bodies at some time after they have re-aligned with this ~F .
Rows d) show these bodies rotated non-dynamically so that
the aligned direction is again along z, in the bottom row,
seen from the z-axis, the angles ψ are indicated.

different angles that correspond to our initial ensemble,
{Tj}0, where a Tj is a φj rotation of T about the z-axis.
We use the subscript zero to indicate that this is the
initial ensemble of our iterative scheme.
(A4.2) Another useful ensemble is one that has nearly

a delta function probability distribution. In this case, we
proceed as in (A4.1) but we obtain 500 angles drawn
randomly from [0, τ

100000 ].

B. Determining function ψθ(φ)

The steps for determining the phase map ψθ(φ) are il-
lustrated in Figure 4. (B1) We first use (23) with the
nonzero tilt angle θ to evolve the {Tj} ensemble from

their initial values generated in (A4.1), {Tj}0 for the time
tmax. (B2) The matrix of each body is explicitly rotated
about the lab’s y-axis by −θ, so that each body’s ê3-axis
is again parallel to the lab’s z-axis. (B3) Using the body
axis ê2 defined with T, we obtain the 500 corresponding
values of ψ resulting from the transient motion of (B1).
Unlike the construction of ψ function found in [15], this
construction says nothing about what the value of ψ(0)
should be[32]. (B4) The one-to-one matching of initial
φ to corresponding ψ defines our function ψ(φ) by in-
terpolation with a 3rd degree polynomial curve between
points with periodic boundary conditions.

C. Evolving the ensemble over many tilts

(C1) The forcing program acts on some ensemble,
{Tj}0 like those constructed in (A4.1) or (A4.2) and the
program has N steps, where N is the number of times
in our sequence {tn}. Each tn is chosen randomly from
[0, τ

ω
], where ω is the angular velocity of the body during

steady state motion obtained from (4).
(C2) The nth step of the forcing program involves

evolving the entire ensemble, {Tj}n−1, using (23) with
the chosen tilt angle θn for a predetermined, sufficiently
long period of time tmax. We evolve the resulting ensem-
ble further using the same equation for a time tn taken
from {tn}. If n is odd, θn = θ, the tilt angle determined
in (B1), and when n is even, θn = 0. By the rotation
at the end of the nth step we have obtained the new
ensemble {Tj}n.
(C3) At the end of each step, we take measurements

of the ensemble {Tj}n. For each body that is in the
ensemble, Tj , we find the angle φj about the ê3 body
axis as we did in (B2). This gives us a distribution angles
at the nth iteration, {φj}n. From the distribution we
estimate the entropy, H of the system (8) using a nearest
neighbor estimate [33]:

H [{φj}] =
1

M

M
∑

j=1

logλj + log [2M − 2] + γ , (24)

where λj is the angular distance between φj and its near-
est neighbor along the circle, M = 500 for our work and
γ is the Euler-Mascheroni constant.

D. Alternative evolution via ψ function

(D1) We can also carry out our forcing program with-
out simulating the dynamics at every step. Again, using
(23), the tilt angle θ and sequence of times {tn}must first
be specified. (D2) We then compute two functions fol-
lowing steps outlined in section IVB: ψθ(φ) and ψ−θ(φ).
We note that ψθ(φ) = ψ−θ(φ + τ

2 ) −
τ
2 so all of our an-

alytical arguments remain valid since the derivatives are
equal up to a shift in φ. (D3) The program acts on
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FIG. 5: The first column shows the ψ(φ) functions obtained as described in section IVB, for both positive and negative θ.
Using the method of sections IVC, the evolution of p(φ) is shown in the second column using a density plot with the iteration
step of the program increasing upward along the vertical axis. The inset in Row a) indicates the density scale. As anticipated,
the final p(φ) for a), b), and c) is concentrated near a single angle that jumps discontinuously with each time step. For rows
d) and e), an initially concentrated p(φ) rapidly spreads to cover a broad range of angles. The third column shows the
evolution of the entropy using explicit dynamics of Section IVC in light color (yellow) and the phase map of Section IVD in
dark color (blue). The two methods agree except for the smallest entropies. Here fluctuations due to numerical roundoff error
give larger values for the section IVC method. Straight lines have slope equal to the spreading parameter 〈log |ψ′|〉. While
the sign of the prediction agrees with the behavior in all cases, the rates of decrease agree only qualitatively.
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the initial 500 angles, {φj}0 that were used to define the
ensembles constructed in (A3.1) or (A3.2). As before,
the program has N steps, where N is the length of our
sequence {tn}.
(D4) The nth step of the forcing program involves

directly applying the function ψθi(φ) + αi modulo τ to
the each azimuthal angle in {φj}n−1. If n is odd, θn = θ,
and when n is even, θn = −θ. Meanwhile αn = ωtn,
where tn is the nth term in the sequence of randomly
chosen times, {tn}. At the end of the nth step we have
obtained the new ensemble of azimuthal angles {φj}n.
(D5) At the end of each step, we estimate the en-

tropy, (8) of the angles {φj}n that define the ensemble.
Again, we use the nearest neighbor estimate (24), this
time slightly modified to account for the limits of double-
floating point precision so as to avoid indefinite values.

E. Results

We performed the simulations described above for sev-
eral twist matrices T. Here we present the results for
a single T that was randomly generated [34]. Figure 5
shows the results for five simulations of the forcing pro-
gram on this T. For all five simulations we used the
same sequence sequence of random times, {tn}, so that
the angle θ of the forcing program was the primary differ-
entiator. Additionally, in Figure 6, we demonstrate how
the alignment process differs for different sequences of
random times {tn} as measured by the entropy evolution
during each of 30 sequences.
In left frame of Figure 5a, we have a ψ function that

is monotonic, and we would expect the corresponding al-
ternating forcing program will achieve alignment. The
center plot is a density plot showing how the initially
uniform probability distribution evolves with successive
iterations. The right frame shows the evolution of the
entropy H with successive iterations. The solid line has
a slope equal to the spreading parameter, 〈log |ψ′|〉, indi-
cating the expected rate of decrease of the entropy. The
entropy indeed fluctuates around this line with a similar
average slope. Figure 6a shows that these fluctuations
decrease greatly when one averages the entropy over 30
different simulations.
Similarly, in the left frames of Figures 5b,c the tilt

angles have been increased so that the ψ functions are
increasingly non-monotonic. In the center frames of Fig-
ure 5b,c, we again show how the probability distribution
evolves during 100 iterations. Row b shows a marked in-
crease in the rate of alignment. In the right hand frames
the spreading parameter slopes are generally shallower
than the observed rates of decrease, illustrating a case
when the spreading parameter bound (17) is not satu-
rated. Since ψ is non-monotonic, we may only obtain
an upper bound the average change in entropy, which is
demonstrated for this particular simulation in the right
frames of Figure 5b,c. This upper bound relationship
on the decrease in entropy is clearer when viewed next
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FIG. 6: Repeated simulations of the evolution of the
entropy using the method found in IVD using the
corresponding ψ functions in Figure 5. Separate runs of the
simulations are differentiated by 30 different time sequences,
{tn}. The average entropy evolution is in dark gray. The
solid line has a slope equal to the spreading parameter, the
upper bound on the average growth rate.
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to the average of 30 different simulations in Figure 6c.
While the upper bound appears to be violated in Figure
6b, this discrepancy can be attributed to the limits of
numerical precision of our simulation when the entropy
becomes sufficiently small.
When considering the graphs depicting the change in

entropy over many iterations, one will notice that there
are periods in which the entropy increases and the align-
ment is somewhat degraded. One should expect some
variability, since there are intervals with |ψ′| > 1 that
lead to un-alignment as well as intervals that lead to
alignment. Since we are choosing a random sequence
of times, we would expect that there may be “unlucky”
parts of that sequence that lead to this variability.
In the left frames of Figures 5d,e we again have ψ that

are not monotonic, but now they have a spreading pa-
rameter that is positive, indicating an increase in entropy.
Since we wish to test for such an increase, we generate an
initial ensemble that starts out in a nearly synchronized
state using (A3.2) for our simulations depicted in the cen-
ter frames of Figures 5d,e. The spreading parameter is
still expected to be an upper bound on the change of en-
tropy and we see in the right frames of Figures 5d,e, that
is mostly the case. In view of equation (22) we also expect
that in the beginning of the simulation, while the ensem-
ble is nearly aligned, the spreading parameter should be
equal to the change in entropy, which is consistent with
the Figures 6d,e.

V. DISCUSSION

The work presented above broadens understanding of
noise-induced synchronization on two fronts. On the one
hand, it provides a simple and general connection be-
tween the phase map induced by random impulses and
the degree of synchronization it produces. On the other
hand, it illustrates how noise-induced synchronization
behaves in the new context of colloidal alignment. Here
we discuss the latter subject first, noting salient features
of the numerical experiments, and suggesting implica-
tions for colloidal phenomena. We identify the known
phenomenon of clustering [11] in relation to our colloidal
study and briefly assess the practical applicability of this
method. Next we discuss the present results using en-
tropy in light of current methods of quantifying synchro-
nization. We suggest ways that our entropy-based pre-
dictions might be generalized to broader types of noise.

A. Colloidal alignment

As noted above, our numerical results in Figure 6 on
the colloidal system confirm our theoretical claims. First,
the average rates of decrease of the of the entropy were
found to be consistent with our spreading parameter,
identified as a Lyapunov exponent in prior work. Second,
the decrease became equal to the bound in all cases where

the initial entropy was small, as our arguments implied.
Third, the averages predicted by our derivations are well-
behaved: one may determine these averages readily using
a moderate number of trials.

In our simulations the predicted average gave useful
information about results of a single forcing sequence.
That is, entropies in individual aligning sequences far
from the predicted average are rare. For example, in the
system of Figure 6b one may predict the number of it-
erations needed to attain a target entropy of -10. The
average entropy has reached this target in about 17 it-
erations. Of the 30 runs contributing to the average, all
reached the target in less than 60 iterations, near twice
the predicted number. This suggests that the probabil-
ity of finding entropies greater than -10 after 60 itera-
tions is less than three percent. Similar behavior holds
throughout the regime where the observed average fol-
lows the predicted average (i.e. where numerical errors
did not degrade the simulation.) With high probability
the number of iterations needed to attain a given entropy
is within a factor 2 of the predicted number. This sta-
tistical regularity seen in our colloidal dynamics suggests
that our predicted averages may be similarly useful for
synchronization of more general systems.

One aspect of the colloidal system that is ripe for study
is the effect of different kinds of external perturbation or
noise. The noise investigated above was the simplest kind
treated in the noise-induced synchronization literature:
a sequence of randomly-timed identical impulses. But
since synchronization is observed to occur under much
more general noise conditions in the literature, we expect
similar generalizations to be possible in our context. In-
deed, our methodology can immediately generalized to
the case of impulses of statistically varying amplitude
θ. The effect of changing the amplitude, as seen in Fig-
ure 5, is simply to change the ψ(φ) function. As shown
in the text, any ψ(φ) that has a negative spreading pa-
rameter must reduce the entropy on average. Thus a
random mixture of such impulses must also reduce the
entropy indefinitely by the same reasoning that we used
for identical impulses. The literature considers two other
aspects of the noise: correlated spacing [35] and incom-
plete relaxation between impulses [11, 36]. Here too it
was found that these generalized noises allowed synchro-
nization. One is led to speculate that a broad class of
random external driving might produce synchronization
in our system as well.

This notion leads to an intriguing prospect for a col-
loidal dispersion. We imagine that the objects are dis-
persed in a turbulent fluid, in which each fluid element
is undergoing chaotic acceleration. Locally this acceler-
ation is spatially uniform so that objects within a small
region see the same random sequence of accelerations.
As a result one expects nearby objects to become orien-
tationally aligned [37].

Achieving synchronized motion in the colloidal system
brings practical benefits. In a colloidal dispersion syn-
chronization means orientational alignment. With such
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alignment an anisotropic response such as scattering can
provide a new level of information. The measurement
now reflects the properties of the objects at a particular
orientation; it shows the effect of different orientations as
the objects rotate. Further, any response that affects the
motion of the objects produces the same motion in all of
the aligned objects. This offers ways to manipulate the
objects that are not possible without the prior alignment.
Though our system offers a novel case of noise-induced

synchronization, our investigation of it has been far from
complete. As noted above, different shapes can lead to
a great range of aligning behavior. This includes bodies
that do not have a globally stable aligning direction. Our
study treated only one body as a function of the ampli-
tude (θ) of the perturbations on it. Nevertheless, prior
works [15] and our own qualitative experience, lead us
to believe the synchronization we observed was typical of
bodies that self-align along a unique axis.

B. Broader implications

Our experience with the colloidal system illustrates
both the benefits and the limitations of our entropic ap-
proach to quantifying the synchronization process. Our
approach complements the prevalent one based on the
averaged Lyapunov exponent 〈Λ〉. This 〈Λ〉 quantifies
the relative motion of adjacent points φ on the limit cy-
cle. This 〈Λ〉 provides powerful information about the
synchronization process. Further, as noted above [7, 30],
the average 〈Λ〉 can be determined from the phase map
ψ(φ): 〈Λ〉 = 〈log |ψ′|〉. Naturally, this 〈Λ〉 accounts for
the final convergence of the probability distribution p(φ)
towards a common single phase, when all the points are
adjacent. Thus it accounts for measures of synchroniza-
tion such as the variance of φ or its Fourier coefficients
in this final regime. Moreover, for weak forcing (with
monotonic ψ(φ)) the Lyapunov exponent quantitatively
describes synchronization [12, 38] throughout the syn-
chronization process.
Though these regimes give strong constraints on syn-

chronization, they do not cover a regime of great inter-
est, where the forcing is not weak and where the syn-
chronization is far from complete. Here the probability
p(φ) evolves from a completely disordered state towards
a more ordered one. To quantify this evolution requires
an appropriate measure of disorder. As shown above,
the entropy provides a useful measure. Using entropy,
Eq. (17) gives a rigorous lower limit on the order added
on average by a noise pulse in terms of 〈Λ〉 or equiva-
lently 〈log |ψ′|〉 for any initial state of disorder. Thus 〈Λ〉
indicates the growth of order in regimes not previously
treated in the literature. This adds justification for the
use of 〈Λ〉 as a figure of merit for phase synchronization
[39].
The inequality of Eq. (17) suggests that the entropy

may decrease faster than the bound dictated by 〈log |ψ′|〉
or 〈Λ〉. Our observations in Fig. 6 confirm this ex-

tra ordering effect. Indeed, much of the synchroniza-
tion or desynchronization process is not captured by the
behavior of nearby pairs of points. Specifically, two
points on the cycle may come close together after a pulse
even when they were far apart before the pulse. These
events necessarily occur whenever ψ(φ) is not monotonic,
and they significantly impact the probability distribution
p(φ). These events enter our formalism via the multiplic-

ity factor C(φ̃) of Sec. III C. (Such discontinuities also
happen in reverse: two initially adjacent points may map
into distant points. Such events are captured in comput-
ing 〈Λ〉, as noted e.g. in Ref. [30].) Since 〈Λ〉 gives an
incomplete characterization of development of order, one
needs an independent way to quantify the degree order
of a given p(φ). The entropy provides such a way.

The entropy differs from the conventional measures of
synchronization used in the noise-induced synchroniza-
tion literature. Thus some justification for departing
from convention is in order. The conventionally used
Fourier moments Rk [12, 38, 40] readily quantify the ap-
proach to a single phase angle, but give an uncertain
measure of ordering in general. The same is true for the
φ-φ correlation function [41], equivalent to |Rk|

2. If sev-
eral tight clusters are shifted in their relative positions
on the phase circle, the Rk’s may change substantially
but the entropy does not: the entropy of a set of proba-
bilities does not depend on how these are arranged. Still,
our main reason for using the entropy is that it was nec-
essary in order to arrive at our main result, Eq. (16),
which mandates the growth of order in a simple and gen-
eral way. We know of no way to express this behavior
using Rk or other measures of ordering.

Our simulations showed interesting behavior even
when the spreading parameter was positive. Here when
the initial state had small entropy, the average rate of
increase agreed with the spreading parameter. However
this increase crosses over to a state of constant entropy in-
dicating partial order. This constant appears to increase
as the spreading parameter increases. Similar behavior
has been noted in the noise-induced synchronization lit-
erature [11]. There the concentration of the phase angles
into a few narrow intervals is known as “clustering.” It
appears that the entropy language may be a useful way
to quantify this clustering.

A drawback of the entropy measure is that it does
not literally measure synchronization. It does not dis-
tinguish between concentration of probability at a single
point versus concentration at multiple points. Despite
this limitation, the entropy does give a valuable measure
of synchronization, as discussed above. Further, in our
colloidal simulations, in all the cases where the entropy
decreased to a numerically limited level, the final state
had converged to a single narrow region of phases.
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VI. CONCLUSION

A significant class of colloidal dispersions can in prin-
ciple be aligned by impulse noise. The potential benefits
of this alignment are great, as noted above. Yet the ex-
perimental feasibility of gaining these benefits has yet to
be explored. This work provides a new path to under-
stand, optimize and generalize this type of alignment. To
develop these methods seems promising for further study.
Additionally we have shown how entropy may be used

to study the rate of synchronization in more general
systems. Since the behavior of entropy can be related
to simple quantities related to the intrinsic, determin-
istic dynamics, it can aid the current rapid progress
[6, 11, 30, 38–40, 42, 43] in understanding how noise can
create order in dynamical systems.
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