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We study the short-time behavior of the probability distribution P(H, t) of the surface height
h(x = 0, t) = H in the Kardar-Parisi-Zhang (KPZ) equation in 1 + 1 dimension. The process starts
from a stationary interface: h(x, t = 0) is given by a realization of two-sided Brownian motion
constrained by h(0, 0) = 0. We find a singularity of the large deviation function of H at a critical
value H = Hc. The singularity has the character of a second-order phase transition. It reflects
spontaneous breaking of the reflection symmetry x ↔ −x of optimal paths h(x, t) predicted by the
weak-noise theory of the KPZ equation. At |H | ≫ |Hc| the corresponding tail of P(H) scales as

− lnP ∼ |H |3/2/t1/2 and agrees, at any t > 0, with the proper tail of the Baik-Rains distribution,

previously observed only at long times. The other tail of P scales as − lnP ∼ |H |5/2/t1/2 and
coincides with the corresponding tail for the sharp-wedge initial condition.

PACS numbers: 05.40.-a, 05.70.Np, 68.35.Ct

I. INTRODUCTION

Large deviation functions of nonequilibrium stochastic
systems can exhibit singularities, i.e. non-analytic depen-
dencies on the system parameters. In dynamical systems
with a few degrees of freedom the singularities can be as-
sociated with the Lagrangian singularities of the under-
lying optimal fluctuational paths leading to a specified
large deviation [1–3]. In extended macroscopic systems
the nature of such singularities, identified as nonequilib-
rium phase transitions [4–6], is not yet fully understood.
So far several examples of such singularities [7–9] have
been found in stochastic lattice gases: simple microscopic
models of stochastic particle transport [10–12].
Here we uncover a non-analytic behavior in a large-

deviation function of the iconic Kardar-Parisi-Zhang
(KPZ) equation [13]. This equation represents an impor-
tant universality class of non-conserved surface growth
[14–20], which is directly accessible in experiment [21,
22]. In 1 + 1 dimension the KPZ equation,

∂th = ν∂2
xh+ (λ/2) (∂xh)

2 +
√
D ξ(x, t), (1)

describes the evolution of the interface height h(x, t)
driven by a Gaussian white noise ξ(x, t) with zero mean
and covariance 〈ξ(x1, t1)ξ(x2, t2)〉 = δ(x1 − x2)δ(t1 − t2).
Without loss of generality we will assume that λ < 0 [23].
An extensive body of work on the KPZ equation ad-

dressed the self-affine properties of the growing interface
and the scaling behavior of the interface height at long
times [14–16]. In 1+1 dimension, the height fluctuations
grow as t1/3, whereas the correlation length scales as t2/3.
These exponents are hallmarks of the KPZ universality
class.
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Recently the focus of interest in the KPZ equation in
1 + 1 dimension shifted toward the complete probabil-
ity distribution P(H,T ) of the interface height h(0, T )−
h(0, 0) = H (in a proper moving frame [24]) at a spec-
ified point x = 0 and at any specified time t = T > 0.
This distribution depends on the initial condition [17–20].
One natural choice of the initial condition is a station-

ary interface: an interface that has evolved for a long
time prior to t = 0. Mathematically, it is described by a
two-sided Brownian interface pinned at x = 0. In this
case, in addition to averaging over realizations of the
dynamic stochastic process, one has to average over all
possible initial pinned Brownian interfaces with diffusiv-
ity ν. Imamura and Sasamoto [25] and Borodin et al
[26] derived exact explicit representations for P(H,T ) in
terms of the Fredholm determinants. They also showed
that, in the long-time limit and for typical fluctuations,
P converges to the Baik-Rains distribution [27] that is
also encountered in the studies of the stationary totally
asymmetric simple exclusion process, polynuclear growth
and last passage percolation [17].

Here we will be mostly interested in short times. As
we show, at short times the interface height exhibits very
interesting large-deviation properties. Instead of extract-
ing the short-time asymptotics from the (quite compli-
cated) exact representations [25, 26], we will employ the
weak noise theory (WNT) of the KPZ equation [28–33]
which directly probes the early-time regime [34, 35]. In
the framework of the WNT, − lnP is proportional to the
“classical” action over the optimal path: the most prob-
able history h(x, t) (a non-random function of x and t)
conditioned on the specified large deviation. A crucial
signature of the stationary interface is the a priori un-
known optimal initial height profile which is selected by
the system out of a class of functions h(x, 0) carrying cer-
tain probabilistic weights and constrained by h(0, 0) = 0.

The central result of this paper is that at short times
the optimal path and the optimal initial profile exhibit
breaking of a reflection symmetry x ↔ −x at a certain
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critical value H = Hc. This leads to a non-analytic be-
havior of the large deviation function of H defined be-
low. This non-analyticity exhibits all the characteristics
of a mean-field-like second-order phase transition, where
the role of the equilibrium free energy is played by the
large deviation function of H . The non-analyticity oc-
curs in the negative (for our choice of λ < 0) tail of P .
At |H | ≫ |Hc| this tail scales as − lnP ∼ |H |3/2/T 1/2

and agrees, at any T > 0, with the corresponding tail of
the Baik-Rains distribution [27]. The latter was previ-
ously derived [25, 26] only at long times. Here we show
that it is applicable at any time T > 0 for H < 0 and
|H | ≫ |Hc|. We also find that the opposite, positive tail
scales, at large H , as − lnP ∼ H5/2/T 1/2. It coincides,
in the leading order, with the corresponding tail for the
sharp-wedge initial condition [35, 36], and we provide the
reason for this coincidence.
The rest of the paper is organized as follows. In Section

II we present the WNT formulation of the problem. Sec-
tion III deals with the limit of small H which describes
a Gaussian distribution of typical height fluctuations at
short times. Section IV describes a numerical algorithm
for solving the WNT equations and presents numerical
evidence for the symmetry-breaking transition. In Sec-
tions V and VI we present analytical results for large
negative and positiveH , respectively. We summarize and
discuss our results in Section VII. Some of the technical
details are relegated to three Appendices.

II. WEAK NOISE THEORY

Let us rescale t/T → t, x/
√
νT → x, and |λ|h/ν → h.

Equation (1) becomes

∂th = ∂2
xh− (1/2) (∂xh)

2
+
√
ǫ ξ(x, t), (2)

where ǫ = Dλ2
√
T/ν5/2 is a dimensionless noise mag-

nitude. We are interested in the probability density of
observing h(x = 0, t = 1) = H , where H is rescaled
by ν/|λ|, under the condition that h(x, 0) is a two-sided
Brownian interface with ν = 1 and h(x = 0, t = 0) = 0.
In the physical variables P(H,T ) depends on two param-
eters |λ|H/ν and ǫ.
The weak-noise theory assumes that ǫ is a small pa-

rameter. The stochastic problem for Eq. (2) can be for-
mulated as a functional integral which, in the limit of
ǫ ≪ 1, admits a “semi-classical” saddle-point evaluation.
This leads (see Appendix A) to a minimization problem
for the action functional s = sin + sdyn, where

sdyn =
1

2

∫ 1

0

dt

∫ ∞

−∞

dx

[

∂th− ∂2
xh+

1

2
(∂xh)

2

]2

(3)

is the dynamic contribution, and

sin =

∫ ∞

−∞

dx (∂xh)
2|t=0 (4)

is the “cost” of the (a priori unknown) initial height pro-
file [37]. The ensuing Euler-Lagrange equation can be
cast into two Hamilton equations for the optimal path
h(x, t) and the canonically conjugate “momentum” den-
sity ρ(x, t):

∂th = δH/δρ = ∂2
xh− (1/2) (∂xh)

2 + ρ, (5)

∂tρ = −δH/δh = −∂2
xρ− ∂x (ρ∂xh) , (6)

where

H =

∫

dxρ
[

∂2
xh− (1/2) (∂xh)

2
+ ρ/2

]

is the Hamiltonian. Equations (5) and (6) were first ob-
tained by Fogedby [28].
Specifics of the one-point height statistics are reflected

in the boundary conditions. The condition h(x = 0, t =
1) = H leads to [31, 34]

ρ(x, t = 1) = Λ δ(x), (7)

where Λ should be ultimately expressed in terms of H .
The initial condition for the stationary interface follows
from the variation of the action functional s over h(x, t =
0) [38], see Appendix A, and takes the form [39]

ρ(x, t = 0) + 2∂2
xh(x, t = 0) = Λδ(x). (8)

To guarantee the boundedness of the action, ρ(x, t) and
∂xh(x, 0) must go to zero sufficiently rapidly at |x| → ∞.
Finally,

h(x = 0, t = 0) = 0. (9)

Once the optimal path is found, we can evaluate s =
sin + sdyn, where sdyn can be recast as

sdyn =
1

2

∫ 1

0

dt

∫ ∞

−∞

dx ρ2(x, t). (10)

This yields P up to pre-exponential factors: − lnP ≃ s/ǫ.
In the physical variables

− lnP(H,T ) ≃ ν5/2

Dλ2
√
T

s

( |λ|H
ν

)

. (11)

As one can see, the action s plays the role of the large de-
viation function for the short-time one-point height dis-
tribution. Below we determine the optimal path and s
analytically in different limits, and also evaluate these
quantities numerically.

III. SMALL-H EXPANSION

For sufficiently small H the WNT problem can be
solved via a regular perturbation expansion in the pow-
ers of H , or Λ [34, 35, 40]. One writes h(x, t) =
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Λh1(x, t) + Λ2h2(x, t) + . . . and similarly for ρ(x, t), and
obtains an iterative set of coupled l inear partial differ-
ential equations for hi and ρi. These equations can be
solved order by order with the standard Green function
technique [34]. The leading order corresponds to the
WNT of the Edwards-Wilkinson equation [41]:

∂th1 = ∂2
xh1 + ρ1, (12)

∂tρ1 = −∂2
xρ1, (13)

with the boundary conditions ρ1(x, 0) + 2∂2
xh1(x, 0) =

ρ(x, 1) = δ(x) and h1(0, 0) = 0. This is a simple problem,
and one obtains in this order Λ ≃ √

πH , and

h(x, t) ≃ H

4

[

2 + xf

(

x

2
√
t

)

− xf

(

x

2
√
1− t

)]

,(14)

ρ(x, t) ≃ H

2
√
1− t

e−
x2

4(1−t) , (15)

where f(z) =
√
π erf(z)+z−1e−z2

, see Fig. 1. Noticeable
in Eq. (14) is a time-independent plateau h(±∞, t) =
H/2. Importantly for the following, h(x, t) and ρ(x, t)
are, at all times, symmetric functions of x. Although
the KPZ nonlinearity appears already in the second or-
der of the perturbation theory, the reflection symmetry
x ↔ −x of the optimal path persists in all orders. There-
fore, within its (a priori unknown) convergence radius,
the perturbation series for s(H) comes from a unique op-
timal path which respects the reflection symmetry. Note
for comparison that the time-reversal symmetry t ↔ 1−t
of h(x, t), present in the first order in H , is violated al-
ready in the second order, reflecting the lack of detailed
balance in the KPZ equation.
Using Eqs. (3) and (4), one obtains, in the first or-

der, s(H) ≃ √
πH2/2. Therefore, as is well known, the

body of the short-time distribution P(H,T ) is a Gaussian
with the variance (D2T/πν)1/4 that obeys the Edwards-
Wilkinson scaling [41]. This variance is larger by a fac-

tor
√
2 than the variance for a flat initial interface, as

observed long ago [42]. Indeed, a flat interface is not the
optimal initial configuration for the stationary process,
see Fig. 1.

IV. PHASE TRANSITION AT H < 0:
NUMERICAL EVIDENCE

To deal with finite H we used a numerical iteration al-
gorithm [43, 44] which cyclically solves Eq. (6) backward
in time, and Eq. (5) forward in time, with the initial con-
ditions (7) and (8), respectively. At the very first itera-
tion of Eq. (6) one chooses a reasonable “seed” function
for h(x, t) and keeps iterating until the algorithm con-
verges. For small |H | we used the linear theory, described
above, to choose such a seed. We then used h(x, t), ob-
tained upon convergence of the algorithm for a given H ,
as a seed for a slightly larger value H , etc.
For sufficiently small |H | the algorithm converges to

a reflection-symmetric optimal path resembling (or, for

FIG. 1: The optimal path in the linear approximation, as
described by Eqs. (14) and (15) for H < 0, at t = 0, 0.25, 0.5,
0.75 and 1 (top panel, from top to bottom) and t = 0, 0.5 and
0.95 (bottom panel).

still smaller |H |, almost coinciding with) the one shown
in Fig. 1. The reflection symmetry is also intact for any
positive H , although the optimal solution strongly devi-
ates from the small-H solution of Sec. III once H > 1.
At sufficiently large negativeH the symmetric solution

loses stability, and the algorithm converges to one of two
solutions with a broken reflection symmetry. Each of
these two solutions has unequal plateaus at |x| → ±∞,
see Figs. 2 and 3, and is a mirror reflection of the other
around x = 0.
To characterize the symmetry breaking we introduced

an order parameter

∆ = h(∞, t)− h(−∞, t) =

∫ ∞

−∞

dx ∂xh(x, t), (16)

which is a conserved quantity, as one can check from
Eq. (5). Our numerical results for |∆| vs. |H | at H < 0
are shown in the left panel of Fig. 4. They indicate a
phase transition at a critical value H = Hc. At |H | ≤
|Hc| ∆ = 0, in agreement with the results of the previous
Section. For |H | ≥ |Hc| a good fit to the data is provided
by

∆2(H) = a(|H | − |Hc|) + b(|H | − |Hc|)2, (17)

with Hc ≃ −3.7, a ≃ 10.6 and b ≃ 0.8. This suggests
a mean-field-like second-order transition, where the large
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FIG. 2: The optimal path for Λ = −6.3 computed numeri-
cally. Shown are h (top) and ρ (bottom) vs. x at t = 0 (solid
line), 0.5 (short dash) and 1 (long dash).

FIG. 3: Same as in Fig. 2 but for Λ = −10.

FIG. 4: Top: ∆ vs. |H | at H < 0. Symbols: numerical
results, solid line: Eq. (17), dashed line: the |H | ≫ 1 asymp-
totic |∆| = |H |. Bottom: s vs. |H | at H < 0: The asym-
metric and symmetric branches are shown by the solid and
empty symbols, respectively. Also shown are the small- and
large-|H | asymptotics of s.

deviation function s exhibits a discontinuity in its sec-
ond derivative ∂2

Hs at H = Hc. One can recognize this
discontinuity in the right panel of Fig. 4 which shows s
vs. H for the asymmetric (solid symbols) and symmetric
(empty symbols) solutions [45]. The corresponding val-
ues of s coincide at |H | < |Hc| but start deviating from
each other at |H | > |Hc|, the symmetric solution becom-
ing non-optimal. The right panel also shows the small-H
analytic result s(H) =

√
πH2/2, and the large-|H | ana-

lytic result (21) obtained below.

V. NEGATIVE-H TAIL

At very large negative H , or Λ, the asymmetric and
symmetric solutions can be approximately found analyt-
ically. They involve narrow pulses of ρ, which we will
call solitons, and “ramps” of h. The asymmetric solu-
tions can be parameterized by the soliton/ramp speed
c ≫ 1. The left-moving solution can be written as

ρ(x, t) = −c2 sech2
[ c

2
(ct+ x− c)

]

, (18)

h(x, t) ≃ 2 ln
[

1 + ec(ct+x−c)
]

− 2c(ct+ x) (19)
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FIG. 5: The optimal path, h(x, t) and ρ(x, t), for H < 0 and
|H | ≫ 1, see Eqs. (18)-(20), for t = 0, 1/2 and 1.

for x > −ct, and

ρ(x, t) ≃ h(x, t) ≃ 0 (20)

at x < −ct, see Fig. 5. The expressions for each of the
two regions are exact solutions of Eqs. 5 and (6). The
approximate combined solution obeys, up to exponen-
tially small corrections, the boundary conditions (8) and
(9). It is continuous (again, up to an exponentially small
correction), but includes a shock in the interface slope
V (x, t) = ∂xh(x, t) at x = −ct [46]. In our numerical so-
lutions for large negative Λ, the ρ-soliton rapidly changes
into the delta-function (7) at t → 1 (as Fig. 3 indicates al-
ready for moderate negative Λ). This transient does not
contribute to the action in the leading order in |H | ≫ 1.

The conservation law
∫

dx ρ(x, t) = Λ yields c = −Λ/4,
and we obtain s = sdyn + sin = 4c3/3 + 4c3 = (16/3)c3.
Expressing c via H from the relation |H | = 2c2 (see Fig.
5), we arrive at

s =
4
√
2 |H |3/2
3

. (21)

In the physical units

− lnP(H,T ) ≃ 4
√
2 ν|H |3/2

3D|λ|1/2T 1/2
, (22)

in perfect agreement with the proper tail of the Baik-
Rains distribution [27, 47]. The latter has been known

to describe the late-time one-point statistics of the KPZ
interface for the stationary initial condition [25, 26]. As
we see now, this tail holds at any T > 0.
The simplest among the symmetric solutions is a single

stationary ρ-soliton and two outgoing h-ramps. These
exact solutions were found earlier [31, 34, 35]. A fam-
ily of more complicated exact two-soliton solutions in-
volves two counter-propagating ρ-solitons that collide
and merge into a single stationary soliton. Correspond-
ingly, two counter-propagating h-ramps disappear upon
collision and reemerge with the opposite signs, see Ap-
pendix B. Remarkably, the singe-soliton and two-soliton
solutions are particular members of a whole family of
exact multi-soliton/multi-ramp solutions of Eqs. (5) and
(6). We found them by performing the Cole-Hopf canoni-

cal transformationQ = e−
h
2 , P = −2ρ e

h
2 and applying

the Hirota method [48] to the transformed equations; see
Appendix B for more details.
For all symmetric solutions the action s is twice as

large as what Eq. (21) predicts, so they are not optimal.
Notably, the corresponding non-optimal action s coin-
cides with that describing the tail of the Tracy-Widom
distribution [49]. This tail appears, at all times, for a
class of deterministic initial conditions [34–36]. There-
fore, fluctuations in the initial condition, intrinsic for the
stationary interface, greatly enhance (by the factor of 2
in a large exponent) the negative tail of P(H).

VI. POSITIVE-H TAIL

The opposite tail is of a very different nature. In par-
ticular, the optimal solution maintains reflection symme-
try at any positive H . In the spirit of Refs. [33–35] the
leading-order solution atH ≫ 1 can be obtained in terms
of “inviscid hydrodynamics” which neglects the diffusion
terms in Eqs. (5), (6) and (8). The resulting equations
describe expansion of a “gas cloud” of density ρ(x, t) and
mass Λ from the origin, followed by collapse back to the
origin at t = 1. The same flow appears for the (de-
terministic) sharp-wedge initial condition [35]. Its exact
solution is given in terms of a uniform-strain flow with
compact support |x| ≤ ℓ(t), see Appendix C. Both h(x, t)
and ρ(x, t) are symmetric with respect to the origin. This

leads to s ≃ sdyn = 4
√
2H5/2/(15π) [35], in agreement

with Ref. [36], where the same short-time asymptotic
was derived from the exact representation for P(H,T )
for the sharp wedge [17, 50–53]. In the physical units

− lnP(H,T ) ≃ 4
√

2|λ|
15πD

H5/2

T 1/2
. (23)

This tail is governed by the KPZ nonlinearity and does
not depend on ν. At |x| > ℓ(t) ρ = 0, and V (x, t)
obeys the deterministic Hopf equation ∂tV + V ∂xV = 0
and must be continuous at |x| = ℓ(t), as for the sharp
wedge [35]. Still, this Hopf flow is different from its
counterpart for the sharp wedge. Indeed, in the latter
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case V (|x| → ∞, t) ≃ x/t. For the stationary interface
V (|x| → ∞, t) must vanish. This condition can only be
obeyed if the Hopf flow involves two symmetric shocks
where |V | drops from a finite value to zero: one shock at
x = xs(t) > ℓ(t), another at x = −xs(t) < −ℓ(t). The
shock dynamics are described in Appendix C. A (sym-
metric) time-independent plateau, h(|x| → ∞, t) ≃ H/2,
appears in this limit too. The characteristic length scale
of the solution is ∼ Λ1/3 ∼ H1/2. As a result, sin
from Eq. (4) scales as H3/2. This is much less than
sdyn ∼ H5/2, justifying our neglect of the diffusion term
in Eq. (8).

VII. SUMMARY AND DISCUSSION

We have determined the tails of the short-time
interface-height distribution in the KPZ equation when
starting from a stationary interface. As we have shown,
the |H |3/2/T 1/2 tail of the Baik-Rains distribution, ear-
lier predicted for long times, holds at all times. We argue
(see also Refs. [34, 35]) that the other tail, |H |5/2/T 1/2,
also holds at long times once the condition |H | ≫ T is
met. It would be interesting to derive this tail from the
exact representation [25, 26].
A central result of this paper is the discovery of a dy-

namical phase transition in the large deviation function
of H at T → 0. The transition occurs at H = Hc ≃
3.7 ν/λ and is caused by a spontaneous breaking of the
reflection symmetry x ↔ −x of the optimal path respon-
sible for a given H . We provided numerical evidence
that the transition is of the second order. Strictly speak-
ing, the WNT only predicts a true phase transition at
a single point (Hc, 0) of the phase diagram (H,T ). At
finite but short times the transition is smooth but sharp
around Hc, and this sharp feature should be observable
in stochastic simulations of the KPZ equation. One can
characterize the transition by measuring the probability
distribution of ∆ (a random quantity) [54] at fixed H .
This distribution is expected to change, in the vicinity
of the critical value Hc < 0, from unimodal, centered at
zero, to bimodal. At very large |H | the bimodality peaks
should approach ∆ ≃ ±H .
Can symmetry breaking of this nature be observed for

discrete models which belong to the KPZ universality
class (defined by typical fluctuations at long times)? One
natural lattice-model candidate is the Weakly Asymmet-
ric Exclusion Process (WASEP) with random initial con-
ditions drawn from the stationary measure. Not only the
WASEP belongs to the KPZ universality class, it also
exhibits the Edwards-Wilkinson dynamics at intermedi-
ate times: when the microscopic details of the model are
already forgotten but the process is still in the weak-
coupling regime [17]. Although short-time large devia-
tions of the WASEP can be different from those of the
KPZ equation, one can expect the symmetry breaking
phenomenon to be robust.
Finally, the dynamical phase transition reported here

is a direct consequence of fluctuations in the initial con-
dition. Similar transitions, at the level of large deviation
functions, may exist in other nonequilibrium systems,
both discrete and continuous, which involve averaging
over random initial conditions.
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Appendix A: Derivation of the weak-noise equations

and boundary conditions

Using Eq. (1), one can express the noise term as

√
Dξ(x, t) = ∂th− ν∂2

xh− λ

2
(∂xh)

2 . (A1)

The probability to encounter such a realization of the
Gaussian white noise is given by ∝ e−Sdyn/D, where

Sdyn =
D

2

∫ T

0

dt

∫

dx ξ2(x, t) (A2)

=
1

2

∫ T

0

dt

∫

dx

[

∂th− ν∂2
xh− λ

2
(∂xh)

2

]2

.

The cost of creating an (a priori unknown) initial inter-
face profile is determined by the stationary height distri-
bution of the KPZ equation:

Sin = ν

∫

dx (∂xh)
2|t=0.

For a weak noise and large deviations, the dominant con-
tribution to the total action S = Sdyn + Sin comes from
the optimal path h(x, t) that is found by minimizing S
with respect to all possible paths h(x, t) obeying the
boundary conditions. The variation of the total action
is

δS =

∫ T

0

dt

∫

dx

[

∂th− ν∂2
xh− λ

2
(∂xh)

2

]

(

∂tδh− ν∂2
xδh

−λ∂xh ∂xδh
)

+ 2ν

∫

dx ∂xh ∂xδh|t=0. (A3)

Let us introduce the momentum density field ρ(x, t) =
δL/δv, where v ≡ ∂th, and

L{h} =
1

2

∫

dx

[

∂th− ν∂2
xh− λ

2
(∂xh)

2

]2
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is the Lagrangian. We obtain

ρ(x, t) = ∂th− ν∂2
xh− λ

2
(∂xh)

2
(A4)

and arrive at

∂th = ν∂2
xh+

λ

2
(∂xh)

2
+ ρ, (A5)

the first of the two Hamilton equations of the weak-noise
theory (WNT). Now we can rewrite the variation (A3)
as follows:

δS =

∫ T

0

dt

∫

dx ρ (∂tδh− ν∂2
xδh− λ∂xh ∂xδh)

+2ν

∫

dx ∂xh ∂xδh|t=0.

Demanding δS = 0 and performing integrations by parts,
one obtains the Euler-Lagrange equation, which yields
the second Hamilton equation of the WNT:

∂tρ = −ν∂2
xρ+ λ∂x (ρ∂xh) . (A6)

The boundary terms in space, resulting from the integra-
tions by parts, all vanish. The boundary terms in time
must vanish independently at t = 0 and t = T . Both
h(x, t = 0), and h(x, t = T ) are arbitrary everywhere
except at x = 0 where they are fixed by the conditions

h(x = 0, t = 0) = 0 and h(x = 0, t = T ) = H. (A7)

This leads to the following boundary conditions:

ρ(x, t = 0) + 2ν∂2
xh(x, t = 0) = Λδ(x), (A8)

ρ(x, t = T ) = Λδ(x), (A9)

where Λ is an auxiliary parameter that should be finally
set by the second relation in Eq. (A9). An evident ad-
ditional condition, ∂xh(|x| → ∞, t) = 0, is necessary for
the boundedness of Sin. Once the WNT equations are
solved, the desired probability density is given by

− lnP(H,T ) ≃ S

D
(A10)

=
1

2D

∫ T

0

dt

∫

dx ρ2(x, t) +
ν

D

∫

dx (∂xh)
2|t=0.

The rescaling transformation

t/T → t, x/
√
νT → x, |λ|h/ν → h, |λ|Tp/ν → p

(A11)
brings Eqs. (A5) and (A6) to the rescaled form (5) and
(6) of the main text. The boundary condition (A8) be-
comes Eq. (8), with a rescaled Λ. The rest of boundary
conditions remain the same.

Appendix B: Cole-Hopf transformation, kinks,

solitons and ramps

As explained in the main text, the optimal path at very
large negativeH can be approximately described in terms
of a ρ-soliton and h-ramp. As we show here, this solution
is a particular member of a whole family of exact multi-
soliton/multi-ramp solutions of the WNT equations. Let
us perform a canonical Cole-Hopf transformation from h
and ρ to Q and P according to

Q = e−
h
2 , P = −2ρ e

h
2 . (B1)

The inverse transformation is h = −2 lnQ and ρ =
−(1/2)QP . In the new variables the Hamilton equa-
tions,

∂tQ = ∂2
xQ+

1

4
Q2P, (B2)

∂tP = −∂2
xP − 1

4
QP 2, (B3)

have a symmetric structure and appear in “Encyclopedia
of Integrable Systems” [55]. In this work we do not pur-
sue the complete integrability aspects and limit ourselves
to exact multi-kink solutions which we found using the
Hirota method [48]. The multi-kink solutions in terms of
Q and P become multi-soliton and multi-ramp solutions
in terms of ρ and h, respectively. The Hirota ansatz

Q =
v

u
, P =

w

u
,

transforms Eqs. (B2) and (B3) into the following form:

(Dt −D2
x)(v · u) = 0,

(Dt +D2
x)(w · u) = 0, (B4)

D2
x(u · u) =

1

4
vw,

where Dt(A ·B) = AtB−ABt and D2
x(A ·B) = AxxB−

2AxBx + ABxx are the Hirota derivatives. Equations
(B4) admit two families of N -kink solutions:

u =
N
∑

i=1

η
(+)
i ,

v =
1

C

N
∑

i,j=1

(ci − cj)
2η

(+)
i η

(+)
j , (B5)

w = 4C,

and

u =

N
∑

i=1

η
(−)
i ,

v = 4C, (B6)

w =
1

C

N
∑

i,j=1

(ci − cj)
2η

(−)
i η

(−)
j ,



8

FIG. 6: Example of exact two-ramp/two-soliton solu-
tions (B7) and (B7) for h(x, t) and ρ(x, t), respectively. Shown
(for c = 8) are h and ρ versus x for N = 3, c1 = X1 = 0, c3 =
−c2 = c and X3 = −X2 = −(3/8)c. Top panel: t = 0 (solid),
1/4 (dashed), 3/4 (dash-dotted) and 1 (solid). Bottom panel:
t = 0 (solid), 1/4 (dashed) and 1 (dash-dotted). Inset: ρ ver-
sus x at t = 1/2, 4/5 and 1. At c ≫ 1 and t > τ , ρ approaches
the exact stationary one-soliton solution [28, 31, 34].

where η
(±)
i (x, t) = e±c2i t−ci(x−Xi), the kinks are

parametrized by N velocities ci and N initial coordinates
Xi, i = 1, . . . , N , and C is an arbitrary constant, reflect-
ing invariance of the original WNT equations (5) and (6)
with respect to an arbitrary shift of h. For the family of
solutions (B5) we obtain

h(x, t) = 2 ln











C
N
∑

i=1

eci(cit−x+Xi)

N
∑

i,j=1

(ci − cj)2eci(cit−x+Xi)+cj(cjt−x+Xj)











,

ρ(x, t) = −
2

N
∑

i,j=1

(ci − cj)
2eci(cit−x+Xi)+cj(cjt−x+Xj)

[

N
∑

i=1

eci(cit−x+Xi)

]2 .

The particular case of N = 3, c1 = X1 = 0, c3 = −c2 = c
and X3 = −X2 = −cτ , where 0 < τ < 1, yields the
family of symmetric solutions described in the context of
large negative H in Section V of the main text. Here

FIG. 7: Same as in Fig. 6 but for X3 = −X2 = −c (that is,
τ = 1) and t = 0 (solid), 1/2 (dashed) and 1 (dash-dotted).
The inset shows a blowup of the collision and merger of the
two solitons at t = 0.95, 0.965 and 1.

two identical counter-propagating ρ-solitons collide and
merge, at x = 0, into a single soliton. The two ramps
of h also merge, but then change their signs and expand,
see Figs. 6 and 7. At c ≫ 1 these solutions approxi-
mately satisfy all the boundary conditions. The arbitrary
constant C can be chosen so as to impose the condition
h(x = 0, t = 0) = 0. However, for all these symmetric
solutions (at fixed c and different τ) the total action S,
in the leading order, is the same and twice as large as S
for the asymmetric solution, described in the main text.
Therefore, neither of these solutions is optimal. Finally,
the single stationary ρ-soliton, and the expanding ramps,
observed at t > τ is by itself an exact solution of the
WNT equations, as was previously known [28, 31, 34].
This solution corresponds to τ = 0 and represents the
true optimal path for a whole class of deterministic ini-
tial conditions [35].

Appendix C: Hydrodynamics and shocks for H ≫ 1

Here, in the spirit of Refs. [33, 34], the leading-order
solution can be obtained in terms of “inviscid hydrody-
namics” which neglects the diffusion terms in Eqs. (5),
(6) and (8) of the main text. The resulting equations for
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ρ(x, t) and V (x, t) = ∂xh(x, t),

∂tρ+ ∂x(ρV ) = 0, (C1)

∂tV + V ∂xV = ∂xρ, (C2)

describe expansion of a “gas cloud” of density ρ(x, t) and
mass Λ from the origin, followed by collapse back to the
origin at t = 1. The same flow appears for the (de-
terministic) sharp-wedge initial condition [35]. Its exact
solution is given in terms of a uniform-strain flow with
compact support:

V (x, t) = −a(t)x, |x| ≤ ℓ(t), (C3)

and

ρ(x, t) =

{

r(t)
[

1− x2/ℓ2(t)
]

, |x| ≤ ℓ(t), (C4)

0, |x| > ℓ(t). (C5)

As one can see, there is no symmetry breaking here. The
functions a(t), ℓ(t) and r(t) were calculated in Ref. [35],
leading to Eq. (20) of the main text.
At |x| > ℓ(t) one has ρ = 0. Here V (x, t) obeys the

deterministic Hopf equation ∂tV + V ∂xV = 0 and must
be continuous at |x| = ℓ(t) [34, 35]. In addition, we must
demand V (|x| → ∞, t) = 0. The latter condition can
only be obeyed if the Hopf flow involves two symmetric
shocks where |V | drops from a finite value to zero: one
shock at x = xs(t) > ℓ(t) (see the left panel of Fig. 8),
another at x = −xs(t) < −ℓ(t). The shocks are symmet-
ric with respect to x = 0, and their dynamics are quite
interesting. Let us consider the x > 0 shock. Its speed
ẋs must be equal to (1/2)V [xs(t)−0, t] [56]. The expres-
sion for V (x, t) can be found in Ref. [35]. Upon rescaling
x and V by Λ1/3, one obtains the following differential
equation for the shock position xs(t) at x > 0:

ẋs

(

1− 2t− 2

π
arctan

2
√
ℓ0ẋs√
3

)

= ℓ0 − xs, (C6)

where ℓ0 = ℓ(t = 1/2) = 31/3/π2/3 is the (rescaled)
maximum size of the pressure-driven flow region. Equa-
tion (C6) is of the first order but highly nonlinear. It
should be solved on the time interval 0 < t ≤ 1/2 with
the initial condition Xs(t = 0) = 0. Close to t = 1/2,
when xs → 0 and ẋs → 0, we obtain a simple asymptotic:

ℓ0 − xs(t) ≃
(

3π

8

)5/3 (
1

2
− t

)2

. (C7)

At t → 0 xs goes to zero and Ẋs goes to infinity. Ex-
panding the arctangent at large argument up to and in-
cluding the second term, we arrive at the linear equation
2tẋs = xs and obtain the short-time asymptotic

xs(t) ≃ Kt1/2 (C8)

with an unknown constant K which can be found nu-
merically. The shock magnitude (the jump of V ) and

FIG. 8: Top: The shock position xs vs. time, alongside with
its asymptotics (C7) and (C8) for x > 0. Bottom: V =
∂xh vs. x at H ≫ 1 at times (from top to bottom) 0.1,
0.3, 0.5 (when V = 0), 0.7 and 0.9. Both the uniform-strain
solution (C3), and the Hopf solution with the shock are shown

for x > 0. In this limit H = (3πΛ)2/3/2 [35].

speed decrease with time and vanish at t = 1/2: the
shocks disappear when they reach the stagnation points
of the flow, V = 0 which, according to Ref. [35], are
located, at t ≥ 1/2, at x = ±ℓ(t = 0). Notice that, at
small t, ℓ(t) ∼ t2/3, and the shock position is indeed out-
side the pressure-driven region as we assumed. The left
panel of Fig. 8 shows the shock position xs(t) found by
solving Eq. (C6) numerically. Also shown are the asymp-
totic (C7), and the asymptotic (C8) with K = 1.48. The
right panel of Fig. 8 shows V (x, t) vs. x > 0 at different
times.

Integrating V (x, t) over x, one can obtain h(x, t), but
we do not show these cumbersome formulas here.
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