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We study the probability distribution P(H, t, L) of the surface height h(x = 0, t) = H in the
Kardar-Parisi-Zhang (KPZ) equation in 1 + 1 dimension when starting from a parabolic interface,
h(x, t = 0) = x2/L. The limits of L → ∞ and L → 0 have been recently solved exactly for
any t > 0. Here we address the early-time behavior of P(H, t, L) for general L. We employ the
weak-noise theory - a variant of WKB approximation – which yields the optimal history of the
interface, conditioned on reaching the given height H at the origin at time t. We find that at small
H P(H, t, L) is Gaussian, but its tails are non-Gaussian and highly asymmetric. In the leading order

and in a proper moving frame, the tails behave as − lnP = f+|H |5/2/t1/2 and f−|H |3/2/t1/2. The
factor f+(L, t) monotonically increases as a function of L, interpolating between time-independent
values at L = 0 and L = ∞ that were previously known. The factor f− is independent of L and t,
signalling universality of this tail for a whole class of deterministic initial conditions.

PACS numbers: 05.40.-a, 05.70.Np, 68.35.Ct

I. INTRODUCTION

The Kardar-Parisi-Zhang (KPZ) equation [1] describes
an important universality class of non-equilibrium inter-
face growth [2–6]. In 1+ 1 dimension the KPZ equation,

∂th = ν∂2
xh+ (λ/2) (∂xh)

2 +
√
D ξ(x, t), (1)

governs the evolution of the interface height h(x, t) driven
by a Gaussian white noise ξ(x, t) with zero mean and
〈ξ(x1, t1)ξ(x2, t2)〉 = δ(x1−x2)δ(t1− t2). Without losing
generality, we will assume that λ < 0 [7].
An extensive body of work was devoted to the long-

time behavior of the KPZ interface [2, 3]. In 1 + 1 di-
mension, the interface width grows at long times as t1/3,
whereas the correlation length grows as t2/3, as confirmed
in experiments [8]. The exponents 1/3 and 2/3 are hall-
marks of the KPZ universality class. In the recent years
the focus of interest in the KPZ equation in 1 + 1 di-
mension shifted toward the complete one-point probabil-
ity distribution of height H at a specified point in space
and at a specified time [4–6]. Several groups derived ex-
act representations of this distribution [that we will call
P(H, t, L)] for an arbitrary time t > 0. This remarkable
progress has been achieved for three classes of initial con-
ditions (and some of their combinations and variations):
flat interface [9], sharp wedge [4, 10–13], and stationary
interface: a two-sided Brownian interface pinned at a
point [14, 15]. In the long-time limit, and for typical fluc-
tuations, P(H, t) converges to the Gaussian orthogonal
ensemble (GOE) Tracy-Widom distribution [16] for the
flat interface, to the Gaussian unitary ensemble (GUE)
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Tracy-Widom distribution for the sharp wedge, and to
the Baik-Rains distribution [17] for the stationary inter-
face. A series of ingenious experiments fully confirmed
the long-time results [18].

Recently, Le Doussal et al used the exact results for
the sharp-wedge initial condition to extract asymptotics
corresponding to large deviations of H at long [19] and
short [20] times. The long-time regime has traditionally
attracted great interest [2–6], but the short-time regime
is also interesting [21–24]. Indeed, at short times one ob-
serves, for both flat and sharp-wedge initial conditions,
crossover of the full one-point height statistics from the
Edwards-Wilkinson universality class to the KPZ univer-
sality class as one moves away from the body of the distri-
bution P(H) to its strongly asymmetric tails [20, 21, 23–
25].

In each of the exactly solved cases, P(H, t) is given
in terms of a generating function that involves a compli-
cated determinant form. Extracting useful asymptotics
from these general results may require considerable ef-
fort. It can be advantageous to use approximations which
directly probe the desired asymptotic regimes. This ap-
proach was taken in Refs. [21–23, 25] which studied the
short-time asymptotics of P(H, t) when starting the pro-
cess from a flat interface. In these works the probability
distribution P(H, t) was evaluated by using the weak-
noise theory (WNT) of Eq. (1). The WNT is a variant
of WKB approximation. It employs in a smart way the
smallness of typical noise when studying large fluctua-
tions. The WNT originated from the Martin-Siggia-Rose
path-integral formalism in physics [26] and the Freidlin-
Wentzel large-deviation theory in mathematics [27]. The
WNT is related to the optimal fluctuation method which
goes back to Refs. [28–30], see also Ref. [31]. Simi-
lar approaches have been applied, under different names,
to turbulence [32–34], stochastic reactions [35, 36], diffu-
sive lattice gases [37], and non-equilibrium surface growth
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[21–23, 25, 38–41] including the KPZ equation itself. The
WNT equations can be formulated as a classical Hamil-
tonian field theory. After having solved the WNT equa-
tions, one can evaluate the action functional, which gives,
up to a sub-leading prefactor, the probability to observe
a specific large deviation. The exactly soluble cases of
the complete height statistics of the KPZ equation serve
as excellent benchmarks for the WNT, which then can
be applied to other initial conditions, to higher dimen-
sions, and to other models, where exact solutions are
unavailable. Here we consider one such initial condition:
a parabolic interface

h(x, t = 0) =
x2

L
. (2)

The limit of L → ∞ corresponds to the exactly soluble
case of the flat interface. As we explain in Section 2,
the limit of L → 0 is intimately related to another ex-
actly soluble case: of the sharp wedge interface. Here
we address the early-time behavior of P(H, t, L) for ar-
bitrary L. To this end, we determine the optimal (the
most likely) history of the interface h(x, t) conditioned
on reaching the height H at time t. We find that the
tails of P behave, in a proper moving frame [42], as
− lnP = f+H

5/2/T 1/2 as H → ∞ and f−|H |3/2/T 1/2

as H → −∞. The factor f+(L, T ) increases with L, in-
terpolating between previously known, time-independent
values at L = 0 and L = ∞. On the contrary, the factor
f− is independent of L and T . This indicates universal-
ity of this tail for a whole class of deterministic initial
conditions, and we uncover the mechanism of, and the
condition for, this universality.
Here is a plan of the remainder of this paper. In Sec.

2 we formulate the problem, identify the scaling behav-
ior of P(H,L, T ) and briefly discuss the connection be-
tween the problem with parabolic initial condition (2)
and the problem with a sharp-wedge initial condition.
Our main results are presented in Sec. 3, where we em-
ploy the WNT are obtain leading-order analytical results
for − lnP(H,T, L) in three limiting cases: large positive
H , large negative H and small H . Section 4 contains a
summary and discussion of our results.

II. FORMULATION OF THE PROBLEM

Without noise, the interface height is governed by the
deterministic KPZ equation,

∂th = ν∂2
xh+ (λ/2) (∂xh)

2
. (3)

Its solution with the initial condition (2) is

h(x, t) =
x2

L− 2λt
+

ν

λ
ln

L

L− 2λt
, (4)

so the average profile remains parabolic at all times. For
λ < 0 it is well-behaved at any t > 0. Let us rescale t by

the given time T (see below), x by the diffusion length√
νT , and h by the ν/|λ|. Then Eq. (3) becomes

∂th = ∂2
xh− (1/2) (∂xh)

2
, (5)

while its solution (4) becomes

h0(x, t) =
x2

L+ 2t
+ ln

(

1 +
2t

L

)

, (6)

where L is rescaled by |λ|T . When the rescaled L is very
small, the deterministic solution rapidly becomes

h0(x, t) ≃
x2

2t
+ ln

(

2t

L

)

. (7)

A very similar deterministic profile appears in the prob-
lem of sharp wedge, when h(x, t = 0) = |x|/δ with δ ≪ 1.
Here at t ≫ δ2 and |x| ≪ t/δ a parabolic profile develops:

h0(x, t) ≃
x2

2t
+ ln

(

t

δ2

)

. (8)

As one can see, the solutions (7) and (8) are identical
up to notation. Therefore, we will not distinguish in the
following between the limit of L → 0 of the parabolic
initial condition and the limit of δ → 0 of the wedge
initial condition.
Now we return to the stochastic equation (1) and study

the probability distribution P(H,T, L) of observing (in
a proper moving frame [42]) a given value h(x = 0, t =
T ) = H , considerably different from the prediction of the
deterministic solution (4). Upon the rescaling transfor-
mation introduced above, Eq. (1) becomes

∂th = ∂2
xh− (1/2) (∂xh)

2 +
√
ǫ ξ(x, t), (9)

where

ǫ =
Dλ2

√
T

ν5/2
(10)

is a dimensionless noise magnitude. The rescaled initial
condition coincides with Eq. (2), with L replaced by L̃ =
L/(|λ|T ). As one can see, P(H,T, L) depends on three

dimensionless parameters: H̃ = |λ|H/ν, L̃ and ǫ. We
will omit the tildes.

III. WEAK-NOISE THEORY

Formally, the WNT relies on the smallness of ǫ. In
view of Eq. (10), this makes the WNT especially suit-
able for short times. A saddle-point evaluation of the
path integral, corresponding to Eq. (9), leads to a varia-
tional problem for the action [21–23, 25, 38]. As we show
in the Appendix, the Euler-Lagrange equations can be
presented as a pair of Hamilton equations for the opti-
mal height history h(x, t) and the canonically conjugate
“momentum” density field ρ(x, t):

∂th = δH/δρ = ∂2
xh− (1/2) (∂xh)

2
+ ρ, (11)

∂tρ = −δH/δh = −∂2
xρ− ∂x (ρ∂xh) , (12)
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where H =
∫

dxw is the Hamiltonian, and w(x, t) =

ρ
[

∂2
xh− (1/2) (∂xh)

2
+ ρ/2

]

. Note that ρ undergoes

rescaling |λ|Tρ/ν → ρ. The initial condition is Eq. (2)
with rescaled L. The behavior of h(x, t) at large |x| is
governed by Eq. (4), whereas ρ(|x| → ∞) = 0 so that
the action is bounded, see Eq. (15) below. Finally, the
condition h(x = 0, t = 1) = H translates into [21, 25]

ρ(x, 1) = Λ δ(x), (13)

where Λ is ultimately determined by the rescaled H and
L. Once the WNT problem is solved, we can evaluate

− lnP(H,T, L) ≃ 1

ǫ
S

( |λ|H
ν

,
L

|λ|T

)

=
ν5/2

Dλ2
√
T

S

( |λ|H
ν

,
L

|λ|T

)

, (14)

(in the physical units), where the rescaled action S is

S =

∫ 1

0

dt

∫

dx (ρ∂th− w) =
1

2

∫ 1

0

dt

∫

dx ρ2(x, t).

(15)
Now we consider three asymptotic limits where we can
solve the problem analytically.

A. Large positive heights

Here one can neglect the diffusion terms in Eqs. (11)
and (12) and obtain hydrodynamic equations

∂tρ+ ∂x(ρV ) = 0, (16)

∂tV + V ∂xV = ∂xρ, (17)

where V (x, t) = ∂xh(x, t). These equations describe a
non-stationary inviscid flow of a compressible gas with
density ρ, velocity V , and negative pressure p(ρ) = −ρ2/2
[25, 43]. The problem should be solved subject to the
condition

V (x, t = 0) =
2x

L
(18)

and Eq. (13). Equations (16), (17) and (18) remain in-
variant under inviscid rescaling x/Λ1/3 → x, V/Λ1/3 →
V , and ρ/Λ2/3 → ρ. In its turn, Eq. (13) becomes

ρ(x, t = 1) = δ(x). (19)

Now Eq. (15) yields

S = Λ5/3 s(L), (20)

where, in the newly rescaled variables,

s(L) =
1

2

∫ 1

0

dt

∫

dx ρ2(x, t). (21)

What is the expected scaling behavior of S entering
Eq. (14)? The rescaled height at t = 1 is h(x = 0, t =
1) ≡ H1(L) = H/Λ2/3. Therefore, Λ = (H/H1)

3/2, and
Eq. (20) yields

S(H,L) =
s(L)H5/2

[H1(L)]
5/2

(22)

leading, for any L, to a H5/2 tail. What is left is to
find s(L) and H1(L). By virtue of the special boundary
conditions (18) and (19), the solution of Eqs. (16) and
(17) with ρ > 0 has compact support and describes a
uniform-strain flow:

V (x, t) = a(t)x, |x| ≤ ℓ(t), (23)

and

ρ(x, t) =

{

r(t)
[

1− x2/ℓ2(t)
]

, |x| ≤ ℓ(t), (24)

0, |x| > ℓ(t), (25)

where the functions r(t) > 0, ℓ(t) ≥ 0 and a(t) are to
be determined. The “zero-pressure” region of |x| > ℓ(t)
needs to be considered separately.
For the flat interface, L → ∞, this problem was solved

previously in Ref. [25], see also Ref. [23]. In that case
a(t) starts from zero at t = 0 and decreases monotoni-
cally, going to −∞ at t → 1. The solution describes an
inflow of the gas, culminating in its collapse into the ori-
gin at t = 1. For a finite L one has a(t = 0) = 2/L > 0
[see Eq. (18)] implying an outflow of the gas. This out-
flow stops at some time 0 < t∗ < 1, so that a(t∗) = 0,
and then becomes an inflow, a(t) < 0 at t > t∗, until
a reaches −∞, and the gas collapses into the origin, at
t = 1.

1. L → 0

Let us first consider the limit of L → 0 corresponding
to the sharp-wedge initial condition. Here a(t) is equal
to −∞ at t = 0, zero at t = 1/2, and +∞ at t = 1. This
outflow-inflow solution exhibits a remarkable symmetry
in time around t = 1/2. Here the “gas density” ρ is
equal to δ(x) both at t = 0 and at t = 1. The mass
conservation yields ℓ(t)r(t) = 3/4. Using it, and plugging
Eqs. (23) and (24) into Eqs. (16) and (17), we obtain two
coupled equations for r(t) and a(t): ṙ = −ra and ȧ =
−a2 − (32/9)r3 [25]. Their first integral can be written
as a = ±(8/3)r

√
r − r∗, where r∗ ≡ r(t = 1/2). This

yields

ṙ = ±(8/3)r2
√
r − r∗, (26)

with the minus sign for 0 < t < 1/2 and the plus sign for
1/2 < t < 1. An implicit solution of Eq. (26), obeying
the conditions r(t → 0) = r(t → 1) = ∞, is

t = t±(r) =
1

2
± 3

√
r − r∗
8rr∗

± 1

π
arctan

(√

r

r∗
− 1

)

, (27)
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FIG. 1: r = ρ(x = 0, t) as a function of time for H ≫ 1 and
L → 0 as determined by Eq. (27).

where r∗ = (3π/8)2/3. The minus signs correspond to
0 < t ≤ 1/2, the plus signs to 1/2 ≤ t < 1. Now we can
calculate s:

s(L → 0) =
1

2

∫ 1

0

dt

∫ ℓ

−ℓ

dx r2(t)
[

1− x2/ℓ(t)2
]2

=
2

5

∫ 1

0

dt r(t) =
2

5

∫ 1/2

0

r(t)dt +

∫ 1

1/2

r(t)dt

=
2

5

(∫ r∗

∞
dr r

dt−
dr

+

∫ ∞

r∗

dr r
dt+
dr

)

=
(3π)2/3

5
. (28)

To determine H1, we can use Eq. (11) at x = 0:

∂th(0, t) = ∂2
xh(0, t)−

1

2
[∂xh( 0, t)]

2 + ρ(0, t). (29)

As ∂xh(0, t) = 0 (except at t = 0 and t = 1), and the
diffusion is negligible, we obtain

∂th(0, t) ≃ ρ(0, t) = r(t), (30)

so

H1 =

∫ 1

0

r(t)dt =
(3π)2/3

2
. (31)

Now we plug s and H1 into Eq. (22) and obtain the H ≫
1 tail we are after. In the physical units,

− lnP(H,T, L → 0) ≃ 4
√

2|λ|
15πD

H5/2

T 1/2
. (32)

Equation (32) coincides with the asymptotic (5) of Ref.
[20, 44], extracted from the exact solution [4, 10–13] at
short times. This leading-order asymptotic is controlled
by the nonlinearity and independent of ν. It is twice as
small as the corresponding result [23, 25] for L → ∞.

In the zero-pressure region |x| > ℓ(t) the governing
equation,

∂tV + V ∂xV = 0, (33)

describes the Hopf flow. We will only consider x > ℓ(t);
the solution for x < −ℓ(t) can be obtained from the
symmetry V (−x, t) = −V (x, t). The general solution
of Eq. (33) can be written as [45, 46]

x− V t = F (V ) , (34)

where the arbitrary function F (V ) should be found from
matching with the pressure-driven solution at x = ℓ(t).
The matching yields the equation

x− V t =
3

4r∗
− V

2
+

V

π
arctan

V

2
√
r∗

(35)

which determines V (x, t) in an implicit form. Figure 2
shows V as a function of x > 0 at different times. Both
the pressure-driven solution (23) and the Hopf solution
(35) are shown. Importantly, the Hopf solution complies
with the large-x asymptotic V (x, t) ≃ x/t, described by
the inviscid limit of the deterministic solution (4) at L →
0. Notice the presence of the stagnation point at r = r∗
at t ≥ 1/2. We also calculated h(x, t) in an implicit form,
but we do not present these cumbersome formulas here.

FIG. 2: The rescaled interface slope V (x, t) = ∂xh(x, t), as
described by the inviscid solution for H ≫ 1, is shown as a
function of x > 0 at times t = 0.1 (a), 0.3 (b), 0.5 (c), 0.7 (d)
and 0.9 (e) for L → 0. Both the “pressure-driven” solution
and the Hopf solution are shown. A stagnation point V = 0
develops at r = r∗ at t ≥ 1/2. The interface height h(x, t)
has a local minimum at this point at all times t ≥ 1/2. The
dashed line is the large-x asymptotic V = x/t at t = 0.9.

2. L > 0

In this case a(t = 0) = 2/L, a(t = 1) = −∞, and
a(t = t1) = 0 where 0 < t1 < 1 is a priori unknown. Let
us denote r(t1) = r1. The first integral of the equations
for ȧ and ṙ can be written as a = ±(8/3)r

√
r − r1 leading

to

ṙ = ±(8/3)r2
√
r − r1. (36)



5

An implicit solution of Eq. (36 is

t = t±(r) = t1±
3

8





√
r − r1
rr1

+
arctan

√

r
r1

− 1

r
3/2
1



 , (37)

where r0 ≡ r(t = 0) is a priori unknown. In Eqs. (36)
and (37) the minus signs correspond to 0 < t < t1, the
plus signs to t1 < t < 1. Let us evaluate the rescaled
action:

s =
2

5

∫ 1

0

dt r(t) =
2

5

∫ t1

0

r(t)dt +

∫ 1

t1

r(t)dt

=
2

5

(∫ r1

r0

dr r
dt−
dr

+

∫ ∞

r1

dr r
dt+
dr

)

=
3
(

π + 2 arccos
√

r1
r0

)

20
√
r1

. (38)

Also,

H1 ≃
∫ 1

0

r(t) dt =
3
(

π + 2 arccos
√

r1
r0

)

8
√
r1

. (39)

The three unknown constants r0, r1 and t1 can be ex-
pressed via L, the only parameter of the rescaled prob-
lem, with the help of three algebraic relations:

8

3
r0
√
r0 − r1 =

2

L
, (40)

t1 =
3

8





√
r0 − r1
r0r1

+
arctan

√

r0
r1

− 1

r
3/2
1



 , (41)

t1 +
3

8

π

2r
3/2
1

= 1. (42)

The solution is unique and can be obtained in a paramet-
ric form. Let us introduce the parameter y = r0/r1 that
decreases monotonically from ∞ to 1 as L increases from
0 to ∞. We can express L, r0, r1 and t1 via y as follows:

L =
4√

y − 1
[

πy + 2
√
y − 1 + 2y arctan

(√
y − 1

)] ,(43)

r0 =
32/3

4
y

(

π

2
+

√
y − 1

y
+ arctan

√

y − 1

)2/3

, (44)

r1 =
32/3

4

(

π

2
+

√
y − 1

y
+ arctan

√

y − 1

)2/3

, (45)

t1 = 2

√
y−1
y + arctan

√
y − 1

π + 2
(√

y−1
y + arctan

√
y − 1

) . (46)

Using these relations in conjunction with Eqs. (38) and

(39), and introducing Φ(L) = s1/H
5/2
1 , we finally obtain,

in physical units,

− lnP(H,T, L) ≃ 4
√
2 |λ|1/2H5/2

15πDT 1/2
Φ

(

L

|λ|T

)

. (47)

Correspondingly, the factor f+(L, T ), mentioned in the
Abstract and in the Introduction, is the following:

f+ =
4
√
2 |λ|1/2
15πD

Φ

(

L

|λ|T

)

.

A plot of the function Φ = Φ(w) is shown in Fig. 3. Its
small- and large-w asymptotics are

Φ(w) ≃















1 +
3w1/3

24/3π2/3
, w ≪ 1, (48)

2

(

1− 4

π2w

)

, w ≫ 1, (49)

see Fig. 3. At L → 0 we obtain Φ = 1 (the solid point
on Fig. 3), in agreement with Eq. (32) and Ref. [20]. At
L → ∞ one has Φ = 2 (the horizontal dashed line) in
agreement with Refs. [23, 25]. Notice the non-analytic
w1/3 behavior of f(w) at w → 0.

FIG. 3: Φ(w) from Eq. (47) and its asymptotics, Eqs. (48)
and (49). The filled circle shows Φ(0) = 1, the horizontal
asymptotic shows Φ(∞) = 2.

The Hopf flow regions |x| > ℓ(t) for L > 0 can be
analyzed similarly to the case of L → 0. The Hopf-
flow solution for V (x, t) matches continuously with the
pressure-driven solution at |x| = ℓ(t), complies with the
deterministic behavior V (x, t) = 2x/(L+2t) at |x| → ∞,
and exhibits, at t ≥ t1, two stagnation points V = 0 at
x = ±r1 where h(x, t) has a local minimum. We do not
show these cumbersome formulas here.

B. Large negative heights

At very large negative H , or Λ, the solution, at any
L, has the following character. ρ is localized in a narrow
boundary layer around x = 0 and is almost independent
of time except very close to t = 0 and t = 1. V in the
boundary layer is also almost independent of time. There
is also exterior, or bulk, region where ρ ≃ 0, whereas
V (x, t) obeys the deterministic KPZ equation (3).



6

1. The boundary layer

The stationary boundary-layer solution was previously
found in the problem of flat interface [21, 25], see also Ref.
[38]:

ρbl(x) = −2c sech2
(

√

c/2x
)

, (50)

Vbl(x) =
√
2c tanh

(

√

c/2x
)

, (51)

where c = Λ2/32. The action in terms of c or Λ is ob-
tained immediately:

S =
1

2

∫ ∞

−∞
dx ρ2bl(x) =

8
√
2 c3/2

3
= −Λ3

48
, (52)

recall that Λ < 0. To express c through H , we need to
rewrite the boundary-layer solution in terms of h(x, t)
[25],

hbl(x, t) = 2 ln cosh
(

√

c/2x
)

− ct, (53)

and obtain hbl(0, 1) = −c = H which yields c = −H and
Λ = −25/2|H |1/2. Using this result in Eqs. (14) and (52),
we obtain in the physical units

− lnP(H,T, L) ≃ 8
√
2 ν|H |3/2

3D|λ|1/2T 1/2
. (54)

As one can see, the factor

f− =
8
√
2 ν

3D|λ|1/2

is independent of L and T . It is not surprising, there-
fore, that the same expression (54) for the negative tail
was previously obtained for L → ∞ [21, 25] and L → 0
[20]. Interestingly, Eq. (54) also coincides with the corre-
sponding asymptotic of the GOE and GUE Tracy-Widom
distributions, which describe the negative tail of P(H,T )
at long times, both for L → ∞ [9, 21, 25] and for L → 0
[4, 10–13].

2. The bulk region

Now we will show that the boundary-layer solution
(51) can be properly matched with a deterministic bulk
solution. Not being interested in the structure of an ad-
ditional narrow transition layer that emerges in the bulk
solution (see below), we can neglect the diffusion term
and, instead of Eq. (3), deal with the inviscid equation

∂th+
1

2
(∂xh)

2 = 0, (55)

or the Hopf equation (33), where we allow for V -shocks.
We will only consider x > 0: the solution for x < 0 can
obtained by a mirror reflection of h(x, t) with respect to

the origin. The outer asymptotic of the boundary-layer
solution (53) for h(x, t) is

h1(x, t) =
√
2c x− ct. (56)

Correspondingly, V1(x, t) = ∂xh1(x, t) =
√
2c = |Λ|/4 =

const. Note that these asymptotics is independent of the
diffusivity. To satisfy the boundary conditions at x → ∞,
h1(x, t) must be continuously matched with the inviscid
limit of the deterministic solution (6), which holds at
large distances,

h2(x, t) ≃
x2

L+ 2t
, (57)

and for which

V2(x, t) ≃
2x

L+ 2t
. (58)

At L > 0 the equality h1(x, t) = h2(x, t) is satisfied in
two locations, X−(t) and X+(t), where

X±(t) =
√

(c/2) (L+ t)
(√

L+ t±
√
L
)

. (59)

While h(x) is continuous in the matching points, V (x)
is generally not, so a shock appears. X+(t) is inad-
missible as a shock position, as it violates the condition
V1[X(t), t] ≥ V2[X(t), t] [46]. X−(t) does satisfy this con-
dition, and so V (x, t) exhibits a shock at this location.
The shock speed is equal to

Vshock(t) =
dX−
dt

=
√
2c−

√

cL

2(L+ 2t)
. (60)

What happens in the limits of L → ∞ and L → 0?
At L → ∞ the deterministic solution at large distances
is trivial: h2(x, t) = 0. Here the V -shock is located

at X(t) =
√

c/2 t and moves with a constant speed
[25]. In the limit of L → 0 the two locations X−(t)
and X+(t) merge. In this special case V (x) is continu-
ous everywhere, and there is no shock. There is only a
discontinuity in the derivative ∂xV at the moving point
X(t) =

√
2c t. All the discontinuities, discussed here, are

smoothed, and narrow transition layers appear, if one
accounts for the diffusion.

C. The variance

When ǫ ≪ 1, low cumulants of P can be calculated via
a regular perturbation theory in H , or in Λ, in the WNT
framework [25, 47]. We set

h(x, t) = h0(x, t) + Λh1(x, t) + Λ2h2(x, t) + . . . , (61)

ρ(x, t) = Λρ1(x, t) + Λ2ρ2(x, t) + . . . . (62)

where h0(x, t) is given by Eq. (6). Correspondingly,
S(Λ) = Λ2S1 + Λ3S2 + . . . . Here we limit ourselves to
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the first order of this perturbation series which gives the
distribution variance. In the first order Eqs. (11) and
(12) yield

∂th1 + ∂xh0 ∂xh1 − ∂2
xh1 = ρ1, (63)

∂tρ1 + ∂x(∂xh0 ρ1) + ∂2
xρ1 = 0, (64)

or

∂th1 +
2x

L+ 2t
∂xh1 − ∂2

xh1 = ρ1, (65)

∂tρ1 + ∂x

(

2x

L+ 2t
ρ1

)

+ ∂2
xρ1 = 0. (66)

In contrast to the flat case [24, 25], the KPZ nonlinearity
kicks in already in the first order of the perturbation
theory, so the variance of P(H,T, L) is different from that
for the Edwards-Wilkinson equation. To solve Eqs. (65)
and (66), we introduce new variables

z =
x

L+ 2t
, u(z, t) = (L+ 2t)ρ1.

Equation (66) becomes

∂tu+
∂2
zu

(L+ 2t)2
= 0. (67)

Now we introduce new time,

τ =
t

L(L+ 2t)
,

so that t = τL2/(1 − 2τL). The new time grows mono-
tonically on the interval 0 ≤ τ ≤ τ1, where

τ1 =
1

L(L+ 2)

corresponds to t = 1. Equation (67) becomes the antidif-
fusion equation ∂τu+ ∂2

zu = 0. The boundary condition
ρ1(x, 1) = δ(x) translates into u(z, τ1) = δ(z), and the
solution is

u(z, 0 ≤ τ ≤ τ1) =
1

√

4π(τ1 − τ)
e
− z

2

4(τ1−τ) , (68)

or

ρ1(x, t) =
e−

(L+2)x2

4(1−t)(L+2t)

√

4π (1−t)(L+2t)
L+2

(69)

As a result,

S1(L) =
1

2

∫ 1

0

dt

∫ ∞

−∞
dx ρ21(x, t)

=

√
L+ 2 arccos

(

L−2
L+2

)

8
√
π

, (70)

To express Λ via H we need to solve Eq. (65) for h1(x, t)
with the initial condition h1(x, 0) = 0 and the source

term given by Eq. (69). It suffices to calculate h1(x =
0, t = 1). In the new variables Eq. (65) becomes

∂τh = ∂2
zh+

Lu(z, τ)

1 − 2τL
, (71)

with u(z, τ) from Eq. (68). The solution can be obtained
with the help of the Green’s function of the diffusion
equation. As a result,

h1(x = 0, t = 1) = h1(z = 0, τ = τ1)

=
1

4π

∫ τ1

0

Ldτ

(1− 2Lτ)(τ1 − τ)

∫ ∞

−∞
dz e

− z
2

2(τ1−τ)

=

√
L+ 2

2
√
π

arccos

√

L

L+ 2
. (72)

Now we can express Λ through H using the relation
Λ h1(x = 0, t = 1) = H . Finally, we obtain in the physi-
cal units

− lnP(H,T, L) ≃ ν1/2H2

D
√
T

φ

(

L

|λ|T

)

, (73)

where

φ(w) =

√
π arccos

(

w−2
w+2

)

2
√
w + 2

(

arccos
√

w
w+2

)2 . (74)

The asymptotics of φ(w) are the following:

φ(w) ≃



















√

2

π

(

1 +

√
2w

π

)

, w ≪ 1, (75)

√

π

2

(

1− 1

3w

)

, w ≫ 1, (76)

see Fig. 4. At L → 0 we obtain φ =
√

2/π in agreement

with Eq. (6) of Ref. [20, 44]. At L → ∞ φ =
√

π/2 in
agreement with Refs. [24, 25]. Notice the non-analytic
w1/2 behavior of Φ(w) at w → 0.

IV. SUMMARY AND DISCUSSION

Let us briefly summarize our results for the probability
distribution P(H, t, L) of the surface height h(x = 0, t) =
H in the KPZ equation in 1+1 dimension when starting
from a parabolic interface h(x, t = 0) = x2/L.
At early times, ǫ ≪ 1, the central part of the distribu-

tion is described by Eqs. (73) and (74). Although it is a
Gaussian, it does not belong to the Edwards-Wilkinson
universality class. Indeed, the distribution variance ex-
plicitly depends on the nonlinearity coefficient λ and does
not exhibit the customary T 1/4 scaling, see Eq. (73).
The tails of P(H, t, L) are described by Eqs. (47) and

(54): they are non-Gaussian and strongly asymmetric.
The asymmetry is manifested by very different optimal
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FIG. 4: φ(w) from Eqs. (73) and (74) and its asymptotics,

Eqs. (75) and (76). The filled circle shows φ(0) =
√

2/π, the

horizontal asymptotic shows φ(∞) =
√

π/2.

histories of the process conditioned on observing a large
positive or negative value of H at time T .
As we observed, the positive tail (47) of P(H,T ) de-

pends on L monotonically, see Fig. 3, interpolating be-
tween time-independent values at L = 0 and L = ∞
that were previously known. On the contrary, the neg-
ative tail (54) of P(H,T ) is independent of L, because
it comes from the universal boundary-layer solution (50)
and (51). We argue that exactly the same negative tail
(54) should be observed for a whole class of deterministic
initial conditions such that the boundary-layer solution
(51) for V (x, t) = ∂xh(x, t) can be matched with a (de-
terministic) bulk solution for V (x, t) that satisfies correct
boundary conditions at |x| → ∞. An important role in
this matching is played by V -shocks (in the inviscid ap-

proximation) that, in general, develop inside the bulk
region.
Are any of our early-time predictions, based on the

WNT, expected to hold at long times? (See Ref. [25]
for a similar discussion for the flat initial condition.) At
ǫ ≫ 1, the WNT breaks down in the body of the height
distribution, where the Gaussian distribution (73) and
(74) must give way to a different distribution which re-
duces to the GUE Tracy-Widom statistics at L → 0,
and to the GOE Tracy-Widom statistics at L → ∞.
However, sufficiently far in the tails the action S is very
large. Therefore, one can expect the WNT tails (47) and
(54) to hold there. Indeed, the universal 3/2 tail agrees
with the corresponding Tracy-Widom tail at L → 0 and
L → ∞. The 5/2 tail is incompatible with the Tracy-
Widom statistics. We argue that it holds (see also Ref.
[25]) when it predicts a much higher probability than
the corresponding tail, − lnP ∼ ν2H3/(|λ|D2T ), of the
Tracy-Widom distribution. At fixed T , and sufficiently
far in the tail, H ≫ D2|λ|3T/ν4, this condition is satis-
fied. It would be very interesting to test this prediction
by extracting the H ≫ D2|λ|3T/ν4 asymptotics of P in
the exactly soluble cases of L → 0 and L → ∞.
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Appendix: Derivation of the WNT Equations

For completeness, here we present a brief derivation
of the WNT equations and boundary conditions. Using
Eq. (1), we express the noise term as

√
D ξ(x, t) = ∂th− ν∂2

xh− λ

2
(∂xh)

2
. (A1)

The corresponding Gaussian action is, therefore,

S =
1

2

∫ T

0

dt

∫ ∞

−∞
dx

[

∂th− ν∂2
xh− λ

2
(∂xh)

2

]2

. (A2)

In the weak-noise limit the main contribution to the in-
tegral comes from the “optimal path” h(x, t) that mini-
mizes S. The variation of S

δS =

∫ T

0

dt

∫ L/2

−L/2

dx

[

∂th− ν∂2
xh− λ

2
(∂xh)

2

]

×
(

∂tδh− ν∂2
xδh− λ∂xh ∂xδh

)

. (A3)

By analogy with classical mechanics, one can introduce
the “momentum density” field ρ(x, t) = δL/δv, where
v ≡ ∂th, and

L{h} =
1

2

∫ ∞

−∞
dx

[

∂th− ν∂2
xh− λ

2
(∂xh)

2

]2

is the Lagrangian. In this way we obtain

∂th = ν∂2
xh+

λ

2
(∂xh)

2
+ ρ, (A4)

the first of the two Hamilton equations. Rewriting the
variation (A3) as

δS =

∫ T

0

dt

∫ ∞

−∞
dx ρ (∂tδh− ν∂2

xδh− λ∂xh ∂xδh),

and integrating by parts, we arrive at the second Hamil-
ton equation:

∂tρ = −ν∂2
xρ+ λ∂x (ρ∂xh) . (A5)

The boundary terms in x, emerging in the integrations by
parts, vanish because of the boundary conditions at |x| →
∞. There also appear two boundary terms in time: at
t = 0 and t = T . The boundary term

∫

dx ρ(x, 0) δh(x, 0)
vanishes because the height profile at t = 0 is fixed by
Eq. (2). The boundary term

∫

dx ρ(x, T ) δh(x, T ) must
be also zero. As we fixed h(x = 0, T ) = H , we have
δh(x = 0, T ) = 0, but ρ(x = 0, T ) can be arbitrary. On
the contrary, h(x 6= 0, T ) is not fixed, so we must have
ρ(x 6= 0, T ) = 0. This leads to the boundary condition
[21, 25]

ρ(x, T ) = Λ δ(x), (A6)

where one introduces an unknown constant Λ which is
ultimately set by the condition h(x = 0, T ) = H . Upon

the rescaling t/T → t, x/
√
νT → x, |λ|h/ν → h and

|λ|Tρ/ν → ρ, one arrives at Eqs. (11)-(15) of the main
text, with rescaled H and Λ, and Eq. (2) with rescaled
L.


