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We study level statistics in ensembles of integrable N ×N matrices linear in a real parameter x.
The matrix H(x) is considered integrable if it has a prescribed number n > 1 of linearly independent
commuting partners Hi(x) (integrals of motion)

[
H(x), Hi(x)

]
= 0,

[
Hi(x), Hj(x)

]
= 0, for all x.

In a recent work, we developed a basis-independent construction of H(x) for any n from which we
derived the probability density function, thereby determining how to choose a typical integrable
matrix from the ensemble. Here, we find that typical integrable matrices have Poisson statistics
in the N → ∞ limit provided n scales at least as logN ; otherwise, they exhibit level repulsion.
Exceptions to the Poisson case occur at isolated coupling values x = x0 or when correlations are
introduced between typically independent matrix parameters. However, level statistics cross over
to Poisson at O(N−0.5) deviations from these exceptions, indicating that non-Poissonian statistics
characterize only subsets of measure zero in the parameter space. Furthermore, we present strong
numerical evidence that ensembles of integrable matrices are stationary and ergodic with respect to
nearest neighbor level statistics.

I. INTRODUCTION

It is generally believed that the energy levels of inte-
grable systems[1] follow a Poisson distribution[2–8]. For
example, the probability that a normalized spacing be-
tween adjacent levels lies between s and s + ds is ex-
pected to be P (s)ds = e−sds. In contrast, chaotic sys-
tems exhibit Wigner-Dyson statistics, with level repul-
sion P (s) ∝ s2 or s at small s. Moreover, level statistics
are often used as a litmus test for quantum integrabil-
ity even though there are integrable models that fail this
test, e.g. the reduced BCS model[5] (which is a particular
linear combination of commuting Gaudin Hamiltonians).
In the present work, we quantify when and why Poisson
statistics occur in quantum integrable models, while also
characterizing exceptional (non-Poisson) behavior.

Poisson statistics have been numerically verified on a
case-by-case basis for some quantum integrable systems,
including the Hubbard[2] and Heisenberg[2, 3] models.
On the other hand, general or analytic results on the
spectra of quantum integrable models are lacking, in part
due to the absence of a generally accepted unambiguous
notion of quantum integrability,[9, 10] and in part be-
cause existing results usually apply to isolated models
instead of members of statistical ensembles like random
matrices[11]. Notably, Berry and Tabor showed [4] that
level statistics in semiclassical integrable models are al-
ways Poissonian as long as the energy E(n1, n2, . . . ) is
not a linear function of the quantum numbers n1, n2, . . . ,
i.e. the system cannot be represented as a collection of
decoupled harmonic oscillators. As integrability is de-
stroyed by perturbing the Hamiltonian, the statistics are
expected to cross over from Poisson to Wigner-Dyson
at perturbation strengths as small as the inverse system
size[3].

Random matrix theory (RMT)[11, 12] captures level
repulsion and other universal features of eigenvalue

statistics in generic (non-integrable) Hamiltonians, see
e.g. Fig. 2. We recently proposed an integrable matrix
theory[13] (IMT) to describe eigenvalue statistics of inte-
grable models. This theory is based on a rigorous notion
of quantum integrability and provides ensembles of inte-
grable matrix Hamiltonians with any given number of in-
tegrals of motion (see below). It is similar to RMT in that
both are ensemble theories equipped with rotationally in-
variant probability density functions. An important dif-
ference is that random matrices do not represent realistic
many-body models, while integrable ones correspond to
actual integrable Hamiltonians. We therefore have ac-
cess not only to typical features, but also to exceptional
cases and are in a position to make definitive statements
about the statistics of quantum integrable models. Here
we study the nearest-neighbor level spacing distributions
of the IMT ensembles.

The approach of Refs. 10, 13–18 to quantum integra-
bility operates with N × N Hermitian matrices linear
in a real parameter x. A matrix H(x) = xT + V is
called integrable[16, 17, 19] if it has a commuting partner

H̃(x) = xT̃ + Ṽ other than a linear combination of itself

and the identity matrix and if H(x) and H̃(x) have no
common x-independent symmetry, i.e. no Ω 6= c1 such

that [Ω, H(x)] = [Ω, H̃(x)] = 0. Fixing the parameter-
dependence makes the existence of commuting partners
a nontrivial condition, so that only a subset of measure
zero among all Hermitian matrices of the form xT + V
are integrable[17].

Further, integrable matrices fall into different classes
(types) according to the number of independent integrals
of motion. We say that H(x) is a type-M integrable ma-
trix if there are precisely n = N −M > 1 linearly inde-
pendent N×N Hermitian matrices[20] Hi(x) = xT i+V i

with no common x-independent symmetry such that[
H(x), Hi(x)

]
= 0, [Hi(x), Hj(x)] = 0, (1)
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for all x and i, j = 1, . . . , n. A type-M family of inte-
grable matrices (integrable family) is an n-dimensional
vector space[20], where Hi(x) provide a basis. The gen-
eral member of the family is

H(x) =

n∑
i=1

diH
i(x), (2)

where di are real numbers. The maximum possible value
of n is n = N − 1, corresponding to type-1 or maximally
commuting Hamiltonians.

Examples of well-known many-body Hamiltonians that
fit into this definition of integrability are the Gaudin, 1D
Hubbard and XXZ models, where x corresponds to the
external magnetic field, Hubbard U and the anisotropy,
respectively. Note however that these models have vari-
ous x-independent symmetries, such as the z-component
of the total spin, total momentum etc. Taken at a
given number of spins or sites, they break down into sec-
tors (matrix blocks) characterized by certain parameter-
independent symmetry quantum numbers. Such blocks
are integrable matrices according to our definition. For
instance, the 1D Hubbard model on six sites with three
spin up and three spin down electrons is a direct sum
of integrable matrices of various types[17]. Sectors of
Gaudin magnets, where the z-component of the total spin
differs by one from its maximum or minimum value (one
spin-flip), or, equivalently, the one Cooper pair sector of
the BCS model are type-1 [16], while other sectors are
integrable matrices of higher types.

Prior work[10, 15–18] constructed all type-1, 2, 3 inte-
grable matrices and a certain subclass of arbitrary type-
M , determined exact eigenvalues and eigenfunctions of
these matrices, investigated the number of level crossings
as a function of size and type, and showed that type-1 in-
tegrable families satisfy the Yang-Baxter equation. The
present work is a continuation of Ref. 13 where we for-
mulated a rotationally invariant parametrization of inte-
grable matrices and derived an appropriate probability
density function (PDF) for the parameters, i.e. for en-
sembles of integrable matrices of any given type. The
derivation is similar to that in the RMT and is based
on either maximizing the entropy of the PDF or, equiv-
alently, postulating statistical independence of indepen-
dent parameters and rotational invariance of the PDF.
Here we use the results of Ref. 13 to generate and study
numerically and analytically level spacing distributions
in ensembles of integrable matrices of various types as
well as in individual matrices.

Our main results are as follows. For a generic choice
of parameters, the level statistics of integrable matrices
H(x) are Poissonian in the limit of the Hilbert space size
N → ∞ if the number of conservation laws n scales at
least as logN , see Fig. 1 for an example. Exceptions to
Poisson statistics fall into two categories. First, it is al-
ways possible to construct an integrable matrix that has
any desired level spacing distribution at a given isolated
value, x = x0, of the coupling (or external field) param-
eter. For a typical type-1 matrix there is always a single
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FIG. 1: (color online) The level spacing distribution for a
4000×4000 real symmetric integrable matrix H(x) = xT +V
at x = 1. This particular matrix is a sum of 200 linearly
independent matrices that commute for all values of the real
parameter x. Note that the spacing distribution is maximized
at s = 0, a feature known as level clustering. The smooth
curve is a Poisson distribution, which is theorized to be typical
of integrable matrices. Compare to the generic real symmetric
matrix case in Fig. 2.
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FIG. 2: (color online) The level spacing distribution of a
4000×4000 random real symmetric matrix with entries chosen
as independent random numbers from a normal distribution
of mean 0 and off-diagonal variance 1/2 (diagonal variance
of 1). Such a matrix belongs to the Gaussian orthogonal en-
semble (GOE) of real symmetric matrices, studied in random
matrix theory (RMT). The main feature of the spacing dis-
tribution here is its vanishing for small spacings, also known
as level repulsion. The smooth curve is the Wigner surmise

P (s) = π
2
se−

π
4
s2 . See the integrable matrix case in Fig. 1.

value of x where the statistics are Wigner-Dyson. The
distribution quickly crosses back over, however, to Pois-
son at deviations from x0 of size δx ∼ N−0.5, with the
crossover centered at δx ∼ N−1. Second, one obtains
non-Poissonian distributions by introducing correlations
among the ordinarily independent parameters character-
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izing an integrable matrix H(x); the reduced BCS model
falls into this category. The statistics again revert to
Poisson at O(N−0.5) deviations from such correlations.
We also show numerically that as N → ∞, integrable
matrix ensembles satisfy two distinct definitions of ergod-
icity with respect to the nearest-neighbor spacing distri-
bution P (s). Not only are the statistics of a single matrix
representative of the entire ensemble, but the statistics
of the j-th bulk spacing across the ensemble are indepen-
dent of j.

In Sect. II, we present numerical results on the level
statistics of type-1 matrices, defined to be integrable ma-
trices H(x) with the maximum number nmax = N − 1
of linearly independent commuting partners. Section III
contains numerical results for integrable matrices with
n ≤ nmax. We present our analytical justification of nu-
merical results using perturbation theory in Sect. IV. Fi-
nally, we give numerical results on ergodicity in Sect. V.

II. LEVEL STATISTICS OF TYPE-1
INTEGRABLE MATRICES

A. Type-1 families, primary parametrization

Although our definition of integrable matrices encom-
passes the general Hermitian case, we restrict our focus
in this work to real symmetric matrices. We begin with
type-1 integrable N × N families which contain N − 1
nontrivial commuting partners in addition to the scaled
identity (c1x + c2)1. Such matrices are the simplest to
construct, for the parametrization of type-M integrable
families increases in complexity with M . Results on these
higher types are deferred to Sect. III.

We first summarize the essential points of the basis-
independent type-1 construction of Ref. 13 in order to
arrive at the parametrization of Eq. (4) useful for nu-
merical calculations. By considering linear combinations
of the N − 1 basis matrices, defined in Eq. (2), and the
identity, one can prove that every type-1 family contains
a particular integrable matrix Λ(x) with rank-1 T -part

Λ(x) = x |γ〉 〈γ|+ E, (3)

i.e. [H(x),Λ(x)] = 0 for all x and any H(x) = xT +V in
the family. There is an additional restriction [V,E] = 0,
which follows from O(x0) term in the commutator. It
can be shown that the matrices E and V and the vector
|γ〉 completely determine a given type-1 matrix H(x) =
xT +V modulo an additive constant proportional to the
scaled identity.

If we consider any type-1 H(x) in the shared eigenbasis
of E and V , we find that the matrix elements of H(x) can
be parametrized in terms of the N eigenvalues εi of E,
the N eigenvalues di of V , and the N vector components
γi of |γ〉. Statistical arguments borrowed from RMT in
Ref. 13 identify the εi and di as two independent sets
of eigenvalues drawn from the Gaussian orthogonal en-
semble. The γi are drawn from a δ(1−|γ|2) distribution.

With these parameters, any N×N type-1 integrable ma-
trix H(x) = xT + V can be constructed in the following
way:

[H(x)]ij = xγiγj
di − dj
εi − εj

, i 6= j,

[H(x)]jj = dj − x
∑
k 6=j

γ2k
dj − dk
εj − εk

.

(4)

We call Eq. (4) the “primary” parametrization, which is
given specifically in the basis where V is diagonal and
can be transformed into any other basis by an orthogo-
nal transformation. Note that the quantities dj act as
coefficients of linear combination of basis matrices Hi(x)
defined by setting dj = δij in Eq. (4). Explicitly, nonzero
matrix elements of Hi(x) are

[Hi(x)]ij = [Hi(x)]ji = x
γiγj
εi − εj

, j 6= i,

[Hi(x)]jj = −x γ2i
εi − εj

, j 6= i,

[Hi(x)]ii = 1− x
∑
k 6=i

γ2k
εi − εk

.

(5)

and

H(x) =

N∑
i=1

diH
i(x). (6)

From Eq. (6) we see that the εi and γi uniquely iden-
tify a type-1 commuting family whereas the choice of di
produces a given member of the family.

To describe the spectrum of H(x), we introduce an
additional N parameters λj = λj(x) determined by the
following equation[16]:

1

x
=

N∑
k=1

γ2k
λj − εk

. (7)

One can graphically verify that for any non-degenerate
choice of εk there are N real solutions λj to Eq.(7) that
interlace the εk. The N eigenvectors v(x) and eigenvalues
η(x) of H(x) are labelled by λj and take the form

[vλj (x)]k =
γk

λj − εk
, ηλj (x) = x

N∑
i=1

diγ
2
i

λj − εi
. (8)

The components of the (unnormalized) eigenvectors
vλj (x) are independent of the choice of di in Eq. (6), and
are thus common to any member of the family defined
by εk and γk.

B. Universality of Poisson statistics

Equipped with parametrizations of integrable matrix
ensembles based on the number of commuting partners
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in a family, we can quantitatively outline both the origin
and the robustness of Poisson statistics in these ensem-
bles. We first explore the latter with numerical tests
of the statistics of integrable matrices in Sects. II C -
III C. For clarity of exposition, the numerical results of
Sects. II C, II D and II E are demonstrated strictly for
type-1 matrices. In Sect. III, we show that the same re-
sults apply generally to a construction of higher type in-
tegrable matrix families that by definition contain fewer
than the maximum number of conservation laws. We
present analytical considerations of numerical results in
Sect. IV.

We emphasize that regardless of the choice of param-
eters we find Poisson level statistics in the overwhelming
majority of cases, even near isolated points in parame-
ter space with non-Poissonian statistics. For example,
the least biased choice for di in Sect. II A enforces GOE
statistics at x = 0 since H(0) = V ; by effecting a shift
x → x + x0, the equivalent invariant statement is that
each type-1 matrix has a parameter value x0 such that
H(x0) has Wigner-Dyson statistics. Another exception
to Poisson statistics is when di and εi are correlated so
that di = f(εi), a smooth function at least over almost
the entire range of εi. Nonetheless, as soon as we devi-
ate from x0 or f(εi), the results of Sects. II C and II D
show that statistics quickly revert to Poisson at devia-
tions scaling as δ ∼ N−0.5 in the limit N →∞.

Generally, we find that random linear superpositions of
basis matrices within a given integrable family are cru-
cial for obtaining Poisson level statistics. Basis matrices
themselves, defined in Eq. (6) for the primary type-1 con-
struction and in Eq. (22) for more general integrable ma-
trices, show non-Poissonian statistics with strong level re-
pulsion. Such repulsion washes away, however, for H(x)
that are random linear combinations of sufficiently many
basis matrices. We see this behavior in Sect. II E for all
type-1 matrices, i.e. independent of the number m of ba-
sis matrices (conservation laws) in linear combination as
long as m > O(logN).

We fit all spacing distributions P (s) to the Brody
function[21] P (s, ω), where ω is the Brody parameter

P (s, ω) = a(ω)sωe−b(ω)s
ω+1

. (9)

The distribution in Eq. (9) has unit mean and norm with
appropriate choices of constants a(ω) and b(ω). It in-
terpolates between a Poisson distribution P (s) = e−s at

ω = 0 and the Wigner surmise P (s) = π
2 se
−π4 s

2

at ω = 1,
and hence is a convenient fitting function. The Brody pa-
rameter ω can take all values ω > −1, which means it
also can detect enhanced level clustering or repulsion.

Note, however, that the Wigner surmise is not the ex-
act nearest neighbor spacing distribution of GOE matri-
ces. One may therefore expect our numerics to produce
an ω 6= 1 for GOE matrices. This is indeed the case,
see for example Fig. 4 where ω ≈ .956 for GOE matri-
ces. The exact distribution P (s) can be found in Ref. 11
and was originally derived by Gaudin in terms of a Fred-
holm determinant[22]. Using Ref. 23 and a few lines of
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FIG. 3: (color online) Crossover in coupling x of the level
statistics of type-1 integrable N×N matrices H(x) = xT+V ,
N = 4000. See Sect. II A for their parametrization. V is a
random matrix so that H(x = 0) has level repulsion. Each
distribution contains the levels statistics of a single matrix
H(x) at a given value of x. Note that some level repulsion
has set in by x = N−1. Each numerical distribution is fit to
the Brody function P (s, ω) from Eq. (9); for couplings x =(
1, N−1, N−1.5

)
the fits give ω = (0.01, 0.30, 0.94), respec-

tively. The solid lines are reference plots of a Poisson distri-

bution P (s) = e−s and the Wigner Surmise P (s) = π
2
se−

π
4
s2 .

See Fig. 4 for more on this crossover.

Mathematica code, we find that the same fitting proce-
dure used for numerically generated matrices produces
ω ≈ 0.957. Note that it is important to exclude P (0) = 0
in the fitting procedure for numerically generated finite-
sized matrices.

C. Crossover in coupling parameter x

Here we show that even if the statistics are non-
Poissonian at a given coupling value x = x0 (we set
x0 = 0), level clustering is restored at small deviations
from x0. For any N , the matrices T and V each have
eigenvalues that mostly lie on an O(1) interval centered
about zero. We consider the primary type-1 construction
encountered in Eq. (4) and explore the level statistics of
large matrices. In Fig. 3, we see qualitatively how the
statistics change with x when N = 4000. We find Pois-
son statistics at x ∼ 1 until a crossover to level repulsion
begins near x = N−0.5 and ends near x = N−1.5.

To verify that the crossover scaling inferred from Fig. 3
is correct for all N � 1, in Fig. 4 we plot how the
Brody parameter ω (see Eq. (9)) evolves with x for vari-
ous choices of N . It turns out that ω(x,N) can be fit to
a relatively simple function, for any N � 1

ω(x,N) = α− β tanh

(
logN x−X0

Z

)
. (10)

The numbers (α, β,X0, Z) are fit parameters and take
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FIG. 4: (color online) Crossover in level statistics with vari-
ation of coupling parameter x in type-1 integrable N × N
matrices H(x) = xT + V , quantified by the Brody parameter
ω(x,N) from Eq. (9). The two important limits are ω = 0
for Poisson statistics and ω = 1 for random matrix (Wigner-
Dyson) statistics. Each plotted value ω(x,N) is computed
for the combined level spacing distribution of several matri-
ces from the ensemble. We extract the crossover scale by
fitting ω(x,N) to Eq. (10) (solid curve) to all curves simulta-
neously, where most notably X0 ∼ −1 for all N investigated,
indicating that crossovers to Poisson statistics are centered at
that value for integrable matrices H(x) when H(x = 0) has
level repulsion. The middle of the crossover is indicated by a
vertical line.

the values (0.482, 0.474,−1.04, 0.157) in Fig. 4. Most
important is that for any N � 1 we find X0 ∼ −1,
which solidifies our claim that the crossover occurs be-
tween x ∼ N−1.5 and x ∼ N−0.5. Analytical arguments
explaining this scaling are given in Sect. IV.

D. Correlations between matrix parameters

In the eigenbasis of V , our parametrization of in-
tegrable N × N matrices is given in terms of about
3N independent parameters (up to a change of basis).
Through an explicit construction of the probability den-
sity function of integrable matrices obtained through
basis-independent considerations, Ref. 13 shows that for
a typical integrable matrix, di and εi are indeed un-
correlated. We see in this section that if correlations
are introduced between εi and di, the statistics become
non-Poissonian. Small perturbations about these corre-
lations, however, bring the statistics immediately back to
Poisson. In this section x = 1 for all matrices considered.

Continuing with type-1 matrices in the primary
parametrization, Eq. (4), we recall that the eigenval-
ues ηλj of such a matrix H(x) = xT + V are given by
Eq. (8),where the λj = λj(x) are obtained from Eq. (7).
As we saw in Sect. II C, a typical choice of parameters
will produce Poisson statistics, but this changes if we let
di be some smooth function of εi. The simplest case

!"! !"# $"! $"# %"! %"# &"! &"#

!"!

!"%

!"'

!"(

!")

$"!

*

+
!*"

dj ! "kak! jk

d j ! ! j

FIG. 5: (color online) Level statistics of twoN×N type-1 inte-
grable matrices H(x) = xT + V , x = 1 and N = 4000, when
correlations are introduced between dj and εj (see Eqs. (4,
8), and then Eq. (11) for an example). Note that in con-
trast to Fig. 3, these integrable matrices exhibit level re-
pulsion even for x = 1. Each of the two curves is gen-
erated from a single matrix. One numerical curve corre-
sponds to the case when di = εi and the other is when di =∑4
k=1Akhk(εi), where hk(z) is the k-th order Hermite poly-

nomial and (A1, A2, A3, A4) = (2.3, 2.16,−1.46, 0.51), chosen
randomly. Note that the polynomial dependence weakens the
level repulsion as compared to the linear case. If higher order
polynomials are included, the level repulsion eventually gives
way to Poisson statistics. The solid curve is the Wigner sur-

mise P (s) = π
2
se−

π
4
s2 . See Fig. 7 for more on this behavior.

is shown in Fig. 5 for which di = εi. As discussed in
Refs. 13, 17, H(x) for this choice of parameters describes
a sector of the reduced BCS model and, independently, a
short range impurity in a weakly chaotic metallic quan-
tum dot studied in Refs. 24, 25.

The level repulsion for this case can be understood by
a simple manipulation of Eq. (8) when di = εi:

ηλj = x

N∑
i=1

εiγ
2
i + λjγ

2
i − λjγ2i

λj − εi

= −x
N∑
i=1

γ2i + λj ,

(11)

where we used Eq. (7). Then when di = εi the eigen-
values of H(x) are just the λj up to an additive con-
stant. For the case when εi are random matrix eigen-
values, Ref. 24 derives the joint probability density of
the set {εi, λj} and Ref. 25 demonstrates that the λj
are subject to the same level repulsion as the εi. Note
also that Eq. (7) implies λj lie between consecutive εi
and therefore the eigenvalues in Eq. (11) can have no
crossings at any finite x. Numerically, we have found
that λj exhibit level repulsion for any choice of εi (see
Fig. 6). Fig. 5 also shows the level repulsion induced

when di =
∑4
k=1Akhk(εi), where hk(εi) is the k-th or-

der Hermite polynomial and Ak are independent random
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FIG. 6: (color online) Illustrating that conclusions drawn
about correlations between di (eigenvalues of V ) and εi (eigen-
values of E) are independent of the particular choice of
εi. Pictured are four numerically generated nearest-neighbor
spacing distributions P (s) for 5000 × 5000 type-1 matrices,
x = 1, when the di and εi are either from a random matrix
(GOE) or are independently and identically distributed num-
bers (i.i.d.) from a normal distribution. Each curve represents
the level statistics of a single matrix chosen from the type-1
ensemble. Level repulsion survives in the two cases where di
and εi are correlated (V = E), even though the overall shape
of P (s) depends on whether E’s eigenvalues are GOE or i.i.d.
numbers. The solid curves are the usual Poisson distribution
P (s) = e−s and the Wigner surmise P (s) = π

2
se−

π
4
s2 . We

do not include plots for different choices of γi, which do not
affect the general character of the results.

numbers drawn from a normal distribution. In this case,
the level repulsion is mitigated relative to the case of lin-
ear correlation. Sums to higher orders of hk(εi) (or any
higher order polynomial) will eventually bring the statis-
tics back to Poisson.

We now investigate the stability of induced level re-
pulsion in H(x) when correlations between di and εi are
broken. In Fig. 7, we let di = εi(1 + δDi) where Di is
an O(1) random number from a normal distribution and
δ is a number controlling the size of the perturbation.
The crossover to Poisson statistics as δ increases is very
similar to that in Fig. 4, which shows the crossover with
x. In fact, we can fit the Brody parameter ω(δ,N) to

ω(δ,N) = α− β tanh

(
logN δ −X0

Z

)
. (12)

Note that Eq. (12) is just Eq. (10) with the substi-
tution x → δ. We find that the crossover occurs
over the range N−1.5 . δ . N−0.5, indicating that
any perturbation to correlations will immediately de-
stroy level repulsion as N → ∞. In particular, Fig. 7
gives (α, β,X0, Z) = (0.479, 0.474,−1.03, 0.169) for lin-
ear correlations. This scaling is not restricted to the
case di = εi, as seen in Fig. 8 where we again consider
di =

∑4
k=1Akhk(εi) and find a similar crossover with

(α, β,X0, Z) = (0.237, 0.233,−0.914, 0.206).
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FIG. 7: (color online) Variation in the Brody parameter
ω(δ,N) when di = εi(1 + δDi) in the level statistics of N ×N
type-1 integrable matrices H(x) for various N , x = 1. The
number δ is a parameter controlling the size of the perturba-
tion from correlation, and Di is an O(1) random number from
a normal distribution. Note that the crossover in δ is very sim-
ilar to that in x shown in Fig. 4. The numerical curves are fit
to the function ω(δ,N) given in Eq. (12) (solid curve), with
a crossover centered at X0 ∼ −1, indicating that crossovers
to Poisson statistics are centered at that value. Each plotted
value ω(δ,N) is computed for the combined level spacing dis-
tribution of several matrices from the ensemble. A vertical
line indicates the center of the crossover on the plot. For a
similar plot for nonlinear functions di(εi) see Fig. 8.

E. Basis matrices: how many conservation laws?

Here we demonstrate that in order to obtain Poisson
statistics, the number m of linearly independent conser-
vation laws contained in an N ×N integrable type-1 ma-
trix can be much less than N . Consider a combination
of m basis matrices Hi(x) defined in Sect. II A

H(x) =

m∑
i=1

diH
i(x), m ≤ N − 1. (13)

From the sum in Eq. (13), we can determine the number
m needed to obtain Poisson statistics. Individual basis
matrices Hi(x) will exhibit level repulsion, and it is only
when an integrable matrix is formed from an uncorre-
lated (w.r.t. εi, see Sect. II D) linear combination of suf-
ficiently many of them will we observe Poisson statistics.
Level repulsion in this case can be qualitatively under-
stood by reasoning that a basis matrix only “contains”
one nontrivial conservation law, itself. More concretely,
we see from Eq. (8) that the eigenvalues of Hi(x) are
xγ2i (λj−εi)−1, i.e. they are simple, mostly smooth func-
tions of λj , which exhibit level repulsion.

Fig. 9 quantifies how many basis matrices m (i.e. con-
servation laws) are needed for Poisson statistics as a func-
tion of N , the matrix size. We find numerically that the
plots of the Brody parameter ω (see Eq. (9)) vs. the
number m of basis matrices in linear combination can be
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FIG. 8: (color online) Variation in the Brody parameter
ω(δ,N) when di =

∑4
k=1Akhk(εi)(1+δDi) in the level statis-

tics of N ×N type-1 integrable matrices H(x = 1) for various
N . Here δ quantifies the deviation from the point δ = 0 where
the parameters di and εi defining the matrices are correlated,
Di and Ak are O(1) random numbers from a normal distri-
bution, hk(z) is the k-th order Hermite polynomial. Each
ω(δ,N) is computed for the combined level spacing distribu-
tion of several matrices from the ensemble. The crossover in
δ is very similar to that in x in Fig. 4 and in δ for linear corre-
lations in Fig. 7. Because the correlations are nonlinear, the
level repulsion is diminished in comparison to previous cases.
Despite this, the crossover still demonstrates the same scaling
– fitting the data to ω(δ,N) given in Eq. (12) (solid curve),
with a crossover centered at X0 ∼ −1 (vertical line), shows
that δ ∝ N−0.5 is enough for statistics to revert to Poisson.

fit to a simple function

ω(m,N) = a exp

[
− b

logN
m

]
, (14)

where a and b are real constants. The fact that for dif-
ferent values of N we find that b ∼ 1 supports the notion
that we need only about logN conservation laws in or-
der to induce Poisson statistics. We make this claim with
caution because we only have data for 500 ≤ N ≤ 4000, a
range over which logN does not vary significantly. More
precisely, Fig. 9 shows that having m = O(1) conserva-
tion laws is insufficient for inducing Poisson statistics,
and that a useful upper bound on the lowest m nec-
essary for Poisson statistics is mmin < O(Nα) where
0 < α < 0.20. We obtain the factor of 0.20 by rewrit-
ing Eq. (14) assuming the decay constant has power law
dependence on N instead of logarithmic dependence

ω(m,N) = a exp
[
− c

Nα
m
]
. (15)

Numerically we found that the parameter b in Eq. (14)
satisifies 1.07 ≤ b ≤ 1.21 when 500 ≤ N ≤ 4000. By
matching exponents between Eq. (15) and Eq. (14) for
(b1, N1) = (1.21, 500) and (b2, N2) = (1.07, 4000), we find
a maximum exponent α = 0.198.

The basis matrices Hi(x) contained in any integrable
H(x) are linearly independent conservation laws. The
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FIG. 9: (color online) The Brody parameter ω(m,N) (see
Eq. (9)) vs. number m of type-1 basis matrices Hi(x) in
linear combination H(x) =

∑m
i=1 diH

i(x) for various N ,
x = 1. The fits presume exponential decay and are ex-
pressed in terms of two parameters (a, b) from Eq. (14).
For N = (500, 1000, 2000, 4000) we find the decay constant
b = (1.15, 1.07, 1.14, 1.21), indicating that we only need
mmin ≈ logN conservation laws for Poisson statistics to
emerge. Figs. 15 and 16 show similar plots for higher types.
Each plotted ω(m,N) is computed for the combined level
spacing distribution of several matrices from the ensemble.

observed dependance of P (s) on the number m of basis
matrices in linear combination is reminiscent of the early
work of Rosenzweig and Porter[26] (RP) on the nearest
neighbor spacing distribution of superpositions of inde-
pendent spectra. Although the spectra of basis matri-
ces Hi(x) are not strictly independent and are added to-
gether instead of superposed (“superposed” here means
“combined into a single list”), we see the same qualitative
behavior as described by RP: a single basis matrix has
level repulsion, but a sufficiently large number combined
have Poisson statistics. In the case of m independent,
superposed spectra with vanishing P (0) that contribute
equally to the mean level density, the value Pm(0) of the
superposed spectrum is given by the RP result

Pm(0) = 1− 1

m
. (16)

We see in Fig. (10) that Pm(0) for m basis matrices in
linearly combination differs from the RP result for small
m, as expected, but asymptotically approaches Eq. (16)
for large m and large N . Thus it seems reasonable to
conceptually understand the emergence of Poisson level
statistics in integrable matrices H(x) as arising from the
existence of conservation laws, whose spectra are statis-
tically independent for large m and N .

Integrable matrix spectra are similar in structure to
those of semiclassically integrable models studied by
Berry and Tabor[4]. Such spectra are also sums (or sim-
ple functions of) rigid spectra, and they have Poisson
nearest neighbor level statistics in the semiclassical limit.

Berry’s work[27] on semiclassical models shows that
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FIG. 10: (color online) Plot of numerically generated
Pm(0.025) for linear combinations of m type-1 basis ma-
trices, Eq. (13), for N = 100 and N = 2000 at x = 1.
The solid curve gives the Rosenzweig-Porter prediction of
Pm(0) = 1−1/m for superpositions of m independent random
matrix spectra. Physically, the RP curve represents Pm(0)
for the combined spectra of m blocks of different (parameter-
independent) quantum numbers of a Hamiltonian. We note
that although different mechanisms are involved in the RP
and integrable matrix approach to Poisson statistics, the be-
havior of P (0) is similar. This gives heurstic justification to
why the existence of parameter-dependent conservation laws
in H(x) implies Poisson statistics. The sub-Poisson behavior
for N = 100 is a finite-size effect.

longer range spectral statistics of integrable and chaotic
models deviate from the predictions of the Poisson
ensemble[28] and Gaussian random matrix theory, re-
spectively. Similar behavior occurs in purely quantum
systems[29]. An example of such a long range statistic
is Σ2(L), the spectral variance of the average number of
eigenvalues contained in an interval of length L. For in-
dependent random numbers with unit mean spacing in
an infinitely large spectrum, Σ2(L) = L. For a given
Hamiltonian, Σ2(L) will eventually saturate[30] at some
Lmax, which depends on the system’s classical periodic
orbits and the energy scale.

We find no evidence of saturation of Σ2(L) in type-
1 matrices on the ensemble average. Because we work
with finite size spectra, we compare numerically gener-
ated Σ2(L) to the corresponding Poisson ensemble aver-
aged result for lists of R independent numbers with unit
mean spacing and periodic boundary conditions

Σ
2
(R,L) = L

(
1− L

R

)
. (17)

The overline indicates an average over the Poisson en-
semble. Because numerical unfolding (see Appendix A)
introduces spurious effects in long range spectral observ-
ables, we instead average over small regions containing
R = 2

√
N eigenvalues in the centers of N ×N matrices

where the level density is approximately constant. As
seen in Fig. 11, the spectral variance of type-1 matrices
satisfies Eq. (17), even at relatively small N .

N = 1000

R = 64

N = 100

R = 20

0 10 20 30 40 50 60
0
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L
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HR,
L
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FIG. 11: (color online) Ensemble averaged number variance

Σ
2
(R,L) in N ×N type-1 matrices H(x) = xT + V at x = 1

for N = 100 and N = 1000. In order to achieve a constant
mean level spacing normalized to unity, we selected the middle
R = 2

√
N eigenvalues from each matrix and used periodic

boundary conditions on the list of eigenvalues. The results are
in excellent agreement with the Poisson ensemble predictions
(solid curves), given by Eq. (17). There is no saturation on
the ensemble average. We averaged over 104 matrices for
N = 100 and 500 matrices for N = 1000.

While there is no saturation on the ensemble average,
Σ2(R,L) in the Poisson ensemble has large fluctuations
for L ∼ R/2. Figs. 12 and 13 shows how individual mem-
bers of the Poisson ensemble and individual type-1 ma-
trices can both exhibit saturation to values of Σ2(R,L)
much smaller than Eq. (17) and have a spectral variance
greatly exceeding Eq. (17). Type-M matrices, whose con-
struction is detailed in the next section, exhibit similar
behavior in Σ2(R,L) for small M , but we have not quan-
tified how precisely Σ2(R,L) changes with increasing M .

Recent work by Prakash and Pandey[31] shows
that a two particle non-interacting embedded matrix
ensemble[32] exhibits saturation of Σ2(L) on the ensem-
ble average. Embedded matrix ensembles model the
structure of many body systems by constructing eigenen-
ergies out of random k-body interactions between m par-
ticles, k < m. Ref. 31 contains an extended discussion
of saturation and helpful references. We do not pursue
spectral variance further in this work.

III. STATISTICS OF INTEGRABLE MATRICES
OF HIGHER TYPES

A. Ansatz Type-M families

We do not yet have a method for directly generaliz-
ing the type-1 primary parametrization from Sect. II A
to higher type matrices that by definition have fewer
commuting partners. Instead, we present another
parametrization that produces a subset of integrable fam-
ilies of any type M ≥ 1. The construction is in terms of
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FIG. 12: (color online) Deviations from the Poisson ensemble

average Eq. (17) (solid curve) of number variance Σ
2
(200, L)

from of two members of the Poisson ensemble. Shown are
the number variances of two different lists of 200 independent
numbers from a flat distribution in order to illustrate the large
fluctuations of long-range spectral observables in the Poisson
ensemble. See Fig. 13 for similar behavior in type-1 spectra.
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FIG. 13: (color online) Deviations from the Poisson ensemble

average Eq. (17) (solid curve) of number variance Σ
2
(64, L)

from of two members of the N = 1000 type-1 ensemble.
Shown are the number variances of two matrices used in the
ensemble average of Fig. 11. The saturation observed in the
more rigid of the two spectra is remniscent of that seen in
members of the Poisson ensemble, see Fig. 12.

3N+1 real parameters so that in choosing values for them
one obtains a matrix H(x) = xT+V with a desired num-
ber n of nontrivial commuting partners (n = N−M) and
no parameter-independent symmetries. As in the type-1
primary parametrization, the parameters can be traced
back to eigenvalues of two commuting constant random
matrices and a random vector.

Here we present the results; more details can be found
in Ref. 17 while the rotationally invariant construction is
given in Ref. 13. Again in the diagonal basis of V , the
most general member of an ansatz type-M commuting

family is

[H (x)]ij = xγiγj

(
di − dj
εi − εj

)
Γi + Γj

2
, i 6= j,

[H (x)]ii =

= di − x
∑
j 6=i

γ2j

(
di − dj
εi − εj

)
1

2

(Γi + Γj) (Γj + 1)

Γi + 1
,

(18)
where

〈i|i〉 ≡
N∑
j=1

γ2j
(λi − εj)2

,

di =
1

x0

N−M∑
j=1

gj
〈j|j〉

1

λj − εi
,

Γi = ±

√√√√1 +
1

x0

N∑
j=N−M+1

Pj
〈j|j〉

1

λj − εi
.

(19)

This parametrization gives all type-1, 2, and 3 integrable
matrices and only a subset of such for higher types. We
call matrices obtained by this construction ansatz type-
M as opposed to all type-M , these two notions being
equivalent for M = 1, 2, 3.

Basis-independent considerations from Ref. 13 identify
λi as eigenvalues of a matrix Λ selected from the GOE
and γi as selected from a δ(1− |γ|2) distribution, as was
the case for the primary parametrization of type-1 ma-
trices in Sect. II A. One may alternatively select the εi as
eigenvalues of a GOE matrix E and from them derive the
λi. We find that this choice has no effect on the statistics.
Unique to the ansatz parametrization are the (N −M)
parameters gi and M parameters Pi. Ref. 13 identifies
these parameters as eigenvalues selected from an N ×N
GOE matrix G[33] satisfying [G,Λ] = 0. The sign of Γi
can be chosen arbitrarily for each i and each set of sign
choices corresponds to a different commuting family. The
λi by construction are solutions of the following equation
with arbitrary (but fixed) real x0 6= 0:

f(λi) ≡
N∑
j=1

γ2j
λi − εj

− 1

x0
= 0,

F (εi) ≡
N∑
j=1

1

〈j|j〉
1

λj − εi
− x0 = 0.

(20)

The second line of Eq. (20) follows from the first by
writing both the partial fraction decomposition and fac-
torized form of F (z) = 1/f(z) and matching residues.
Eqs. (19) and (20) mean that ansatz type-M matrices
are written in terms of an auxiliary primary type-1 prob-
lem with parameter x0 and (unnormalized) eigenstates
|i〉, see Eq. (7) and Ref. 13. Note the important distinc-
tion between x and x0 – namely that x is free but x0 is
fixed for a given family of commuting matrices.
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Due to the square root in the expression for Γi,
Eq. (19), a given set of Pi will typically result in a com-
plex set of Γi. The matrix H(x) will subsequently be
complex symmetric, rather than real, although it will
still satisfy all requirements of integrability. Because in
this work we study the eigenvalues of real symmetric in-
tegrable matrices, we elect to reparametrize Γi in a way
that guarantees they be real without awkwardly scaling
each set of Pi

Γi = ±

√√√√∏N
j=1(φj − εi)∏N
k=1(λk − εi)

, (21)

where the M φj are real parameters such that (upon or-
dering εj and λj for argument’s sake) εj < φj < λj if
x0 > 0 and λj < φj < εj if x0 < 0. The resulting Γi are
real-valued. As there is no existing basis-independent
interpretation for φj , we simply choose them from a uni-
form distribution on their allowed intervals. We find that
the choice of φi or Pi to generate the Γj has a numerically
undetectable effect on the eigenvalue statistics.

Varying parameters gj produces different matrices
within the same commuting family, while varying the re-
maining parameters γi, λi, φi, x0 generates sets of matri-
ces from different families. A natural way to choose a
basis for the ansatz type-M commuting family is to de-
fine the n = N −M nontrivial Hk(x) such that gj = δkj
in Eq. (19) for 1 ≤ j ≤ N −M . In other words,

Hk(x) = xT k + V k is given by Eq. (18) with

di → dki =
1

x0

1

〈k|k〉
1

λk − εi
.

(22)

for k = 1, . . . , N −M . In particular,

V k = Diag(dk1 , d
k
2 , . . . , d

k
N ) (23)

A general member of the commuting family is

H(x) =

N−M∑
k=1

gkH
k(x). (24)

up to a multiple of the identity trivial to the study of
level spacing statistics.

Ansatz type-M families have an exact solution in terms
of a single equation similar to Eq. (7) given in Ref. 17,
which has slight differences in notation as compared to
here. To study level statistics of ansatz matrices, we
numerically diagonalize them rather than use the com-
putationally cumbersome exact solution.

A fundamental difference between ansatz type-M ma-
trices and the primary type-1 parametrization is that the
eigenvalues of the matrix V in the former are heavily
constrained by Eq. (19), while in the latter they are free
parameters. In particular, as explained in Ref. 13 the
primary type-1 V is selected from the GOE, while the
ansatz V is a certain primary type-1 matrix evaluated at
x = −x0, i.e.

V (x0) = −x0TH1
+H1, (25)

where H1 has N − M arbitrary eigenvalues gi and M
eigenvalues equal to zero. By the results of Sect. II,
ansatz V = V (x0) will typically have Poisson statistics.
The resolution to this apparent disconnect between the
two parametrizations is that for |x0| � 1, V (x0) will have
the eigenvalue statistics of H1. We argue in Ref. 13 that
the N −M gi are a subset of eigenvalues of an N × N
matrix from the GOE, so that for M not too large and
x0 � 1 we obtain Wigner-Dyson statistics in ansatz V .

We then forgo studying crossovers in the coupling x of
level statistics of ansatz type-M matrices H(x) = xT+ V
because ansatz V have Poisson statistics for typical pa-
rameter choices. Instead, we focus on the behavior of
the statistics with respect to parameter correlations, the
number M and the number of basis matrices. In all nu-
merical work on ansatz matrices we set x0 = 1, as this is
a typical coupling value for the auxiliary type-1 problem.

B. Correlations in ansatz parameters

Building on the results of Sect. II D, here we explore
effects of parameter correlations on the statistics in gen-
eral type-M ansatz matrices. Introducing correlations
between di and εi in this case is more complicated than
in Sect. II D because the di here are not all independent.
Fortunately, Eq. (19) admits a simple way to produce
such correlations. As an example, consider the case when
gj = λj

di =
1

x0

N−M∑
j=1

λj − εi + εi
〈j|j〉

1

λj − εi

=
1

x0
εi

N−M∑
j=1

1

〈j|j〉
1

λj − εi

+ (const)

= εi

1− 1

x0

M∑
j=1

1

〈j|j〉
1

λj − εi

+ (const),

(26)

where the second part of Eq. (20) was used. The sums
in the third line of Eq. (26) introduce a randomizing fac-
tor that has a weak effect for small M but that destroys
the correlation between di and εi at intermediate val-
ues of M . Fig. 14 shows the now familiar level statistics
crossover in δ for ansatz matrices of different size and
type with gk = λk(1 + δGk), where Gk is an O(1) ran-
dom number chosen from a normal distribution and δ a
parameter controlling the size of the perturbation. Just
as in Sect. II D, the crossover to Poisson statistics is cen-
tered about δ ∼ N−1. More generally, we can induce
level repulsion in ansatz type-M matrices if M � N
when gk = f(λk), a smooth function of λk.
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FIG. 14: (color online) Variation in the Brody parameter
ω(δ,N) when gi = λi(1 + δGi) in the level statistics of N ×N
ansatz type-M integrable matrices H(x = 1), Eq. (18), for
various N and M . Ordered pairs in the legend indicate size
and type (N,M) of the matrices, δ controls the strength of the
perturbation from the point δ = 0 where the parameters gi
and λi defining these integrable matrices are correlated, and
Gi is an O(1) random number from a normal distribution.
The crossover in δ for small M is similar to the primary type-1
crossovers in δ and x seen in Figs. 4,7 and 8. For largerM , cor-
relations cannot be introduced by this method, see Eq. (26).
Despite type-M matrices having fewer than the maximum
number of conservation laws, the crossover still demonstrates
the scaling given in Eq. (12) (solid curves) with a crossover
centered around X0 ∼ −1 (vertical line). As before, devia-
tions from correlation of size δ ∝ N−0.5 are enough for the
statistics to become Poisson. Each plotted value ω(δ,N) is
computed for the combined level spacing distribution of sev-
eral matrices from the ensemble. For the case of correlations
in ansatz matrices, we choose all Γk > 0 in order to avoid
pathological statistics in H(x).

C. Basis matrices: ansatz higher types

We now generalize the type-1 results of Sect. II E to ap-
ply to all ansatz type-M matrices. Recall that a general
ansatz type-M matrix H(x) = xT +V can be written as
a linear combination of basis matrices Hk(x) for which
gi = δik (see Eq. (24)).

We see again in Figs. 15 and 16 that Poisson statistics
emerge for relatively small linear combinations of basis
matrices. Denoting m as the number of conservation laws
contained in a linear combination, i.e.

H(x) =

m∑
i=1

gkH
k(x), m ≤ N −M, (27)

we investigate the Brody parameter ω(m,N) from
Eq. (14). In Fig. 15, N = 500, ω(m,N) decays to zero as
a function of m in nearly the same way for M = 470 as
for M = 20. It is only for very large M , such as M = 497,
that level clustering is forbidden, and this only because
we can use a maximum of 3 nontrivial basis matrices.
Similar behavior emerges for N = 2000 in Fig. 16. For all
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FIG. 15: (color online) Graph of the Brody parameter
ω(m,N) given by Eq. (9) vs. number m of ansatz type-M
basis matrices Hk(x), see Eq. (22), contained in linear com-
bination H(x) =

∑m
k=1 gkH

k(x) for N = 500, x = 1. The fits
presume exponential decay and are expressed in terms of two
parameters (a, b) from Eq. (14). For M = (250, 480) we find
the decay constant b = (1.13, 1.04), indicating that we only
need mmin ≈ logN conservation laws for Poisson statistics
to emerge, independent of type. We do not observe Pois-
son statistics for M = 497 because the maximum number of
nontrivial basis matrices is 3 in this case, and we see that
we need at least ∼ 15 conservation laws for Poisson statis-
tics to start emerging for N = 500. See Fig. 16 for a similar
plot for N = 2000 and Fig. 9 for the same concept in type-1
matrices. Each plotted value ω(m,N) is computed for the
combined level spacing distribution of several matrices from
the ensemble.

N and M tested we find b ∼ 1 (with precise values given
in the captions). Therefore, we can estimate a similar
bound as in Sect. II E for the minimum number of con-
servation laws needed for Poisson level statistics, namely
mmin < O(Nα) where 0 < α < 0.24, obtained from the
M = N/2 cases. Since m cannot exceed the total number
of conservation laws n = N −M for type-M matrices,
this provides a lower bound nmin = mmin < O(Nα) con-
sistent with mmin ≈ logN .

IV. ANALYTICAL RESULTS: PERTURBATION
THEORY

Some of the numerical observations found in Sects. II
and III can be understood using perturbation theory in
the parameter x. We restrict our analysis to the pri-
mary type-1 parametrization because our arguments for
this case are much more transparent than for the ansatz
construction. The analysis for ansatz matrices is similar.

The eigenvalues ηm(x) of H(x) to first order in x are
given by the second equation in Eq. (4), where we set
constant |γj |2 = N−1 for clarity and to achieve proper
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FIG. 16: (color online) Brody parameter ω(m,N) (see
Eq. (9)) vs. number m of ansatz type-M basis matrices
Hk(x), see Eq. (22), contained in linear combination H(x) =∑m
k=1 gkH

k(x) for N = 2000, x = 1. The fits presume ex-
ponential decay and are expressed in terms of two param-
eters (a, b) from Eq. (14). For M = (1000, 1980) we find
the decay constant b = (0.99, 1.03), indicating that we only
need mmin ≈ logN conservation laws for Poisson statistics
to emerge, independent of type. We do not observe Pois-
son statistics for M = 1997 because the maximum number
of nontrivial basis matrices is 3 in this case, and we see that
we need at least ∼ 20 conservation laws for Poisson statistics
to start emerging for N = 2000. See Fig. 15 for a similar
plot for N = 500 and Fig. 9 for the same concept in type-1
matrices. Each plotted value ω(m,N) is computed for the
combined level spacing distribution of several matrices from
the ensemble.

scaling for large N

ηm(x) ≈ dm −
x

N

∑
j 6=m

(
dm − dj
εm − εj

)
. (28)

The first term comes from V , which has a Wigner-Dyson
P (s), and the second term from T , which is determined
by the integrability condition and whose level statistics
we do not control. Let us estimate the x at which the
two terms in Eq. (28) become comparable. Note that dk
and εk both lie on O(1) inteverals so that T and V scale
in the same way for large N . Suppose εk are ordered
as ε1 < ε2 < · · · < εN . When dk and εk are uncorre-
lated dm − dj is O(1) when j is close to m, i.e. when
(εm − εj) = O(N−1). The second term in Eq. (28) is
then xcm lnN , where cm = O(1) is a random number
only weakly correlated with dm. We performed simple
numerical tests that confirm this scaling argument.

If we now order dm, cm in general will not be ordered,
i.e. if dm+1 > dm is the closest level to dm and there-
fore (dm+1 − dm) = O(N−1), the corresponding differ-
ence (cm+1 − cm) = O(1). The contributions to level-
spacings from the two terms in Eq. (28) become compa-
rable for x = xc ≈ 1/(N lnN). It makes sense that the
second term introduces a trend towards a Poisson distri-
bution because it is a (nonlinear) superposition of εk and

dk – eigenvalues of two uncorrelated random matrices.
Thus, we expect a crossover from Wigner-Dyson to Pois-
son statistics near x = xc. In our numerics we observe
a crossover over the range N−1.5 . x . N−0.5 centered
about xc ∼ N−1 likely because we do not reach large
enough N to detect the log component of the crossover.

This argument breaks down when dk = f(εk), since in
this case (dm−dj) = O(N−1) when (εm−εj) = O(N−1).
The two terms in Eq. (28) become comparable only at
x = O(1); moreover, the second term no longer trends
towards Poisson statistics. Relaxing the correlation be-
tween dk and εk with dk = f(εk)(1 + δDk), Dk = O(1),
and going through the same argument, one expects a
crossover to Poisson statistics at δ = O(1/N lnN) when
x = O(1).

The level repulsion observed in basis matrices is a con-
sequence of the level repulsion implicit in the parameters
λi, independent of the choice of εi, see the text below
Eq. (11) and Fig. 6. Indeed, basis matrices Hi(x) in the
primary type-1 parametrization, Eq. (4), have eigenval-
ues ηij(x) = xγ2i (λj−εi)−1, which is a smooth function of

λj except near εi. The ηij(x) therefore inherit the level re-
pulsion of the λj . Analogous reasoning applies to ansatz
basis matrices.

V. ERGODICITY IN INTEGRABLE MATRIX
ENSEMBLES

The discussion and figures in this section make fre-
quent reference to the “primary” construction of type-
1 integrable matrices and the “ansatz” construction of
type-M integrable matrices. These parametrizations are
introduced in Sect. II A and Sect. III A, respectively. En-
semble averages are taken with respect to the proba-
bility distributions for integrable matrices introduced in
Ref. 13.

One of the goals of this work is to determine the extent
to which ensembles of integrable matrices are “ergodic”.
Intuitively, an ensemble is called ergodic if a single ran-
domly selected member has properties that are typical of
the entire ensemble. Bohigas and Gianonni[34] expound
the subject in generality for random matrices, and here
we focus numerically on the meaning of ergodicity with
regards to the nearest-neighbor level spacing distribution
of integrable matrices. Rigorous results on ergodicty for
Gaussian ensembles and the Poisson ensemble were de-
rived by Pandey[35].

We distinguish between three separate ways of generat-
ing nearest-neighbor eigenvalue spacing distributions for
N × N integrable matrix ensembles. We call Pi,N,R(s)
the level spacing distribution, normalized to unity, of the
i-th member of the ensemble obtained from a spectral re-
gion R containing many eigenvalues (infinitely many as
N → ∞). The normalized distribution of spacings in R
from all matrices in the ensemble is called PN,R(s). A
third way to characterize spacing statistics is through the
normalized distribution of the j-th eigenvalue spacing of
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FIG. 17: (color online) Demonstrating the stationary prop-
erty Eq. (29) in type-1 N × N matrices H(x), x = 1 in the
primary parametrization. The four numerical curves show
the statistics pN,j(s) for (N, j) = (10, 3), (10, 5), (80, 10) and
(80, 40), each containing 105 eigenvalue spacings. The statis-
tics are nearly independent of j for N = 10, and for N = 80
there is no perceptible difference between j = 10 and j = 40.
The solid line is a Poisson distribution p(s) = e−s. Station-
arity is shown to hold also for type-M ansatz matrices in
Fig. 18.

all matrices in the ensemble, which we call pN,j(s). Both
the regions R and the numbers j are stipulated to be far
from the edges of the spectrum. In general, Pi,N,R(s),
PN,R(s) and pN,j(s) are distinct distributions. Concep-
tually, PN,R(s) and pN,j(s) are ensemble properties while
Pi,N,R(s) characterizes the spectrum of an individual ma-
trix. In the following definitions, we assume that the
spacing distributions converge to a well-defined limit as
N →∞, unlike known pathological examples such as the
semiclassical spacing distribution of a harmonic chain[4].
This assumption is supported numerically.

We now describe a precise notion[35] of ergodicity that
characterizes the limiting behavior of Pi,N,R(s), PN,R(s)
and pN,j(s) as N → ∞. First, we must determine
whether pN,j(s) is asymptotically stationary, i.e. inde-
pendent of j

lim
N→∞

pN,j(s) = p(s). (29)

In the case of type-1 matrices in the primary parametriza-
tion, we see in Fig. 17 that the graphs of two different
p10,j(s) closely resemble those of two different p80,j(s),
the latter of which are clearly Poisson. The same is true
for ansatz matrices of any type, but the convergence to
a Poisson distribution does not become apparent until
N = 300 as in Fig. 18. We conclude that Eq. (29) is true
for integrable matrices.

We now turn to the notion of spectral averaging, i.e.
the function Pi,N,R(s). If Eq. (29) holds, the ensemble
averaged Pi,N,R(s), called PN,R(s), satisfies

lim
N→∞

PN,R(s) = p(s), (30)
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FIG. 18: (color online) Demonstrating the stationarity prop-
erty Eq. (29) in ansatz type-150 N ×N matrices H(x), x = 1
and N = 300. The two numerical curves show the statistics
pN,j(s) for (N, j) = (300, 150) and (300, 20), each containing
∼ 104 eigenvalue spacings. The statistics are nearly inde-
pendent of j, although higher N would be needed in order
for the differences to disappear. The solid line is a Poisson
distribution p(s) = e−s.

independent of the region R. In practice, we numeri-
cally unfold the spectrum (see Appendix A) in order to
take into account any effects a non-stationary mean level
spacing can have on Pi,N,R(s), which characterizes fluc-
tuations about the mean level spacing. In this work, we
say integrable matrices are spectrally stationary if

lim
N→∞

Pi,N,R(s) = Pi(s), (31)

and ergodic with respect to nearest neighbor level statis-
tics if

Pi(s) = p(s). (32)

Two points are to be made about Eq. (31) and Eq. (32).
First, Eq. (31) is similar in spirit to, but not implied by,
Eq. (29). Figs. 19-22 show for various integrable matri-
ces, basis matrices included, that the level statistics from
a single large matrix, Pi,N,R(s), do not depend on the
spectral region R used.

Second, the limiting distribution is independent of the
index i, which means that a single matrix’s spacing dis-
tribution is typical of the ensemble. In rigorous work
on Gaussian ensembles[35], this is proved by showing
the ensemble averaged variance of Pi,N,R(s) vanishes as
N → ∞. In this work, we compare numerically gener-
ated graphs of spectral spacing distributions to ensemble
averaged ones for large N . By comparing Figs. 23, 24 to
Figs. 19, 20, we see that for large N , Pi,N,R(s)→ p(s).

The properties of stationarity and ergodicity are useful
if they set in quickly for small N , because smaller matri-
ces are more accessible both analytically and computa-
tionally. A classic example in Gaussian random matrix
theory is the Wigner surmise, derived from 2×2 matrices
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FIG. 19: (color online) Demonstrating spectral stationarity
Eq. (31) in type-1 matrices. Shown are the level statistics
Pi,N,R(s) of a single (i-th member of the ensemble) type-1
integrable matrix H(x), x = 1 and N = 20000, for different
regions R of its spectrum containing 4000 eigenvalues each.
The inset shows the density of states of this matrix and indi-
cates which numerical curve corresponds to which region R.
The distributions Pi,N,R(s) shown are independent of R, indi-
cating that type-1 matrix spectra are stationary with respect
to nearest neighbor level statistics. Noting that these distri-
butions are Poisson, Pi,N,R(s) ≈ e−s (solid curve) and com-
paring to Fig. 23 which gives PN′,R(s) ≈ e−s for N ′ = 2000,
we see that ergodicity, Eq. (32), is satisfied for type-1 inte-
grable matrices.

!"! !"# $"! $"# %"! %"# &"! &"#

!"!

!"%

!"'

!"(

!")

$"!

*

+
!*"

IV

III

II

I

,

,,

,,,

,-

FIG. 20: (color online) Level statistics Pi,N,R(s) of a single
integrable matrix H(x), x = 1, N = 20000 and M = 10000,
for different regions R of its spectrum (the subscript i indi-
cates H(x) is the i-th matrix in the ensemble) containing 4000
eigenvalues each. Inset: the density of states of H(x) showing
the correspondence between the distributions and regions R.
The distributions Pi,N,R(s) are independent of R, indicating
that type-M matrix spectra are stationary with respect to
nearest neighbor level statistics, i.e., Eq. (31) holds. Noting
that these distributions are Poisson, Pi,N,R(s) ≈ e−s (solid
curve) and comparing to Fig. 24 which gives PN′,R(s) ≈ e−s

for N ′ = 2000 M ′ = 1000, we verify the ergodic property,
Eq. (32).
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FIG. 21: (color online) Demonstrating spectral stationar-
ity, Eq. (31), in level statistics of primary type-1 basis ma-
trices (defined in Sect. II A). Shown are the level statistics
Pi,N,R(s) of a single type-1 integrable basis matrix, x = 1
and N = 20000, for different regions R of its spectrum (the
subscript i indicates H(x) is the i-th matrix in the ensemble).
Each spectral region R contains 4000 eigenvalues. The inset
shows the density of states of this matrix and indicates which
numerical curve corresponds to which region R. The dis-
tributions Pi,N,R(s) shown are independent of R, indicating
that type-1 basis matrix spectra are stationary with respect
to level statistics. Even though there is a band gap, the level
statistics on either side of the gap are the same. The solid

curve is the Wigner surmise P (s) = π
2
se−

π
4
s2 .
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FIG. 22: (color online) Demonstrating spectral stationarity,
Eq. (31) in level statistics of ansatz basis matrices (defined
in Sect. III A). Shown are the level statistics Pi,N,R(s) of a
single type-10000 integrable ansatz basis matrix, x = 1 and
N = 20000, for different regions R of its spectrum (the sub-
script i indicates H(x) is the i-th matrix in the ensemble).
The inset shows the density of states of this matrix and indi-
cates which numerical curve corresponds to which region R.
The distributions Pi,N,R(s) shown are independent of R, indi-
cating that type-M basis matrix spectra are stationary with
respect to level statistics. Even though there is a band gap,
the level statistics on either side of the gap are the same. The

solid curve is the Wigner surmise P (s) = π
2
se−

π
4
s2 . Regions

I - III use 4000 eigenvalues apiece, while region IV uses only
3000 and gets to within 1% of the spectrums edge.
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FIG. 23: (color online) Demonstrating ergodicity Eq. (32)
in type-1 matrices (continuing from Fig. 19). A plot of
lnPN,R(s), N = 2000 for 100 type-1 matrices in the primary
parametrization. We do not specify the spectral region R be-
cause Fig. 19 shows that the statistics are independent of R.
The solid line is f(s) = −s, indicating that PN,R(s) is indeed
Poisson for N = 2000 type-1 matrices.
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FIG. 24: (color online) Demonstrating ergodicity Eq. (32) in
type-M ansatz matrices (continuing from Fig. 20). A plot of
lnPN,R(s), N = 2000 for 100 type M = 1000 matrices in the
ansatz parametrization. We do not specify the spectral region
R because Fig. 20 shows that the statistics are independent
of R. The solid line is f(s) = −s, indicating that PN,R(s)
is indeed Poisson for N = 2000 type-1000 matrices. Inset:
Log-log plot of the same data.

(see Fig. 2), which is extremely useful for characterizing
p(s) in the GOE.

We have seen that the nearest neighbor level statistics
of integrable matrices H(x) are generally stationary and
ergodic, but the property does not set in for small N
as quickly as it does for Gaussian random matrices. As
an example, Figs. 25, 26 show p3,2(s), the distribution
of the 2nd eigenvalue spacing for N = 3, M = 1. This
distribution differs markedly from a Poisson distribution,
especially in the small s and large s regions. For small s
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FIG. 25: (color online) Plot of the statistics p3,2(s), the second
spacing of 106 type-1 integrable matrices H(x) of size N = 3
with x = 1. The distribution is not Poisson (solid line) and
actually has a power law tail (see Fig. 26 for more on the
tail). In order to observe the limit p(s) of type-1 integrable
matrices, defined in Eq. (29), we need to go to larger N as in
Fig. 17.

!"# !"$ %"# %"$
!&

!'

!(

!)

!$

!*

!+

,-!."

,-
!/#.$"

Linear fit

H#x$ " xT # V

FIG. 26: (color online) Log-log plot of the tail of the distri-
bution p3,2(s) shown in Fig. 25, the statistics of the second
spacing of 106 primary type-1 integrable matrices H(x) of size
N = 3 with x = 1. The linear fit f(s) = −3.15s+ 0.02 shows
that this portion of the tail of the distribution p3,2(s) follows
a power law s−α with exponent α ≈ 3.15. Because the distri-
bution pN,j(s) transitions to Poisson for large N , as evidenced
by Fig. 17 for type-1 primary matrices and Fig. 18 for type-M
ansatz matrices, we conclude that exponential behavior in the
far tail of pN,j(s) likely emerges only in the limit N →∞.

there is slight level repulsion and for large s Fig. 26 shows
that the decay of p3,2(s) is a power law. Numerical data
generated in Sects. II and III used both Pi,N,R(s) and
PN,R(s) to represent level statistics of integrable matri-
ces. The results of this section show that for large N , it
is valid to treat these two distinct distributions as equal.
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VI. CONCLUSION

Just as ensemble averages in ordinary RMT are used
to predict the average behavior of generic quantum sys-
tems, there now exists an analogous ensemble theory-
integrable matrix theory - which we have used to firmly
establish the source of Poisson statistics and exceptions
in quantum integrable models.

The goal of this work was to demonstrate two proper-
ties of ensembles of type-M integrable N × N matrices
linear in a coupling parameterH(x) = xT+V asN →∞:

1) The nearest neighbor spacing distribution P (s) is
Poisson, P (s) = e−s, for generic choices of parameters
for almost all M . There are cases of level repulsion, but
they correspond to sets of measure zero in parameter
space.

2) Integrable matrix ensembles are both stationary and
ergodic with respect to nearest neighbor level statistics
as defined in Sect. V. It remains to show whether this er-
godicity extends to longer range spectral statistics, such
as the number variance Σ2(L).

We find that integrable N × N matrices H(x) have
Poisson statistics as long as the number of conserva-
tion laws exceeds nmin ≈ logN (or at most nmin <
N0.24). Basis-independent considerations require (for
type-1) GOE statistics at a fixed x0, but we find that
Poisson statistics return at deviations δx ∼ N−0.5. Cor-
relations between otherwise independent parameters also
induce level repulsion, but Poisson statistics again re-
turn at O(N−0.5) deviations from such correlations. In
both cases the crossover occurs roughly over the range
N−1.5 . δ . N−0.5.

Some parameter choices produce matrices that corre-
spond to sectors of certain known quantum integrable
models, although general parameter choices do not map
to known models. Most important is that, in addition
to the linearity in x condition, the ensembles of matrices
studied in this work are only constrained by symmetry
requirements just like the Gaussian random matrix en-
sembles. The only difference here is that in the integrable
case there are many more symmetries, and they are pa-
rameter dependent. We therefore expect our results to
apply generally to quantum integrable models with cou-
pling parameters.

Although we justified the numerical results to a cer-
tain degree using perturbation theory, an analytic jus-
tification for Poisson statistics for integrable matrices is
still lacking. Given the relatively simple construction of
integrable matrices through basis-independent relations
(i.e. matrix equations) involving familiar RMT quanti-
ties such as GOE matrices and random vectors[13], we
surmise that an analytic demonstration of our numerical
results might be feasible – especially in the type-1 case,
see, e.g., the discussion below Eq. (11) and Refs. 24, 25.

It is interesting to note that many-body localized[36]
(MBL) systems are also expected to display Poisson
level statistics[37, 38], and there exist random matrix
ensembles which model localization and its statistical

signatures[39, 40]. Such ensembles are basis-dependent,
which is natural because localization is a basis-dependent
property. The commutation requirements of integrable
systems, however, are basis-independent, and therefore
so is the accompanying integrable matrix theory. A
priori, many-body localization and integrability are two
independent concepts[41]. Despite this fact, integrable
matrices do exhibit a parameter-dependent localization
property[43] in which almost all eigenstates of the ma-
trix H(x) = xT + V are localized in the basis of V for
all values of x. The stability of this property when a
random matrix perturbation is added to H(x), includ-
ing the possibility of a multifractal phase accompanying
the localized and delocalized regimes[40], is the subject
of future study.
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Appendix A: Unfolding spectra

The eigenvalue spacing distributions P (s), P(s) and
p(s) (see Sect. V for definitions) considered in the level
statistics data in this work characterize the fluctuations
of spacings about their local means. Unfortunately, a
non-constant density of states renders the actual spacings
inadequate for measuring these fluctuations. Unfolding
the spectrum of a matrix refers to the replacement of
the actual eigenvalues ηj with a new set of numbers with
unit mean spacing, but that preserve the character of
local fluctuations.

We employ a simple method that essentially approx-
imates the inverse density of states (i.e. mean level
spacing) of a given matrix through linear interpolations.
First, we write the eigenvalues ηj in increasing order,
and express the j-th eigenvalue ηj in terms of the actual
spacings Sk

ηj = η1 +

j−1∑
k=0

Sk. (A1)
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No unfolding has taken place as of yet – i.e. this is an
exact expression. Now we postulate that we can write
the kth spacing Sk as the product of a smoothly varying
local mean spacing sk and an O(1) fluctuating number
ρk = 1 + δk

ηj = η1 +

j−1∑
k=0

sk(1 + δk)

= η1 +

j−1∑
k=0

skρk.

(A2)

Note that the ρk have the form of fluctuating numbers
with unit mean - they will therefore serve as our unfolded
spacings. By their definition we can write them as

ρk =
ηk+1 − ηk

sk
. (A3)

Therefore if we calculate the smoothly varying mean level
spacings sk from the given data, we can easily find the
unfolded spacings. The ambiguity in our particular un-
folding procedure lies in the calculation of sk because
its definition involves choosing how many spacings over
which to average, a quantity we call 2r

sk =
ηk+r − ηk−r

2r
. (A4)

It is important to realize that sk is just the inverse of the
density of states. The parameter r is arbitrary except
that it must satisfy two conditions:

1) r must be large enough to contain many eigenvalues,
which is necessary in order for sk to be a smooth function
of k.

2) r cannot be too large or else sk will actually smooth
over features in the true inverse density of states.

In practice we have chosen r to be the floor function
of the square root of the maximum number of eigenvalue
spacings ν taken from each matrix. To avoid edge effects

we have selected ν = 0.8N . Then r =
⌊√

0.8N
⌋
. Here

are some typical values of r used in this paper

N = 500, r = 22,

N = 1000, r = 31,

N = 2000, r = 44.

(A5)

Such a choice of r grows with N but also is small com-
pared with N . In other words, we satisfy the requirement
1� r � N as N →∞.

For even the best choices of r, our unfolding method
can still fail if the inverse density of states varies too
quickly or has singularities. Such a situation arises for
example in small linear combinations of basis matrices
(defined in Eq. (6) and Eq. (24)) for any type. Consider,
for example, the insets of Figs. 21 and 22 that show the
densities of state of integrable basis matrices. The large

portions of the spectra where the density of states D(η)
drops to zero is typical of small linear combinations of
basis matrices. This behavior is generic for basis matrices
of all types, and it can be understood by first considering
the expression for the eigenvalues of a type-1 basis matrix
(in the primary parametrization) where dk = δk,q

ηj =
γ2q

λj − εq
. (A6)

As both the λj and εj have finite support, ηj in this case
will only approach within a finite distance of zero.

An analogous argument exists for basis matrices in the
ansatz parametrization for any type. For linear combi-
nations of a small number of basis matrices, such gaps
may overlap, but a mean level spacing sk will still be ill-
defined in many parts of the spectrum. As the number
of basis matrices in the linear combination increases, the
gaps smooth out until sk is well-defined everywhere.

Given such gaps in spectra, no choice of r will give the
consistent level statistics. This can be seen numerically
by varying r and observing that P (s) is strongly depen-
dent on r. We must then avoid regions of the spectrum
where 1/D(η) is poorly behaved.

The difficulty in this task is to automate it so that we
can unfold many matrices in succession without having to
examine each one by hand. Our solution is to notice that
if there are a small number of spacings in the spectrum
that are many times the local mean spacing, the standard
deviation of the set of actual spacings will be large. If
the standard deviation (normalized by the mean) of the
actual spacings is near unity, we can be sure that there
are no huge jumps such as the ones in Figs. 21 and 22.

With these considerations, here is our unfolding algo-
rithm:

(1) Calculate SD =
Standard Deviation

Mean
of the middle

(80% + 2r) of the spectrum’s actual spacings. If SD <

1.5, unfold this region of the spectrum with r =
⌊√

0.8N
⌋

and continue to next matrix. If not, continue to step (2).
(2) Shift the region of the spectrum in question to the

right by 10 eigenvalues.
(3) If ηmax > η0.9N , use 10 fewer spacings AND restart

ηmin = η0.1N
(4) Calculate SD. If SD > 1.2, repeat back to step

(2). If SD < 1.5 unfold this region of the spectrum with

r =
⌊√

0.8N
⌋

and continue to next matrix.

This procedure allows for fewer than 0.8N of the spac-
ings to be used, but we are guaranteed to only investigate
regions of the spectrum where the mean level spacing ac-
curately represents the size of a typical spacing. Once
a sufficiently large number of basis matrices are used in
linear combination, the entire middle 80% of the spec-
trum behaves smoothly and the procedure given above
terminates at step (1) for each matrix. The choice of a
maximum SD of 1.2 is somewhat arbitrary, and in some
parts of this work we used 1.5 in order to increase com-
putation speed (i.e. keep more eigenvalue spacings per
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matrix). Apart from slight differences in distributions,
our results are unaffected by this arbitrariness.

The unfolding procedure used in this paper assumes
that the level statistics are the same in all regions of the
spectrum, excluding the edges. Although in principle a

Hermitian matrix can have different spectral statistics in
different parts of its spectrum, we numerically showed in
Sect. V that the statistics are the same in all parts of
the spectrum of integrable matrices H(u), i.e. they are
translationally invariant.
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