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We present an approach for modeling nanoscale wetting and dewetting of textured solid surfaces that exploits

recently developed, sophisticated techniques for computing exact long-range dispersive van der Waals (vdW)

or (more generally) Casimir forces in arbitrary geometries. We apply these techniques to solve the variational

formulation of the Young–Laplace equation and predict the equilibrium shapes of liquid–vacuum interfaces near

solid gratings. We show that commonly employed methods of computing vdW interactions based on additive

Hamaker or Derjaguin approximations, which neglect important electromagnetic boundary effects, yield large

discrepancies in the shapes and behaviors of such liquid surfaces compared to exact methods.

Wetting and dewetting phenomena are ubiquitous in soft

matter systems and have a profound impact on many dis-

ciplines, including biology [1], microfluidics [2], and mi-

crofabrication [3]. One problem of great interest concerns

the suspension of fluid films on or near structured surfaces

where, depending on the interplay of competing short-range

molecular or capillary forces (e.g. surface tension), gravity,

and long-range dispersive interactions (i.e. van der Waals or

more generally, Casimir forces), the film may undergo wetting

or dewetting transitions, or exist in some intermediate state,

forming a continuous surface profile of finite thickness [2, 4].

Thus far, theoretical analyses of these competing effects have

relied on ad-hoc, approximate descriptions of long-range dis-

persive van der Waals (vdW) forces [5–7], i.e. so-called Der-

jaguin [8] and Hamaker [9] approximations, based on additive

interactions (defined further below) which can fail dramati-

cally when applied outside of their narrow range of validity,

i.e. dilute media or gently curved surfaces [5, 10–12].

In this paper, building on recently developed theoretical

techniques for computing Casimir forces in arbitrary geome-

tries [13, 14], we consider an approach for studying the equi-

librium shapes of liquid surfaces that captures the full, long-

range vdW interactions between interfaces (no approxima-

tions) [15]. We quantify the degree to which additive approxi-

mations can fail in this context by considering a proof of con-

cept system, consisting of two perfect electrically conducting

(PEC) surfaces interacting through vacuum [Fig. 1], with the

upper and lower surfaces playing the role of a fixed solid grat-

ing and an idealized deformable fluid, respectively. In par-

ticular, we show that the competition between surface tension

and vdW pressure (as computed by our exact methods) leads

to quantitatively and qualitatively different liquid shapes, as

well as dramatically different contact transitions, compared

with predictions based on commonly employed, additive ap-

proximations. Our choice of PEC surfaces allows for a scale-

invariant analysis of the role of geometry on fluid deforma-

tions, ignoring effects associated with material dispersion that

would otherwise complicate our analysis and are likely to re-

sult in even larger deviations [5, 16]. Our results demonstrate

the need for accurate calculations of vdW effects in experi-

mental studies of fluid suspensions at the nanometer scale.

Equilibrium fluid problems are typically studied by way of

the augmented Young-Laplace equation [17],

γ∇ ·

(

∇Ψ
√

1 + |∇Ψ|2

)

+
δ

δΨ
(Eother[Ψ] + EvdW[Ψ]) = 0

(1)

describing the local balance of forces (variational derivatives

of energies) acting on a fluid of surface profile Ψ(x). The

first two terms describe surface and other external forces (e.g.

gravity), with γ denoting the fluid–vacuum surface tension,

while the third term δ
δΨEvdW denotes the local disjoining

pressure arising from the changing vdW fluid–substrate in-

teraction energy EvdW. Semi-analytical [18, 19] and brute-

force [20, 21] solutions of the YLE have been pursued in or-

der to examine various classes of wetting problems, includ-

ing those arising in atomic force microscopy, wherein a solid

object (e.g. spherical tip) is brought into close proximity to

a fluid surface [18–20], or those involving liquids on chemi-

cally [22, 23] or physically [2, 4, 21] textured surfaces.

While in principle the vdW pressure on a fluid surface can

be obtained via atomistic calculations, such an approach is

very difficult to carry out except at sub-nanometric scales [5].

At larger lengthscales where the optical response of materi-

als can be described through macroscopic dielectric functions,

the complicated screening of charge fluctuations and ensuing

vdW or Casimir interactions and their dependence on material

and geometric parameters is accurately captured via the com-

plex electromagnetic modes and scattering properties of sur-

faces [5]. The first accurate calculations of such interactions

were carried out decades ago in simple, planar geometries, ei-

ther by summing the zero-point energies of electromagnetic

fields [24] or via modern macroscopic fluctuational electro-

dynamics techniques [5, 15, 25, 26] that have been recently

generalized to encompass more complex geometries [5].

A commonality among prior theoretical studies of (1) that

attempt to capture vdW-induced surface deformations is the

use of simple, albeit heuristic approximations that treat vdW

interactions as additive forces that often depend on the shape

of the fluid surface in some power-law fashion [8, 9, 27].

One such approach is known as the Hamaker or pairwise-

summation (PWS) approximation [9], which models the vdW

interaction between two macroscopic surfaces via the pairwise

summation of volumetric elements interacting through dipolar

London–vdW or Casimir–Polder [28, 29] forces. While PWS
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resembles and builds on the familiar vdW picture of molecu-

lar or dipolar dispersive interactions, and hence offers concep-

tual simplicity, when applied to complicated structures, it ne-

glects the interplay of electrodynamic screening and multiple-

scattering effects in complex geometries [5], and is highly lim-

ited in scope to situations involving dilute media [11]. A more

sophisticated but equally ad-hoc approach is the so-called

Derjaguin or proximity-force approximation (PFA) [8, 27],

which models the interaction between nearby surfaces as ad-

ditive line-of-sight interactions between infinitesimal, planar

surface elements (computed via the so-called Lifshitz for-

mula [25]), and is highly limited to situations involving ob-

jects with gently curved, proximate surfaces [5]. Ultimately,

both of these approximations assume some notion of additiv-

ity, with the force resulting from the cumulative force contri-

butions of either surface or dipolar interactions. In contrast,

exact calculations of vdW forces capture the “dressed” elec-

tromagnetic response of fluctuating dipoles stemming from

the highly shape-dependent boundary conditions of the elec-

tromagnetic fields. The discrepancy between such additive

approximations and exact calculations is often referred to as

the non-additivity of the vdW interaction.

More recently, powerful electrodynamic scattering meth-

ods (detailed in recent reviews [5, 15, 26]) have been devel-

oped to compute exact vdW interactions, illustrating the fail-

ure of additive approximations in non-planar geometries, e.g.

demonstrating non-monotonic, logarithmic, and even repul-

sive interactions in more complex geometries [5, 15, 30, 31].

These brute-force techniques share little semblance with ad-

ditive approximations, with the exact vdW energy in these

modern formulations often cast as a log-determinant expres-

sion involving the full (no approximations) electromagnetic

scattering properties of the individual objects, obtained semi-

analytically or numerically by exploiting spectral or localized

basis expansions of the scattering unknowns [5, 32]. The gen-

erality of these methods does, however, come at a price, with

even the most sophisticated of formulations requiring thou-

sands or hundreds of thousands of scattering calculations to

be performed [5]. Despite the fact that fluid suspensions mo-

tivated much of the original theoretical work on vdW interac-

tions between macroscopic bodies [6, 7, 25, 33], to our knowl-

edge this paper is the first to apply these exact techniques to

wetting problems where non-additivity and boundary effects

play a significant role in fluid surface deformations.

Methods.– In order to solve (1) in general settings, we re-

quire knowledge of δ
δΨEvdW[Ψ] for arbitrary Ψ. We em-

ploy a mature and freely available method for computing

vdW interactions in arbitrary geometries and materials [34,

35], based on the fluctuating–surface current (FSC) frame-

work [13, 14]. FSC is based on the surface integral equa-

tion (SIE) formulation of Maxwell’s equations in arbitrary

piecewise-homogeneous geometries such as the one that we

consider, and is most efficient when surface unknowns are ex-

panded in terms of basis functions f
(α)(x) supported on lo-

calized triangular mesh elements on the material interfaces

[Fig. 1(a)], making it a boundary element method (BEM). Us-

ing the vacuum dyadic Green’s function Γ
(0), FSC computes

Mαβ =
´

f
(α) · (Γ(0) ⋆ f

(β)) at each frequency; M, known

Ψ(x)

(a) FSC (b) PWS (c) PFA

h(x) H

d

Λ

2P

r

h — Ψ

Figure 1. Schematic of fluid–grating geometry comprising a fluid

(blue) of surface profile Ψ(x) in close proximity (average distance

d) to a solid grating (red) of height profile h(x), involving thin

nanorods of height H , thickness 2P , and period Λ. (a) Representa-

tive mesh employed by a recently developed FSC boundary-element

method [34] for computing exact vdW energies in complex geome-

tries. (b) and (c) illustrate commonly employed pairwise–summation

(PWS) and proximity–force approximations (PFA), involving volu-

metric and surface interactions throughout the bodies, respectively.

as the BEM matrix, is akin to a scattering matrix, coupling

the different basis functions via Γ
(0). FSC then employs the

fluctuation–dissipation theorem to connect the vdW energy to

the full Green’s function, and analytically evaluates the spatial

integrals of the Green’s function to yield

EFSC =
~

2π

ˆ

∞

0

dξ ln(det(MM
−1
∞

)) (2)

where M is defined above, M∞ is the evaluation of M when

the objects are infinitely separated, and the integration is over

imaginary frequencies ξ = iω. Because exact methods most

commonly yield the total vdW energy or force, rather than the

local pressure on Ψ, it is convenient to consider the YLE in

terms of an equivalent variational problem that minimizes the

total energy functional [36, 37],

E [Ψ] = γ

ˆ

√

1 + |∇Ψ|2 + Eother[Ψ] + EvdW[Ψ], (3)

where just as in (1), the first term captures the surface en-

ergy, the second captures contributions from gravity or bulk

thermodynamic/fluid interactions [19, 20], and the third cap-

tures the dispersive vdW interaction energy. For simplicity,

we focus only on the impact of surface and dispersive vdW

interactions, thereby setting Eother = 0; additionally, since

the surface curvatures we consider are small compared to the

Tolman length [38], we ignore higher-order corrections to γ,

taking it to be constant as Ψ varies.

Equation 3 can be solved numerically via any num-

ber of available nonlinear optimization/minimization tech-

niques [36, 37], requiring only a convenient parametrization

of Ψ using a finite number of degrees of freedom. In what fol-

lows, we consider numerical solution of (3) for the particular
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case of a deformable incompressible PEC surface Ψ interact-

ing through vacuum with a 1d-periodic PEC grating of period

Λ and shape h(x) = d −H
(

1
eα(x−P )+1

+ 1
e−α(x+P )+1

− 2
)

,

for |x| < Λ
2 , with half-pitch P = 0.03Λ and height H =

1.2Λ, representing a rectangular grating whose period and

pitch can be independently tuned to provide large aspect ratios

and curvatures that are likely to break the assumptions under-

lying PWS and PFA. Figure 1 shows the grating surface and

fluid profile obtained by solving (3) for a representative set of

parameters and mesh discretization. Here, d = 0.4Λ is the

initial minimum grating-fluid separation, and αΛ = 150 is a

parameter that smoothens otherwise sharp corners in the grat-

ing, alleviating spatial discretization errors in the calculation

of EvdW while having a negligible impact on the qualitative

behavior of the energy compared to what one might expect

from more typical, piecewise-constant gratings [10].

To minimize the energy, we employ free implementa-

tions of the COBYLA and BOBYQA local derivative-free

optimization algorithms found in the NLOPT optimization

suite [39–41]. Although the localized basis functions or mesh

of the FSC method provide one possible parametrization of

the surface, for the class of periodic problems explored here,

a simple Fourier expansion of the surface provides a far more

efficient and convenient basis, requiring far fewer degrees of

freedom to describe a wide range of periodic shapes. Because

the grating is translationally invariant along the z direction and

mirror-symmetric about x = 0, we parametrize Ψ in terms

of a cosine basis, Ψ(x) =
∑

n cn cos
(

2πnx
Λ

)

, with the fi-

nite number of coefficients {cn} functioning as minimization

parameters. As we show below, this choice not only offers

a high degree of convergence, requiring typically less than

a dozen coefficients, but also automatically satisfies the in-

compressibility or volume-conservation condition
´

Ψ = 0,

which would otherwise require an additional, nonlinear con-

straint. Note that the optimality and efficiency of the min-

imization can be significantly improved when local deriva-

tive information (with respect to the minimization parame-

ters) is available, but given that even a single evaluation of

EvdW[Ψ] is expensive—a tour-de-force calculation involving

hundreds of scattering calculations [5]—this is currently pro-

hibitive in the absence of an adjoint formulation (a topic of fu-

ture work) [42]. Given our interest in equilibrium fluid shapes

close to the initial condition of a flat fluid surface (Ψ = 0)

and because of the small number of degrees of freedom {cn}
needed to resolve the shapes, we find that local, derivative-free

optimization is sufficiently effective, yielding fast-converging

solutions.

In what follows, we compare the solutions of (3) based

on (2) against those obtained through PFA and PWS, which

approximate EvdW in this periodic geometry as:

EPFA = −
π2

~c

720

ˆ Λ/2

−Λ/2

dx

(

1

h(x) −Ψ(x)

)3

(4)

EPWS = A

ˆ Λ/2

−Λ/2

dx′

ˆ

∞

−∞

dx

ˆ

∞

h(x′)

dy′
ˆ Ψ(x)

−∞

dy
1

s6
, (5)

where A = − 2π~c
45 is a Hamaker-like coefficient obtained
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Figure 2. Maximum displacement ∆Ψ/d of a fluid–vacuum inter-

face that is repelled from a grating (insets) by a repulsive vdW force,

as a function of surface tension γ/γvdW, obtained via solution of

(3) using FSC (blue), PWS (red), and PFA (green) methods. Circles

indicate results obtained through (1). Insets show the equilibrium

fluid–surface profiles at selected γ ∈ {0.006, 0.055, 0.277}γvdW ,

with the unperturbed Ψ = 0 surface denoted by black dashed lines.

by requiring that (5) yield the correct vdW energy for two

parallel PEC plates, as is typically done [43]. Equation 5

is obtained from pairwise integration of the r−7 Casimir–

Polder interactions following integration over z and z′, with

r =
√

s2 + (z − z′)2 and s =
√

(x − x′)2 + (y − y′)2 [44].

Note that because we only consider perfect conductors and

there is no dispersion, all results can be quoted in terms of an

arbitrary length scale, which we choose to be Λ. Additionally,

we express the surface tension γ in units of γvdW = π2
~c

720d3 , the

vdW energy per unit area between two flat PEC plates sepa-

rated by distance d.

In what follows, we consider the equilibrium fluid shapes

under both repulsive [Fig. 2] or attractive [Fig. 3] vdW pres-

sures: for our simplified model of PEC surfaces interacting

through vacuum, this is achieved through an appropriate sign

choice for EvdW. In either case, we consider local optimiza-

tions with small initial trust radii around Ψ = 0, and charac-

terize the equilibrium fluid profile Ψ(x) as γ is varied. For

each γ, the optimization calculations take a few minutes with

a single processor core to converge under the additive mod-

els of vdW interactions; by contrast, under our FSC method

for computing vdW interactions, the optimization calculations

take over 24 hours, even with parallelization over six proces-

sor cores, demonstrating the vastly increased computational

complexity of our exact method over prior approximate meth-

ods. Our minimization approach is also validated against nu-

merical solution of (1) under PFA (green circles).

Repulsion.– We first consider the effects of vdW repulsion

on the equilibrium profile of the fluid–vacuum interface, en-

forced in our PEC model by flipping the sign of the other-

wise attractive vdW energy; this is not physically realizable

for smooth PEC surfaces interacting through vacuum, but cap-

tures the influence of geometry on the repelled fluid inter-
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face [Fig. 2(insets)]. Such a situation arises commonly in

realistic fluids whenever the fluid and grating dielectric dis-

persions satisfy the Dzyaloshinskii–Lifshitz–Pitaevskii (DLP)

criterion [6, 25] for repulsion. Figure 2 compares the depen-

dence of the maximum displacement ∆Ψ = Ψmax − Ψmin

of the fluid surface on γ, as computed by FSC (blue), PWS

(red), and PFA (green). Also shown are selected surface pro-

files at small, intermediate, and large γ/γvdW. Note that the

combination of a repulsive vdW force, surface tension, and

incompressibility leads to a locally stable equilibrium shape.

Under large γ, the surface energy dominates and thus all

three methods result in nearly-flat profiles, with |Ψ| ≪ d.

While both additive approximations reproduce the exact en-

ergy of the plane–plane geometry (with the unnormalized

PWS energy underestimating the exact energy by 20% [11]),

we find that (at least for this particular grating geometry)

EPWS,PFA/EFSC ≈ 0.25 in the limit γ → ∞, revealing

that even for a flat fluid surface, the grating structure con-

tributes significant non-additivity. Noticeably, at large but fi-

nite γ ≫ γvdW, ∆Ψ is significantly larger under FSC and

PFA than under PWS, with ΨFSC,PWS exhibiting increas-

ingly better qualitative and quantitative agreement compared

to the sharply peaked ΨPFA as γ decreases [Fig. 2(insets)].

The stark deviation of PFA from FSC and PWS in the vdW–

dominated regime γ ≪ γvdW is surprising in that PWS in-

volves volumetric interactions within the objects, whereas

PFA and FSC depend only on surface topologies. Essen-

tially, the pointwise nature of PFA means EPFA depends only

on the local surface–surface separation, decreasing monotoni-

cally with decreasing separations and competing with surface

tension and incompressibility to yield a surface profile that

nearly replicates the shape of the grating in the limit γ → 0.

Quantitatively, PFA leads to larger ∆Ψ as γ → 0, asymp-

toting to a constant limγ→0∆ΨPFA → H = 3d at signifi-

cantly lower γ
γvdW

< 10−5. On the other hand, both EFSC and

EPWS exhibit much weaker dependences on the fluid shape

at low γ, with the former depending slightly more strongly

on the surface amplitude and hence leading to asymptoti-

cally larger ∆Ψ as γ → 0; in this geometry, we find that

∆ΨFSC,PWS → {0.32, 0.28}d for γ
γvdW

. 10−2. Further-

more, while PFA and PWS are found to agree with FSC at

large and small γ, respectively, neither approximation accu-

rately predicts the surface profile in the intermediate regime

γ ∼ γvdW, where neither vdW nor surface energies domi-

nate. Ultimately, neither of these approximations is capable

of predicting the fluid shape over the entire range of γ.

Attraction.– We now consider the effects of vdW attraction,

arising in our idealized model through the interaction between

the PEC liquid–vacuum and grating surfaces. Such a situ-

ation is realized whenever the dielectric properties of fluids

on or near structures [Fig. 3(insets)] satisfy the DLP criterion

for attraction [6, 25]. Here, in contrast to the case of repul-

sion, matters are complicated by the fact that EvdW → −∞
as the fluid interface approaches the grating, leading to a

fluid instability or contact transition below some critical γ(c),

depending on the competition between the restoring surface

tension and attractive vdW pressure. Such instabilities have

been studied in microfluidic systems through both additive

approximations [2, 4, 18, 45], but as we show in Fig. 3,

non-additivity can lead to dramatic quantitative discrepancies

in the predictions obtained from each method of computing

EvdW. To obtain γ(c) along with the shape of the fluid surface

for γ > γ(c), we seek the nearest local solution of (3) starting

from Ψ = 0. Figure 3 quantifies the onset of the contact tran-

sition by showing the variation of the minimum grating-fluid

separation hmin − Ψmax with respect to γ, as computed by

FSC (blue), PWS (red), and PFA (green), along with the cor-

responding EvdW [Fig. 3(inset)] normalized to their respective

values for the plane–grating geometry (attained in the limit

γ → ∞). Also shown in the top-right inset are the optimal

surface profiles at γ ≈ γ(c) obtained from the three methods.

In contrast to the case of repulsion, here the fluid sur-

face approaches rather than moves away from the grating,

which changes the scaling of EvdW with respect to Ψ, thereby

leading to very different qualitative results. In particular,

we find that EFSC exhibits a much stronger dependence on

hmin − Ψmax compared to PWS and PFA, leading to a much

larger γ(c) and a correspondingly broad surface profile; given

that the strong curvature and large aspect ratio of the grating

profile violates the assumptions underlying PWS and PFA,

this behavior cannot be gleaned from a simple power-law

or asymptotic correction to additive approximations, but can

only be captured by an exact numerical computational method

like our FSC method. As before, the strong dependence of

EPFA on the fluid surface, a consequence of the pointwise

nature of the approximation, produces a sharply peaked sur-

face profile, while the very weak dependence of EPWS on the

fluid shape ensures both a gross underestimation of γ(c) along

with a broader surface profile. Most interestingly, we find that

γ
(c)
FSC,PFA,PWS ≈ {0.65, 0.38, 0.07}γvdW, emphasizing the

failure of PWS to capture the critical surface tension by nearly

an order of magnitude.

Concluding Remarks.– The predictions and approach de-

scribed above offer evidence of the need for exact vdW calcu-

lations for the accurate determination of equilibrium fluid be-

haviors on or near structured surfaces. While we chose to em-

ploy a simple materials-agnostic and scale-invariant model for

the vdW energy, realistic (dispersive) materials can be read-

ily analyzed within the same formalism, requiring no mod-

ifications. Recent works [11, 16] have shown that additive

approximations applied to even simpler structures can con-

tribute larger discrepancies in dielectric as opposed to PEC

bodies. Given this, we expect to see even larger differences

owing to non-additivity when complex materials and geome-

tries are considered together. In particular, we anticipate for

complex periodic geometries like the one we have studied that

in situations involving a contact transition, namely either a

thin liquid film on or a bulk fluid separated in vacuum from

a solid grating, with the liquid surface tension varied through

appropriate use of surfactants in either case, PWS and PFA

could underestimate the critical surface tension by over 50%,

while our exact method could provide more accurate agree-

ment with experimental studies of contact transitions in such

systems. We further anticipate employing our exact method

to study extensions of the original liquid He4 wetting experi-

ments that motivated the development of the general Lifshitz
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Figure 3. Minimum surface–surface separation
hmin−Ψmax

d
of a

fluid–vacuum interface that is attracted to a grating (insets) by an at-

tractive vdW force, as a function of surface tension γ

γvdW
, obtained

via solution of (3) using FSC (blue), PWS (red), and PFA (green)

methods. Circles indicate results obtained through (1). Contact tran-

sitions occurring at critical values of surface tension γ(c), marked as

‘x’. The top-right inset shows the equilibrium fluid–surface profiles

near γ(c) while the bottom-left inset shows the relative changes in

the equilibrium vdW energies from the energies of the unperturbed

(Ψ = 0) plane–grating geometry (the limit of γ → ∞).

theory in the first place [25].
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