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Translationally diffusive behavior arising from the combination of orientational diffusion and pow-
ered motion at microscopic scales is a known phenomenon, but the peculiarities of the evolution of
expected position conditioned on initial position and orientation have been neglected. A theory is
given of the spiral motion of the mean trajectory depending upon propulsion speed, angular velocity,
orientational diffusion and rate of random chirality reversal. We demonstrate the experimental ac-
cessibility of this effect using both tadpole-like and Janus sphere dimer rotating motors. Sensitivity
of the mean trajectory to the kinematic parameters suggest that it may be a useful way to determine
those parameters.

Active colloids such as microswimmers and nanomo-
tors are a class of non-equilibrium systems which has
been the subject of intense research in recent years [1–
5]. At the sub-micron length scale, stochastic effects
significantly perturb a self-propeller’s deterministic mo-
tion, and the coupling of such noise to a steady mo-
tion can lead to unexpected emergent phenomena such as
motility-induced phase separation [6], chiral diffusion [7],
and phenomena with biological relevance [8] which can
now be modelled by artificial active colloids. In the ab-
sence of noise a circle swimmer, confined to a plane with
a strong rotational component to its powered motion,
travels on a fixed circle with a steady clockwise or coun-
terclockwise chirality [9]. Artificial swimmers of this sort
have been fabricated in a variety of forms such as tad-
poles [10, 11], Janus sphere dimers [12, 13], nanorods [14–
16], and acoustically-activated swimmers [17]. Stochastic
perturbations in the form of unbiased orientational diffu-
sion or random chirality-reversal resulting from flipping
about the direction of motion have significant effects on
the long term motion: an effective translational diffusion
is generated [18–20], the infinite-time limit of the mean
position conditioned on the initial position and velocity
is non-zero and chirality-dependent [7], and the mean ap-
proach to the limit is a logarithmic spiral [20, 21].

In this Letter, we experimentally and theoretically
demonstrate “spiral diffusion” as a general finite-time
behavior of the conditional mean position in circle
swimmers. First, we expose the phenomenon in ex-
perimental data for both tadpole-like [11] and Janus-
sphere dimer [12] rotary microswimmers (see Fig. 1), and
present fits to the model. Then, we explain the theory
for spiral diffusion of circle swimmers subjected to both
orientational diffusion and flipping (change of chirality).
The expected position of the swimmer, conditioned on its
initial position, velocity direction and chirality, evolves
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along a converging spiral. The theory serves as a sensitive
and accurate utility for determining kinematic parame-
ters such as angular velocity and orientational diffusiv-
ity. The appendix describes the details of fabrication and
experimental protocols and the Supplementary Material
contains movies of simulated ensembles of swimmers for
a variety of deterministic and noise parameters.

Experiments were performed on two different rotor de-
signs, tadpole-like microswimmers [11] and Janus sphere
dimers [12]. The motors are denser than the aqueous
solution of hydrogen peroxide, thus they move near the
substrate and effectively confined to a horizontal plane.
Even within a batch of nominally identical motors, there
is usually a significant range of kinematic parameters.
The analyzed experimental data consisted of two videos
for each type of swimmer. From a single video of N

FIG. 1. (color online) Traces of mean trajectories (solid
blue) of synthetic ensembles constructed from video of a single
motor trajectory, along with fits to the theory (dashed red).
Two trajectories for each of the motor types, (a) tadpoles and
(b) Janus sphere dimers were selected for this investigation.
The fit parameters (ω [rad/s], Do [rad2/s]) to trajectories for
dimers are left: (0.86, 0.176) and right: (1.07, 0.037), and for
tadpole-like swimmers are left: (4.26, 0.446) and right: (6.15,
0.321).
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FIG. 2. (color online) Traces of the mean position 〈r(t)〉
of clockwise rotary self-propellers conditioned on initial po-
sition at the origin and initial velocity directed along êy, for
dimensionless orientational diffusivity Do/ω = 0.01, 0.05 and
0.1 and dimensionless flipping rate f/ω = 0, 0.2, 0.5, 0.7, 1 and
1.2. According to Eqs. (3), (4), and (6), 〈r(t)〉 spirals in to
its asymptotic value when f < ω, but the approach is non-
oscillatory for f > ω. Watch the videos in Supplementary
Material [22] for a comparison of theory and simulation.

frames, an ensemble of Ntraj trajectories, each of length
N − Ntraj frames is synthesized. For 1 ≤ n ≤ Ntraj,
the n-th member of the ensemble is obtained by taking
frames n through N −Ntraj + n− 1 of the original video
and rotating them so that the initial velocities are always
in the same (v̂0) direction. Average positions of these
synthesized ensembles are shown as solid blue spirals in
Fig. 1. Fits to the theory, as explained below, are shown
as dashed red curves, and are obtained by adjusting the
angular speed ω, linear speed v = Rω, and orientational
diffusion coefficient Do. With this method, we find a
much more sensitive fit to these kinematic parameters
than from working directly with the orientation time se-
ries and mean square displacement; a small change in the
ratio Do/ω can change the shape of the spiral.

To develop the theory, we begin with the deterministic
part of a circle swimmer’s motion. The particle moves
with constant linear v = vv̂ and angular ω = ωω̂ (ω ≥ 0)
velocities; The instantaneous orbit of motion has radius
R = v/ω and the vector p = R p̂ = Rv̂ × ω̂ connects
the center of instantaneous orbit to the self-propeller.
Assuming the particles start from the same initial posi-
tion and velocity, the time-dependent right-handed body
frame E(t) = [p̂, v̂, ω̂]T (t) is related to the fixed labora-
tory frame by E(0) = [p̂0, v̂0, ω̂0]T = [x̂, ŷ, ẑ]T for counter-
clockwise rotation, (E(0) = [−x̂, ŷ,−ẑ]T for clockwise).
To study the dynamics of these particles we use the kine-
matrix theory [23, 24], that we recently developed as an
alternative to Langevin and Fokker-Planck formalisms.
In the limit of short noise correlation and momentum
relaxation times, the self-propeller’s kinematic proper-
ties such as orientational diffusion, angular speed and
flipping rate can be packaged into a 3 × 3 kinematrix
K. The dynamics of the body frame is governed by

d
dt 〈E(t)〉 = −K〈E(t)〉 where 〈·〉 is the ensemble average
operator over all realization of noises. This model is
appropriate to nanomotors and microswimmers at low
Reynolds number, since the relaxation time due to vis-
cous damping is very short (for a micron-sized object,
of order 1 µs), and correlation times of environmental
stochastic forces are even shorter.

The self-propeller moves near a plane in 2D (v̂ ⊥ ω̂),
undergoing orientational diffusion with diffusivity Do

about ω̂ while, simultaneously and independently, it flips
about its direction of motion v̂ with frequency f and
thereby reversing chirality. Although the motors in our
experimental study had stable chirality, some artificial
motors can experience flipping [14]. The kinematrix for
this model is [23]

K =

Do+2f ω 0
−ω Do 0
0 0 2f

 . (1)

The stochastic motion of the body frame generates an
effective (long-time) translational diffusivity

Deff =
v2

2

[
K−1

]
22

=
ωR2

2

ω(Do + 2f)

(Do + f)2 + (ω2 − f2)
. (2)

Passive translational diffusion with diffusivity Dt con-
tributes an independent diffusion, so that the net diffu-
sion coefficient is Deff + Dt. Passive translational diffu-
sion is not coupled to the powered motion, but orienta-
tional diffusion is. It is for this reason that the latter can
dominate the total diffusion. Random flipping instanta-
neously creates a large qualitative change in the motion
and is alone sufficient to generate long-term diffusion.

The effective diffusivity Deff tells us about the asymp-
totic behavior of the mean-squared displacement. At fi-
nite times, there are corrections which we will discuss
later. But, more significant for the subject of this Letter
is the mean displacement vector, given by

〈∆r( t )〉 = v
[
K−1

(
I − e−Kt

)
E(0)

]
· v̂0

= 〈∆r〉∞ − 2
Deff

R
G(t)e−(Do+f)t, (3)

where the asymptotic value is

〈∆r〉∞ = 2
Deff

R

(
v̂0

ω
− p̂0

Do + 2f

)
. (4)

The special case of this result for no flipping has been
derived previously [21]. Translational diffusion does not
affect 〈∆r( t )〉. Instead, it reflects the interaction of ori-
entational diffusion, chirality reversal, and powered rota-
tion. The second term in the final expression of Eq. (3),
which represents a transient, will be considered momen-
tarily. To understand the expression (4) for the asymp-
totic mean displacement, it’s helpful to unpack it a little
in the low-noise limit. Expanding to first order in Do
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FIG. 3. (color online) (a) The visibility ratio vis(t) = |〈r(t)〉|2/var(r(t)) measures the ease of discerning the mean be-
havior of r(t) against the background of its statistical spread. It drops to near zero more quickly the larger f and Do.
Inset: mean square displacement reaches the diffusive regime faster as (f + Do)/ω increases. (b) Left: |〈∆r〉∞|/R =

2(Deff/R
2)
√
ω−2 + (Do + 2f)−2 as function of Do/ω and f/ω. Right: |φ∞| = tan−1[ω/(Do + 2f)], the magnitude of the

angle between 〈∆r〉∞ and v̂0, as function of Do/ω and f/ω.

and f , we find

〈∆r〉∞
R

≈ −p̂0 + ω−1(Do + 2f)v̂0. (5)

In the limit of vanishing noise, 〈∆r〉∞ tends to the time-
average position for the deterministic motion on a circle.
In the presence of noise, there is a deviation, but in the
direction of the initial velocity.

Turning to the second (transient) term in Eq. (3), with

the abbreviation α =
√
ω2 − f2, the vector G(t) is

G(t) =

[
cosαt+

(
f − ω2

Do + 2f

)
sinαt

α

]
v̂0

ω

−
[
cosαt+ (Do + f)

sinαt

α

]
p̂0

Do + 2f
. (6)

The asymptote 〈∆r〉∞ has a more-or-less uniform quali-
tative behavior upon varying Do and f . For the approach
to the asymptote, on the other hand, there are two dis-
tinct regimes of f/ω (see Fig. 2). If 0 ≤ f < ω, G is
purely oscillatory. Thus, the norm of 〈∆r(t)〉 − 〈∆r〉∞
is bounded by a constant multiple of the decaying ex-
ponential exp[−(Do + f)t]. Within that bound it os-
cillates, but the oscillation frequency α depends on f
and goes to zero as f increases to ω. This is a little
surprising; one might have expected that ω itself was
the only possible oscillation frequency. If ω < f , then
G grows exponentially with rate (f2 − ω2)1/2. Thus,
|〈∆r(t)〉 − 〈∆r〉∞| ∼ exp{−[Do + f − (f2 − ω2)1/2]t}
and the approach is non-oscillatory. At fixed Do, the ap-
proach rate has a cusp at f = ω, and tends to Do for
both f = 0 and f ≈ ∞.

Figure 2 depicts traces of the clockwise rotors’ mean
trajectory conditioned on E(0) = [−x̂, ŷ,−ẑ]T for a range
of values of Do/ω and f/ω, according to the theory
just developed. Although the temporal aspect is lost,

many of the features we have discussed can be seen
there. If Do = f = 0, then the time average of ∆r(t)
is simply −p̂0. A small amount of noise should cause
〈∆r〉∞ to deviate by only a small amount from that limit.
More precisely, according to a formula derived earlier,
〈∆r〉∞ should move up from the initial orbit center by
R(Do+2f)/ω; Fig. 2 bears this out up to values of f ≈ ω.
The number of visible oscillations decreases very rapidly
with increasing noise. This is partly due to the increased
damping and partly due to the decreased oscillation fre-
quency [α in Eq. (6)]. For f >∼ ω, oscillations no longer
occur. Movies contained in Supplementary Information
show simulated particle ensembles, along with their em-
pirical mean positions; thereby, the temporal aspects can
be better appreciated.

The orderly and revealing behavior of the mean dis-
placement is very difficult to discern in a single trajec-
tory without the sort of special processing we have used.
This difficulty can be quantified, using the visibility of
the mean displacement 〈∆r(t)〉, defined as

vis(t) =
|〈r(t)〉|2

var(r(t))
, (7)

where var(r(t)) = 〈|r(t)|2〉 − |〈r(t)〉|2 is the variance of
the position at time t. If vis(t) is very small, we cannot
expect to directly discern the mean behavior even in a
small ensemble. The left panel of Fig. 3 shows plots of
visibility at a range of f/ω values for Do = 0.01ω. For
Do + f ∼ 10−2ω, the mean displacement is comparable
to the spreading width, and vis(t) takes several periods
to degrade. At larger values, Do + f >∼ 10−1ω, the effect
is much weaker and visibility drops to near zero in less
than one period.

Now we turn to a closer look at the long-time asymp-
tote 〈∆r〉∞ of the mean displacement. Although, as f
increases, 〈∆r〉∞ moves away from the ideal orbit center
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in the direction of v̂0, it does not do so indefinitely; the
f → ∞ limit is ωRv̂0/Do [= v(0)/Do]. The center and
right panels of Fig. 3 show details of the behavior of both
the norm |〈∆r〉∞| = 2(Deff/R)

√
ω−2 + (Do + 2f)−2 and

the absolute value |φ∞| = tan−1[ω/(Do+2f)] of the angle
〈∆r〉∞ makes with v̂0 (“chiral angle”). As the flipping
rate f or orientational diffusivity Do increases, |φ∞| de-
creases. Since 〈∆r〉∞ depends on f and Do only through
their ratio with ω, this limit can equivalently be thought
of as ω → 0. From that perspective, the behavior is un-
derstandable as the circular (noise-free) trajectory degen-
erates to a straight line. However, in the experimentally
relevant range, Do/ω ∼ 10−2 − 10−1, we always find a
non-negligible chiral angle. In the limit of weak noise,
|〈∆r〉∞| is of the order of the radius of the determinis-
tic trajectory. At high orientational diffusion, the parti-
cle changes its direction rapidly and therefore |〈∆r〉∞| is
smaller than the radius of the orbit. For Do � ω and
f � ω the motor effectively acts more like a rectilinear
motor than a rotor, thus the magnitude of displacement
is much larger than the radius of the orbit.

The asymptotic chiral angle is different. At low noise it
is natural to preserve the chiral nature; the flipping rate
is low and the deviation from circular trajectory is small.
|φ∞| is very small both when Do � ω and when f � ω,
but for different reasons. Large Do implies that trajec-
tories strongly deviate from the the chiral deterministic
rotation; although chirality is preserved, its expression is
very weak. With large f , on the other hand, the chirality
itself is alternating rapidly. The asymptotic chiral angle
reflects only the early memory of the initial chirality. Af-
ter that, the rotor averages out to a linear motion.

In conclusion, we have shown that, in the presence of
orientational diffusion and flipping, the expected posi-
tion as a function of time of a rotary self-propeller, rela-
tive to its time-zero position and velocity, has significant
structure related to the kinematic parameters. Using en-
sembles synthesized from single experimental trajecto-
ries, this structure is accessible and can be used to deter-
mine the kinematic parameters. The tell-tale spiral can
be clearly seen over much shorter time scales than those
required for the long-time effective diffusion to manifest
itself.
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Appendix A: Appendix: fabrication and
experimental protocols

The “tadpole” microswimmer particles are fabricated
the following way: a monolayer of 2µm diameter sil-
ica microspheres (Bangs Laboratories, Inc., Fishers, IN)
was deposited onto a clean silicon wafer [Si(100)] using
a Langmuir-Blodgett technique. Subsequently, the sub-
strate was placed into a physical vapor deposition system
and thin films of 5 nm titanium adhesion layer followed
by a 10 nm platinum catalyst were deposited onto the
microbeads, forming half-coated Janus spheres. Then,
the substrate was tilted by an in-vacuum motor to an
oblique angle of 85◦ (the angle between the surface nor-
mal and the incident vapor direction). Later, a thick
layer of titanium dioxide was deposited to a thickness
of nearly 8µm leading to rod-like formations on each mi-
crobead. The high-incidence angle deposition is known as
Glancing Angle Deposition. After removing the substrate
from the chamber, the tadpole structures were gently de-
tached from the surface via bath sonication, suspending
them into pure water of 18 MΩ resistance. The colloidal
suspension was mixed with varying concentrations of hy-
drogen peroxide (fuel), and pipetted onto silicon wafers,
previously cleaned by oxygen plasma (Harrick Plasma
Ithaca, NY). The motion of the tadpoles was observed
by brightfield microscopy using a Zeiss Axiophot micro-
scope in reflection mode with a 40× or 60× dry objective
coupled to a Mikrotron EoSens GE MC 1364 camera (Un-
terschleissheim, Germany). The particles’ positions were
tracked using the software ImageJ [25] and the plugin
MTrack2 [26].

To fabricate the Janus sphere dimers, first, Janus cat-
alytic beads were made by using a spin coater (Laurell
Technologies Corp.) to deposit polystyrene colloids (0.1
% wt suspension in ethanol of 2 m diameter beads, Duke
Scientific) onto a clean glass slide. Spin coating condi-
tions were chosen to generate a separate non-touching
distribution of colloids (typical conditions: 30 second
spin, 2000 rpm, 100 L dispensed onto spinning substrate).
These glass slides were then subject to directional plat-
inum metal (Agar scientific, 99.9%) evaporation using a
Moorfield Minilab 80 e-beam evaporator (5 nm coating
thickness, monitored using a quartz-crystal oscillator).
Damp lens tissue (Whatman) was then used to transfer
the metallised colloids from the glass slide into a solution
containing hydrogen peroxide (20 % w/v). The colloids
were incubated for a few days in this solution, during
which time agglomerates were observed to form, includ-
ing the dimer swimmers that were studied in this paper.
In order to explore spiral diffusion phenomena, the sus-
pension of agglomerated swimmers prepared above was
diluted to give a 10% w/v hydrogen peroxide concentra-
tion, and then placed into a low volume rectangular glass
cuvette (Hellma). A Nikon Eclipse ME600 microscope
operating in transmission mode was used to directly ob-
serve the movement of the colloids. Focus was arranged
to ensure that only colloids remaining in close proximity
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to one of the planar surfaces of the cuvette were inves-
tigated. A camera attached to the microscope (Pixelink
PL-742) was used to record videos of the two body ag-
glomerates motion (duration up to 1 hour, frame rate
3-15 Hz). These videos were subject to automated im-

age analysis using a threshold algorithm to determine the
centre of mass for each colloid in each frame with sub-
pixel accuracy, output as time-stamped trajectories (cus-
tom software developed using the National Instruments
Labview platform).
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