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The question of how stiff polymers are able to pack into small containers is particularly relevant
to the study of DNA packaging in viruses. A reduced version of the problem based on coarse-grained
representations of the main components of the system – the DNA polymer and the spherical viral
capsid – has been studied by molecular dynamics simulation. The results, involving longer polymers
than in earlier work, show that as polymers become more rigid there is an increasing tendency
to self-organize as spools that wrap from the inside out, rather than the inverse direction seen
previously. In the final state, a substantial part of the polymer is packed into one or more coaxial
spools, concentrically layered with different orientations, a form of packaging achievable without
twisting the polymer.

PACS numbers: 87.15.ap, 87.15.H-, 87.14.gk, 87.16.Ka

Consider a relatively stiff polymer chain being drawn
into a small container through a narrow opening.
This represents an idealized version of packing double-
stranded (ds) DNA into the capsid of a large virus such
as a bacteriophage [1–4]. Because the packing density
is high and the virus must be able to eject the DNA at
the end of its life cycle, ordered packaging of the polymer
would appear advantageous. The basic physics question
is, then, how do polymers pack in the absence of any im-
posed guiding mechanism? Experimental evidence sug-
gests that DNA packaging involves organized large loops
[5–8], and much has been learned from theory and mod-
eling [9–17], but the chains simulated previously may not
have been long enough to reveal what actually occurs.

MD (molecular dynamics) simulation is used here to
investigate a simple packing model comprising a self-
avoiding chain of linked spheres, subject to bond and
bond-angle interactions, together with a spherical shell
in which there is a small portal through which the chain
enters, pulled inside by a suitable force. The goal is to
determine whether ordered packing occurs spontaneously
and if so, the dependence on the model parameters, prin-
cipally the ratio of the chain dimensions (i.e., the per-
sistence length) and the shell size. While this reduced
problem omits many aspects of its real-world counter-
part, including structural elements and complex short-
and long-ranged interactions, details of which are not
readily determined, any systematic behavior observed in
the simulations could contribute to understanding the
phenomenon.

Highly simplified models are essential for condensing
entire packaging trajectories into timescales accessible to
MD. A coarse-grained polymer model [18] is used that
consists of a chain of N = 8000 spheres linked by elastic
bonds of limited extensibility. The excluded-volume soft-
sphere (SP) interaction is U(r) = 4ε[(σ/r)12− (σ/r)6]+ε
for sphere separation r < rc = 21/6σ. Reduced MD units
will be used subsequently: the sphere mass is unity, and
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length, energy, time and temperature are expressed in
terms of σ, ε, σ/

√
ε and ε/kB. Adjacent chain spheres

are bonded by a reversed pair of SP interactions with ori-
gins separated by 2.1; the measured mean bond length
is lb = 1.051 with a 3% variation. Chain bending is
governed by the interaction U(θ) = 0.5fa(cos θ − 1)2,
where θ is the angle between adjacent bonds, with a min-
imum in the linear configuration (θ = 0). The stiffness,
fa, is the only parameter varied in the present study;
for 500 < fa < 5000 the measured persistence length,
Lp = lb/(1− 〈cos θ〉), ranges from 50 to 150. There is no
torsional interaction to counter chain twist (important in
real DNA), an omission that will be seen as fully justified
by the results.

The capsid is represented as a fixed spherical shell
with radius Rs = 20 which, for the stiffest chains, is
much smaller than Lp; a shell wall of thickness ≈ rc is
produced by a radial SP interaction originating at Rs.
If σ = 2.5nm, a representative value for coarse-grained
models of ds-DNA, then Rs = 50nm, a typical capsid
size (the Lp range is then 125–375nm); chain segments
forming a loop of this radius would have θ ≈ 3◦. Several
(here 12) fixed spheres are embedded in the shell wall,
in the equatorial plane (normal to the portal axis) and
inset by rc. Their task is to roughen the surface to op-
pose free rotation of the chain already packed into the
shell during insertion (there is none after insertion ends);
in the analogous macroscopic system [19] sliding friction
prohibits rotation of this kind.

There is a small circular portal in the shell for chain
entry. This hole is effectively a cylinder with unit ra-
dius and half-length, inside which a radial force pulls
spheres into the shell, a simple approximation to nature’s
ATP-powered motor [1]; given its short length it can hold
just two spheres. The force strength (here 1.4) is chosen
to ensure slow, reasonably steady (and mainly unidirec-
tional) transport through the portal and is the same for
all runs. Portal geometry restricts the chain entry direc-
tion to below 45◦ from the normal; further reducing this
angle using a longer cylinder would alter the outcome by
directing the chain radially, a separate problem not con-
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FIG. 1. Fraction of spheres inside shell (dashed lines, increas-
ing fa from left) and fraction of fully inserted chains vs time
(reduced units).

sidered here. Similarly simplified models have been used
in earlier work [12, 14, 16], although design details and
computational methods differ.

Computations are carried out on a massively parallel
GPU (graphics processing unit), where efficiency requires
large systems, thus each simulation considers 27 indepen-
dent chains simultaneously. The chains are confined to
a box of size 360 with rigid walls; while far smaller than
lbN , the size is large enough (> Lp) that its effect on the
strongly varying (prior to shell entry) chain conformation
is minimal. The initial state of each chain is a closely
spaced helix of radius ≈ Rs aligned with the portal, and
the initial (≈ 40) spheres are redirected so the first few
are inside the shell. Standard MD methods [18] are used,
with a time step of 0.005 and a (constant-T ) thermostat
that maintains a temperature of T = 0.4; even when the
stiffest chain is bent to fit inside the shell the mean bend-
ing energy remains well below the kinetic energy (0.6)
despite Lp being several times Rs. Simulations are run
for up to 2×108 steps, adequate for complete insertion of
most chains. Snapshots of the coordinates are recorded
periodically for analysis.

Figure 1 shows how the fractions of spheres inside the
shell (averaged over all chains) and completely inserted
chains depend on time, for several values of fa covering a
range from moderately flexible to sufficiently stiff chains
that entry is seriously impeded. The mean insertion rate
falls as chains become stiffer, a trend that persists to even
higher fa; the typical insertion speed ≈ 0.01 is just 1%
of vtherm =

√
3T , ensuring near-equilibrium conditions.

Individual chain transport (not shown) can be extremely
irregular, as observed experimentally [4]. The time re-
quired for complete insertion is also seen to be highly
variable.

Radial density distributions, each averaged over all
fully inserted chains and over 10 snapshots, are shown
in Fig. 2. Depending on fa, two or three peaks occur
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FIG. 2. Radial density distributions (reduced units) for sev-
eral fa values.
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FIG. 3. Mean distance of chain spheres from the shell center
as a function of (normalized) location along chain contour.

near multiples of rc from the shell boundary, a signature
of layering. Density drops towards the shell center, with
an almost empty sphere of radius ≈ Rs/2 for fa = 5000,
and increasingly broad distributions at lower fa. Since
the total chain volume, when approximated by a tube, is
Nπr2c ≈ 6000, ideally it would fill ≈ 20% of the shell vol-
ume (4π/3R3

s ≈ 32000) when tightly packed, but Fig. 2
shows that even the stiffest chains actually expand to
occupy 80% of the volume because the bending energy
involved is small.

The question of where chain spheres are positioned is
partially answered by Fig. 3 which shows their mean dis-
tance from the shell center as a function of location along
the chain contour (averaged as before). The preferred
packing direction changes with chain stiffness: for larger
fa chain segments that enter later lie on the outside (on
average), while for smaller fa the opposite is true, al-
though the trend is weaker.

A more detailed explanation of how packaged chains
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FIG. 4. Orientational correlation plots and pictures of se-
lected chains; details and color schemes are explained in the
text (in the grayscale print version, dark gray = blue/violet,
medium gray = red, light gray = yellow/green); cases (a–e)
are for fa = 5000, (f,g) are for fa = 3000 and 1000.

are organized appears in Fig. 4, where pictures of chain
configurations are paired with orientational correlation
plots (explained below). The shell envelope is shown
semi-transparently with the portal at the top. Spectral
colors are used for the chain configurations, ranging from
red at the chain head (the segments that enter first) to
violet at the tail; thus the image of a chain whose tail
is adjacent to the shell wall typically has red segments
inside and violet loops on the outside, with the other
colors interspersed. Note that static pictures cannot re-
veal slow time-dependent behavior such as rotation of the
partially packaged chain, or spool rearrangement during
and after insertion that can obscure the final stages of
the insertion history; animated image sequences provide
additional information.

Long chain sections arranged into spool-like configura-
tions are a prominent feature of the imagery, a mode of
organization that can be quantified using orientational
correlation functions. These are evaluated by consid-
ering successive chain segments i of length (e.g.) 40
(1 ≤ i ≤ 200) and, on the assumption that each segment
is approximately planar, evaluating its normal ~ni as the
mean of the cross products of vectors between spheres
in the segment spaced (e.g.) four apart. A (symmetric)
matrix C is constructed, where Cij = arccos(~ni · ~nj) is
the angle between the normals of segments i and j, and
displayed as a 2D plot with color denoting angular ranges
(these colors unrelated to the pictures); the chain head is
in the lower-left corner. The ith row/column shows the
alignment of chain segments relative to i, where three seg-
ments amount to a single loop around the shell. Regions
of the chain with near-parallel alignment, the usual case
for contiguous segments that tend to be strongly corre-
lated (except when an abrupt change occurs), are shown
in red, regions oriented antiparallel (to the original) in
blue, and intermediate cases in yellow and green.

The color plots do not show where individual segments
are located in the shell, but by comparing each C with its
picture it is apparent that a large upper-right red square
corresponds to a section of the chain forming a spool with
multiple loops in contact with, or close to, the shell wall;
this, in turn, may be wrapped around one or more dif-
ferently aligned interior spools, typically terminating in
a region with minimal correlation extending to the chain
head. Brief interruptions in the large red squares cor-
respond to short misaligned sections, sometimes just a
single loop. The variety of organizational patterns is un-
surprising since the packed state represents the outcome
of a sequence of individual events that have little or no
temporal relation; a typical event might be a choice be-
tween a chain segment forcing previously packed contents
to rotate so that it can be accommodated on the exterior
with minimal bending, or the opening of a gap between
loops so that it can penetrate to the interior.

Examples (a–e) are for the stiffest chains considered
(fa = 5000, the results for fa = 4000 are similar). Case
(a) shows a chain just prior to complete insertion with
the final tail segment traversing the portal. Cases (b–e)
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show fully inserted chains with increasingly large ordered
regions. Each chain is packed differently; 22 of the 27
chains exceed 99% completion (for this fa), and in 12 of
them the upper-right square of C is a red or red/yellow
block that includes at least half the chain, apart from
a few defects, indicating that the dominant feature is a
single spool. In case (b) there are several smaller blocks
corresponding to shorter spools, concentrically arranged
with differing orientations. In general, sets of spooled
loops with (near-) maximal radius form in (or close to) a
median plane passing through the portal; the spool axis
direction varies slightly but can persist for a relatively
long time before undergoing sudden change. Previously
inserted chain segments form a soft, fluctuating ‘core’
that rotates slowly and unevenly to accommodate new
segments, usually on or close to the outside. Note that
twisting of the chain is not required, justifying the omis-
sion of any torsional interaction; the minimal influence
of torsion is described in [20]. The measured increasing
mean radial distance as a function of sphere location in
the chain (Fig. 3) is consistent with these observations.

The initial section of the chain to enter (up to ≈ 4000
spheres, typically exceeding the longest chains consid-
ered in previous work) also forms loops, although the
ordering is much weaker, and the loops are anisotrop-
ically compressed by subsequent chain segments. This
could indicate the existence of an interior ‘framework’
that assists spooling, implying a minimal chain length
for spool development. The behavior is the opposite of
‘inverse spooling’ – packing from the outside in – seen
in simulations of shorter chains [12, 16, 17], even though

concentric spools form in both cases. The presence of
multiple sets of spooled loops with various orientations
allows more uniform coverage of the shell surface and re-
duces the bending energy (for both normal and inverse
spools). The number of loops, assuming they span the
full circumference, is lbN/2πRs ≈ 70.

The final two examples (f,g) are for more flexible
chains, with fa = 3000 and 1000. Packaging is less or-
dered at lower fa, and loops with higher curvature appear
more often, so that while there is still some alignment,
sizable spools are less likely. The spheres also have re-
duced energetic preference as to initial placement after
insertion, so that the likelihood of the tail end of the
chain being near the wall is lower (Fig. 3).

In conclusion, the fact that the complex mechanisms
employed by viruses for packaging their genetic payloads
are not readily understood has led to the development
of reduced models aimed at capturing the principal fea-
tures. Simulations of such a model reveal that spool-like
organization appears spontaneously when packaging stiff
polymer chains, with the late-entering part of the chain
preferably located close to the shell wall. The efficacy
of this packing scheme is obvious, in particular because
the core rotation alleviates the need to overcome chain
twisting, although it has not been considered previously.
Apart from possible biological relevance, the results pro-
vide another example [21] of emergent cooperativity in
the simplest of physical systems.
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