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We consider the observability model in networks with arbitrary topologies. We introduce a system
of coupled nonlinear equations, valid under the locally tree-like ansatz, to describe the size of the
largest observable cluster as a function of the fraction of directly observable nodes present in the
network. We perform a systematic analysis on 95 real-world graphs and compare our theoretical
predictions with numerical simulations of the observability model. Our method provides almost
perfect predictions in the majority of the cases, even for networks with very large values of the
clustering coefficient. Potential applications of our theory include the development of efficient and
scalable algorithms for real-time surveillance of social networks, and monitoring of technological
networks.

The state of an entire networked dynamical system can
be determined by monitoring or dominating the states of
a limited number of nodes in the network [1]. A power-
grid network can be observed in real time by placing
phasor measurement units to a selection of nodes in the
network [2]. Routing tables in mobile ad-hoc networks
rely on gateway nodes to form connected dominating sets
used as backbones for communication [3]. Disease out-
breaks in urban environments can be efficiently detected
by placing sensors on specific locations visited by poten-
tially infected individuals [4].

Whereas all these examples markedly differ in their
underlying dynamics, from the structural point of view,
they can all be framed in terms of the so-called network
observability model [2]. In this model, placing an ob-
server on one node can make the node itself and all its
nearest neighbors observable. Nodes in the network can
therefore assume three different states: (i) directly ob-
servable, if hosting an observer; (ii) indirectly observable,
if being the first neighbor of an observer; (iii) or not ob-
servable, otherwise. Observable, either directly or indi-
rectly, nearest-neighbor nodes form clusters of connected
observable nodes. Thus, structurally speaking, the net-
work observability model can be thought as an extension
of the more traditional, and much more studied, perco-
lation model [2, 5]. As in percolation, the question of
interest in network observability is how to determine the
macroscopic formation of observable clusters in the net-
work on the basis of microscopic changes in the state of
its individual nodes.

The observability model has been recently studied in
its simplest formulation where directly observed nodes
are randomly selected [2]. The model has been solved for
both uncorrelated and correlated random network mod-
els in the limit of infinite size [2, 6]. As real networks
are not mere realizations of random network models, and
their size is clearly not infinite, the methods deployed in
Refs. [2, 6] are not directly applicable to real-world net-
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works. The present paper introduces a theoretical ap-
proach able to describe the observability model in real
graphs. We introduce a set of heuristic equations that
takes as input the adjacency matrix of a network to draw
its entire observability phase diagram. The mathemat-
ical framework consists in the formulation of a belief-
propagation or message-passing algorithm [7] in a similar
spirit as recent theoretical methods based on message-
passing algorithms have been used to describe ordinary
percolation transitions in real isolated and/or interdepen-
dent networks [8–12]. We show, through a systematic
analysis of nearly one hundred real networks, that the
method is able to reproduce true phase diagrams with
extraordinary accuracy, proving therefore its applicabil-
ity to a wide range of real systems.

Here we consider an arbitrary network composed of
N nodes and E edges. Without loss of generality, we
assume that the network has one single connected com-
ponent. Suppose that each node has a probability φ to
host an observer, i.e. to be directly observable. Nodes
that are connected to directly observable nodes are, in
turn, indirectly observable. Observable nearest-neighbor
nodes form clusters. For φ = 0, no nodes are observable,
hence there are no clusters. For φ = 1, all nodes are
directly observable, and thus they form a single cluster.
At intermediate values of φ, the network can be found in
two different phases: (i) the regime of non-observability,
where all clusters have microscopic size; (ii) the phase
of observability, where a single macroscopic cluster, com-
parable in size with the entire network, is present. To
monitor the transition between these two phases, one
usually relies on the order parameter P∞, correspond-
ing to the relative size of the largest observable cluster
(LOC). In the limit of infinitely large networks, P∞ = 0,
for φ ≤ φc, and P∞ > 0, for φ > φc, with φc critical
value of the probability φ. In the following, we describe
a mathematical framework, deployed under the locally
tree-like approximation, to estimate the relative size of
the LOC as a function of φ.

To proceed, we consider the probability that moving
along the edge i→ j, we arrive to the LOC, irrespective
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Figure 1: Schematic illustration of the derivation of the sys-
tem of Eqs. (1) [panel a], (2) [b] and (3) [c]. The different
variables used in the equations are defined depending on the
state of the nodes, here denoted by different shapes and col-
ors (green circle = directly observable, red diamond = not
directly observable, and gray square = arbitrary).

of whether node i is in the LOC or not 1. In particular,
we consider three conditional versions of this probability.
We denote them as ui→j if j is directly observable, as
vi→j if j is not directly observable, and as zi→j if neither
i nor j are directly observable. Working under the lo-
cally tree-like ansatz, we can write the following system
of coupled equations (Fig. 1):

ui→j = 1−
∏

q∈Nj\{i}
[1− φuj→q − (1− φ)vj→q] , (1)

vi→j = 1−
∏

q∈Nj\{i}
[1− φuj→q − (1− φ)zj→q] (2)

and

zi→j = vi→j − (1− φ)kj−1[1−
∏

q∈Nj\{i}
(1− zj→q)] . (3)

In the above equations, Nj is the set of all neighbors
of node j, and kj is the degree of node j. We note that
kj = |Nj |, where |X | indicates the size (i.e., number of
elements) of the set X . Equation (1) is derived as fol-
lows. If node j is directly observable, then node j is part
of the LOC if at least one of its neighbors q 6= i is part of
the largest cluster. This fact can happen in two ways: (i)
with probability φuj→q, if node q is directly observable;
(ii) with probability (1−φ) vj→q, if node q is not directly
observable. Thus, the probability that the connection
j → q brings to the LOC is φuj→q + (1 − φ) vj→q. The

1 Please note that the network is undirected, but, in our mathe-
matical framework, every edge (i, j) is considered twice, as i → j
and j → i.

r.h.s. of Eq. (1) quantifies the probability that at least
one of the connections j → q leads to the LOC, where the
tree-like ansatz allows us to consider probabilities associ-
ated with the individual edges as independent variables,
hence their product appearing on the r.h.s. of Eq. (1).

The derivation of Eq. (2) is similar to the one just
described for Eq. (1). We note that we can write

vi→j = 1−∑
{sr},r∈Nj\{i}

× ∏
q∈Nj\{i} [φ(1− uj→q)]sq [(1− φ)(1− zj→q)]1−sq .

(4)
For a proof of the equivalence between Eqs. (2) and (4),
see Appendix A. The sum on the r.h.s. of Eq. (4) runs
over all 2kj−1 possible configurations {sr} for the state
(that is directly or not directly observable) of the neigh-
bors of node j, excluding node i. For every given con-
figuration, the product appearing inside the sum is the
probability that such a configuration appears, multiplied
by the conditional probability that node j is not at-
tached to the LOC in this configuration. To be more
specific, the binary variable sq = 1, if node q is di-
rectly observable, and sq = 0, otherwise. The quantity
[φ(1 − uj→q)]sq [(1 − φ)(1 − zj→q)]1−sq is the probabil-
ity that the connection j → q does not bring node j to
the LOC. Depending on whether node q is directly ob-
servable or not, this probability is either φ(1− uj→q) or
(1− φ)(1− zj→q), respectively.

The expression of zi→j in Eq. (3) can be quantified in
almost the same way as vi→j . We still need to consider
the probabilities that the connection i→ j does not bring
node i to LOC, for all possible configurations of neighbors
of node j. The probability associated with each config-
uration is the same as that appearing in Eq. (4). The
only exception is the configuration sq = 0 ,∀q ∈ Nj \{i},
which happens with probability (1 − φ)kj−1, where all
neighbors of node j are not directly observable (thanks
to the underlying assumption that node i is not directly
observable when we consider the conditional probability
zi→j), hence node j is surely not observable and cannot
be part of the LOC. Accounting for this exception, and
using the equivalence between Eqs. (2) and (4), we finally
derive Eq. (3).

We can now rely on Eqs. (1), (2), and (3) to compute
the probability pi that node i is part of the LOC. We
start from the simpler case when node i is directly ob-
servable, which happens with probability φ. We consider
the probability that the connection i → j brings node i
to the LOC. This probability is ui→j , if node j is directly
observable, and is vi→j , if node j is not directly observ-
able. Combining the contributions from all neighbors of
node i, and using again the locally tree-like ansatz, the
probability ri that node i is directly observable, but not
part of the LOC is

ri = φ
∏
j∈Ni

[1− φui→j − (1− φ)vi→j ] . (5)

If node i is not directly observable, which happens with
probability 1−φ, it is better to recast the approach used
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to compute Eq. (3). We need to consider all possible 2ki

configurations for the neighbors of node i. Again, we have
to account for the special configuration sj = 0 ,∀j ∈ Ni,
when node i is surely not observable. The probability
ti that node i is not directly observable, and none of its
neighbors is attached to the LOC is given by

ti = (1− φ){∑{sr},r∈Ni

∏
j∈Ni

[φ(1− ui→j)]sj
× [(1− φ)(1− zi→j)]1−sj
+(1− φ)ki − (1− φ)ki

∏
j∈Ni

(1− zi→j)}
.

Using the same trick as the one considered to pass from
Eq. (4) to Eq. (2), we rewrite ti as

ti = (1− φ){∏j∈Ni
[1− φui→j − (1− φ)zi→j ]

+(1− φ)ki [1−∏
j∈Ni

(1− zi→j)]} . (6)

Combining the two cases, we derive the probability pi
that node i is part of the LOC as

pi = 1− φ∏j∈Ni
[1− φui→j − (1− φ)vi→j ]

−(1− φ){∏j∈Ni
[1− φui→j − (1− φ)zi→j ]

+(1− φ)ki [1−∏
j∈Ni

(1− zi→j)]}
. (7)

The relative size of the LOC, predicted in the locally
tree-like ansatz, can be finally calculated as

P (th)
∞ =

1

N

N∑
i=1

pi . (8)

For every value of φ, P
(th)
∞ can be numerically estimated

by first solving by iteration the system of Eqs. (1), (2)
and (3) for every directed edge i → j. We can then
plug the solution in the system of Eqs. (7), and estimate
every pi. These values can be finally inserted in Eq. (8)

to compute P
(th)
∞ .

In Fig. 2, we present results from the analysis of two
real-world networks. The plots show a comparison of
the observability phase diagram obtained from the solu-
tion of our framework, and the one computed from nu-
merical simulations of the model. Simulations are per-
formed using a modified version of the Newman-Ziff al-
gorithm, originally introduced to simulate ordinary per-
colation processes in arbitrary topologies [13]. For every

value of φ, we estimate the order parameter P
(num)
∞ as

the average value over 10, 000 independent realizations
of the algorithm. The analysis of Fig. 2 reveals an al-
most perfect match between theoretical predictions and
results of numerical simulations.

To test how good our theoretical predictions are, we
perform a systematic comparison between theory and nu-
merical simulations on 95 real-world graphs [15]. For a
list of all networks analyzed see [16]. We consider net-
works of very different nature (e.g., technological, social,
biological), and heterogeneous in terms of their topolog-
ical properties (e.g., clustering coefficient, size, degree
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Figure 2: Observability transition in real networks. We com-
pare results from numerical simulations (gray lines) with the
solution of our theoretical equations (red lines). (a) Analysis
of the Internet at the autonomous system level, as of July 22,
2006 [9]. (b) Analysis of the scientific collaboration network
derived from pre-prints posted in the section Cond-Mat of the
arXiv between years 1993 and 2005 [14].
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Figure 3: Analysis of real networks. We consider 95 real-
world graphs [15, 16]. For every network, we compute the
discrepancy ε between the theoretical and numerical estimates
of the relative size of the LOC [Eq. (9)]. (a) For every network,
we plot ε as a function of the average clustering coefficient
C. To construct the lines, we consider seven equally spaced
bins for the range of C values. For all networks falling in a
given bin, we compute the median value of ε (full line), and
the lower and upper ends of 90% confidence intervals (dashed
lines). (b) Scatter plot of ε versus the network size N . Lines
are constructed in a similar way as those appearing in panel
a. The only difference is that we divide the range of N values
in six equally spaced bins on the logarithmic scale.

distribution). To quantify the discrepancy between the-
oretical predictions and the ground truth offered by nu-
merical simulations, we use the following expression [17]

ε =

∫ 1

0

|P (th)
∞ (φ)− P (num)

∞ (φ)| dφ . (9)

As the results of our analysis reveal, the discrepancy
between theory and numerical simulations is generally
very small (Fig. 3). Besides, we observe only a very weak
dependence of ε on the average clustering coefficient of
the network C (Fig. 3a). Because the theoretical frame-
work is deployed under the locally tree-like ansatz, and
C can be interpreted as a good proxy for the degree of
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violation of this approximation, a positive correlation be-
tween C and ε is expected. However, the error committed
by our framework to estimate the true observability dia-
gram is very small even for networks with extremely large
values of the clustering coefficient. This result is in stark
contrast with what found for the ordinary site percolation
model, where high clustering implies large differences be-
tween ground truth and approaches based on the locally
tree-like approximation [11]. We further note that even
for extremely small networks composed of tens of nodes,
theoretical predictions are very accurate. Moreover, the
discrepancy between theory and simulations tends to de-
crease as the size of the network increases (Fig. 3b). This
is also not a surprising result, given that our theoretical
framework is expected become exact in the limit of (lo-
cally tree-like) infinite networks.

Given the continuous nature of the observability phase
transition, in the vicinity of the critical point φc, we can
take a linear approximation of the system of Eqs. (1), (2)
and (3), and rewrite them in matricial form as: ~u =
M [φ~u+(1−φ)~v], ~v = M [φ~u+(1−φ)~z], and ~z = ~v−R(φ)~z.
In the above expressions, ~u, ~v, and ~z are column vectors
composed of 2E components, each corresponding to a
directed edge of the graph. Matrix M is the 2E×2E non-
backtracking matrix of the graph, whose generic element
is defined as Mi→j,`→r = δj,`(1− δi,r), with δ Kronecker

symbol [18, 19]. The generic element of the matrix R(φ)

is defined as R
(φ)
i→j,`→r = (1 − φ)kj−1Mi→j,`→r. Solving

the previous system of linear equations (see Appendix
B), we arrive to the eigenvalue/eigenvector equation

~z = {[1−Mφ(1−φ)(1−φM)−1M ]−1 (1−φ)M−R(φ)}~z .
(10)

Eq. (10) serves to study the linear stability of the triv-
ial solution ~zT = (0, . . . , 0). The critical value φc of the
transition equals the value of φ for which the trivial so-
lution becomes unstable, and corresponds to the φ value
for which the operator appearing on the r.h.s. of Eq. (10)
has principal eigenvalue equal to one. Eq. (10) is useful
only in a limited number of cases, as for example regular
graphs (see Appendix B). For general networks instead,
solving Eq. (10) is not computationally efficient. This
operation requires to determine the inverse of several ma-
trices. From a numerical point of view, it is thus better
to rely on a binary search combined with the numerical
solution of the system of nonlinear Eqs. (1), (2), and (3).
We further stress that the determination of the critical
point in the observability transition is not as meaningful
as in the case of percolation. The critical point φc is in
fact very close to zero for almost all networks. Thus, the
emergence of the LOC happens as soon as a very small
number of observers are randomly placed in the system.

Our method to estimate observability phase diagrams
is the first theoretical framework that can be applied to
arbitrary network topologies. Although the method is
exact only for locally tree-like infinite networks, its per-
formances are almost perfect regardless of the size and/or
the average clustering coefficient of the network. In this

paper, we considered and solved the ordinary version of
the observability model, where observers are randomly
placed on nodes of the network. We believe, however,
that the framework has the potential to be generalized
to arbitrary strategies for the placement of observers. In
this sense, a very important extension of our formalism
could be to study optimal observability, on the same foot-
ing as recent work on optimal percolation [20–22]. Con-
sidering that the optimal solution of the observability
model is formally equivalent to the minimum (partial)
dominating set of a graph [23], such an extension could
represent a very important contribution for research in
several domains, including, among others, biology [24, 25]
and social sciences [26, 27].
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Appendix A: Proof by induction of Equation (4)

In the main text, we used the fact that∏
q∈Q[1− φaq − (1− φ)bq] =∑
{sr},r∈Q

∏
q∈Q [φ(1− aq)]sq [(1− φ)(1− bq)]1−sq .

(A1)
Note that Eq. (A1) is a more general version of Eq. (4).
We recall that sum on the r.h.s. runs over all 2|Q| con-
figurations, with |Q| number of elements in Q, where
the element q in the set Q can be in an active state,
i.e., sq = 1, or in an inactive state, i.e., sq = 0. These
events happen with probability φ and 1−φ, respectively,
providing the proper way to weight the probability of ap-
pearance of every configuration. We provide here a proof
by induction of Eq. (A1). To this end, we first note that
if Q = ∅, then Eq. (A1) is automatically satisfied, being
both sides equal to one. If |Q| > 0, we hypothesize that∏

q∈Q\{p}[1− φaq − (1− φ)bq] =∑
{sr},r∈Q\{p}

∏
q∈Q\{p} [φ(1− aq)]sq [(1− φ)(1− bq)]1−sq .

(A2)
The latter equation is the analogue of Eq. (A1) for the
set Q \ {p}. We are thus supposing that the equation
is valid not for the entire set Q, but the set minus one
its elements. If we factorize out the contribution of the
element p in Eq. (A1), we have

[1− φap − (1− φ)bp]
∏
q∈Q\{p}[1− φaq − (1− φ)bq] =

[φ(1− ap) + (1− φ)(1− bp)]
∑
{sr},r∈Q\{p}×∏

q∈Q\{p} [φ(1− aq)]sq [(1− φ)(1− bq)]1−sq
.
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By virtue of the hypothesis of Eq. (A2), the validity of
Eq. (A1) is obtained by proving that the two extra factors
due to the element p that appear on both sides of the
previous equation are equal. This fact can be trivially
shown by rewriting

φ(1− ap) + (1− φ)(1− bp) = 1− φap − (1− φ)bp .

Appendix B: Linear approximation

Using the the linear approximation∏
q

(1− xq) ' 1−
∑
q

xq ,

we can rewrite Eqs. (1), (2) and (3) of the main text
respectively as

~u = M [φ~u+ (1− φ)~v] , (B1)

~v = M [φ~u+ (1− φ)~z] (B2)

and

~z = ~v −R(φ)~z , (B3)

where R
(φ)
i→j,`→r = (1−φ)kj−1Mi→j,`→r, and M is the

non-backtracking matrix of the graph.
From Eq. (B1), we obtain

~u = (1− φ)(1− φM)−1M ~v .

Inserting this expression into Eq. (B2), we have

~v = [1−Mφ(1− φ)(1− φM)−1M ]−1 (1− φ)M ~z .

Finally, using this expression in Eq. (B3), we obtain
Eq. (10).

A special case where Eq. (10) can be simplified is for
regular graphs with valency k, so that M and R(φ) have
the same eigenvectors. We can write the condition for
the critical probability φc as

[1−φc(1−φc)(1−φcµ)−1µ2]−1 (1−φc)µ−(1−φc)k−1µ = 1 ,

with µ = k − 1.
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