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The primary and key task of binary fluid flow modeling is to track the interface with good 
accuracy, which is usually challenging due to the sharp interface limit and numerical dispersion. This 
article concentrates on further development of the conservative Allen-Cahn equation (ACE) [Geier et 
al., Phys. Rev. E 91, 063309 (2015)] under the framework of the Lattice Boltzmann method (LBM), 
with incorporation of the incompressible hydrodynamic equations [Liang et al., Phys. Rev. E 89, 
053320 (2014)]. Utilizing a modified equilibrium distribution function and an additional source term, 
the new model is capable of correctly recovering the conservative ACE through the 
Chapman-Enskog analysis. We also simulate four phase-tracking benchmark cases, including one 
three-dimensional case; all show good accuracy as well as low numerical dispersion. By coupling the 
incompressible hydrodynamic equations, we also simulate layered Poiseuille flow and the 
Rayleigh-Taylor instability, illustrating satisfying performance in dealing with complex flow 
problems, e.g., high viscosity ratio, high density ratio, and high Reynolds number situations. The 
present work provides a reliable and efficient solution for binary flow modeling. 

PACS number(s): 47.11.-j, 68.03.-g, 47.55.-t 

I. INTRODUCTION 

Binary fluid flows are nearly ubiquitous in nature and are of great significance in both scientific 
and industrial fields, e.g., porous media flow [1], surface wetting [2,3], droplet/bubble dynamics [4], 
etc. Many methods have been developed to numerically simulate these phenomena [5], typical 
methods including the volume of fluid method [6], the level set method [7], the front tracking 
method [8], the phase field method [9,10], and semi-Lagrangian-based methods [11], etc. Different 
from methods that mainly involve external advection, e.g., the volume of fluid method and the level 
set method, the phase field method applies a diffusion term to incorporate the motion of interfaces. 
Moreover, the analytical interface profile along the normal direction can be given initially, and it 
does not require interface construction like the volume of fluid method. In binary flow situations, 
especially when the surface tension has considerable effects [10], the phase field method has shown 
great advantage and enormous application potential. 

The most frequently adopted governing equation of the phase field method is the Cahn-Hilliard 
equation (CHE) [12] that applies the chemical potential in the diffusion term. One key drawback of 
the CHE is that special treatment has to be done for this fourth-order term. Another strategy is to 
solve the conservative ACE. The original ACE was not globally conservative, but Chiu and Lin [13] 
derived the conservative form to preserve the total mass, based on the work of Sun and 
Beckermann [14] that modified the original ACE to a curvature-driven phase field model. By 
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contrast, the conservative ACE is much simpler than the CHE, especially in that only a second-order 
algorithm is needed for the discretization of the diffusion term. 

In order to solve governing equations of the phase field method, in addition to the finite 
difference method (FDM) and the finite volume method [15] that are often used in computational 
fluid dynamics, the Lattice Boltzmann method (LBM) has revealed good performance and superior 
parallel efficiency in the past years [16–18]. He et al. [19] first introduced an additional equation for 
phase tracking, where the Carnahan-Starling equation of state was applied to derive the chemical 
potential in the CHE. Instead of the non-ideal gas equation, Lee and Lin [20] then applied the free 
energy scheme. However, these models share the drawback of not being able to recover the correct 
CHE. Later on, Zheng et al. [21,22] introduced a spatial difference term of the distribution function 
to recover the correct form of the CHE. Similarly, Zu et al. [23] rewrote the equilibrium distribution 
function and also recovered the correct CHE. Different from previous work, Liang et al. [24–26] also 
recovered the correct CHE by introducing a new equilibrium distribution function, together with an 
additional temporal term. 

In terms of the conservative ACE, Geier et al. [27,28] first proposed the single-relaxation-time 
(SRT) algorithm, and showed better accuracy and better convergence rate over the CHE. Moreover, 
they offered an alternative algorithm to calculate the interface curvature locally, which greatly 
reduced computational expense but meanwhile brought an accuracy loss. 

Based on the phase field method, the interfaces can be tracked with good accuracy, and by 
coupling the hydrodynamic equations, solutions for simulating binary flow systems are provided. 
Although many models are proposed for incorporating the hydrodynamic evolution, most of them 
cannot recover the correct incompressible Navier-Stokes (NS) equations. Based on the single-phase 
incompressible LBE [29], Zu et al. [23] solved this problem by introducing a velocity-based 
evolution procedure, different from previous momentum-based ones. However, since implicit 
schemes are utilized to calculate macroscopic velocity and pressure, a prediction-correction step is 
also required. Further, Liang et al. [24] proposed a new and simple evolution model that is also 
capable of correctly recovering the incompressible Navier-Stokes equations, while inheriting the 
advantages of typical Lattice Boltzmann (LB) models in simplicity and locality. 

In the work reported herein, we propose an improved LB equation that correctly recovers the 
conservative ACE through the Chapman-Enskog analysis. To solve binary flow problems, we couple 
the incompressible hydrodynamic equation by Liang et al. [24] with necessary modifications. 

This article is outlined as follows: in Sec. II, the methodology is introduced; in Sec. III, 
phase-tracking tests are conducted; in Sec. IV, two typical multiphase flow cases are conducted and 
analyzed; and in Sec. V, a brief summary is drawn. 

II. METHODOLOGY 

A. Conservative ACE 
In Eulerian methods, the general advection equation is expressed as 

 0tφ φ∂ + ⋅ ∇ =u , (1) 

whereφ is the order parameter. Now we split the velocity vector into a normal speed nu ,
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 and an external velocity vector eu  [13,14], i.e., n eu= +u n u . Herein the normal vector is 

calculated as φ φ= ∇ ∇n , and then we have 

 0t e nuφ φ φ∂ + ⋅ ∇ + ∇ =u . (2) 

From the viewpoint of the level set method [14,30], we can assume that the normal speed is 

proportional to the curvature, i.e., nu M φκ= − . Here Mφ is positive and is defined as the mobility.

κ = ∇ ⋅ n is the curvature. Hence, Eq. (2) can be further written as 

 ( ) ( )2
t e M Mφ φφ φ φ φ φ∂ + ⋅∇ = ∇⋅ ∇ = ∇ − ⋅∇ ∇u n n . (3) 

Now we introduce the one-dimensional equilibrium profile for the order parameter   φ along the

 z direction [10], i.e., 

 ( ) 2tanh
2 2

A B A B zz
W

φ φ φ φφ + − ⎛ ⎞= + ⎜ ⎟
⎝ ⎠

, (4) 

whereW is the interfacial width, Aφ and Bφ are phase indicators for phase A and phase B, respectively. 

From Eq. (4), we can easily obtain φ θ∇ = n , where the general form forθ is expressed as 

 ( ) ( )
( )

4 A B

A BW
φ φ φ φ

θ
φ φ

− − −
=

−
. (5) 

The equilibrium value for the right side of Eq. (3) becomes ( )M Mφ φφ θ∇ ⋅ ∇ = ∇ ⋅n n . By 

subtracting this equilibrium value from the right side of Eq. (3), we obtain 

 ( )2
t e Mφφ φ φ φ θ∂ + ⋅∇ = ∇ − ⋅∇ ∇ − ∇⋅u n n . (6) 

If the term φ⋅ ∇ ∇n is also written with the equilibrium form, i.e., θ⋅ ∇n , the right side of Eq. 

(6) would become ( )2Mφ φ θ⎡ ⎤∇ − ∇⋅⎣ ⎦n . By enforcing the divergence-free velocity condition, i.e., the 

incompressible continuity equation, we can obtain the conservative ACE, and it is expressed as 

 ( ) ( )2
t e Mφφ φ φ θ⎡ ⎤∂ + ∇⋅ = ∇ −∇⋅⎣ ⎦u n . (7) 

Note that the right-side term of Eq. (7) would become zero in the equilibrium state. Therefore, 
here the mobility acts as the rate towards the equilibrium state. In addition, the external velocity will 
be written as u in subsequent sections for simplification. 

To obtain a non-dimensional form of Eq. (7), we define the dimensionless variables as 
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 * *, t = , 
A B

x tx
x t

φφ
φ φ

= =
−

. (8) 

Then Eq. (7) can be rewritten as 

 ( ) ( ) ( )1 4
t A BPe Ch
φ φ φ φ φ φ φ⎡ ⎤∂ + ∇⋅ = ∇ ∇ + − −⎢ ⎥⎣ ⎦

u n , (9) 

where ( )*2 *Pe x M tφ= is the Péclet number, and *Ch W x= is the Cahn number. 

In phase field theory, the more frequently used equation, i.e., the CHE, is expressed as 

 ( ) ( )t Mφφ φ μ∂ + ∇⋅ = ∇ ∇u , (10) 

where ( ) ( ) ( ) ( ) ( )2 2
0 4 2A B A Bμ φ μ φ κ φ β φ φ φ φ φ φ φ κ φ= − ∇ = − − − + − ∇⎡ ⎤⎣ ⎦ is introduced as the 

chemical potential. Here β andκ are related to the surface tension coefficient   σ and the interface 

widthW , following the relationship 

 
( )4

12

A BW
σβ

φ φ
=

−
,and

( )2
3

2 A B

Wσκ
φ φ

=
−

. (11) 

Eq. (11) is obtained from the general phase-field theory and it is also available for the ACE. 

According to Eq. (4), we have ( ) ( ) ( ) ( )22 232 2A A A B A BWφ φ φ φ φ φ φ φ φ φ⎡ ⎤∇ = − − − + −⎡ ⎤⎣ ⎦ ⎣ ⎦
in the 

equilibrium state. According to the definition of Eq. (11), the chemical potential would also become 
zero in the equilibrium state. Here the mobility acts as the rate towards the equilibrium value of 
chemical potential. Using the same dimensional variables as in Eq. (8), the dimensionless form of the 
CHE is written as 

 ( ) ( ) ( ) 21 48 3
2 2

B B
t A B

Ch
Pe Ch

φ φφ φ φ φ φ φ φ φ
⎧ ⎫⎡ ⎤⎛ ⎞+⎪ ⎪∂ + ∇⋅ = ∇ ∇ − − − − ∇⎨ ⎬⎢ ⎥⎜ ⎟

⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
u , (12) 

where ( ) ( )2*3 *
A BPe x M tφφ φ σ= − , and *Ch W x= . Note that the definitions of the Péclet number for 

the CHE and the conservative ACE are quite different, especially in that for the conservative ACE,
  Pe is independent of the values of the phase indicators and the surface tension coefficient. 

From Eq. (9) and Eq. (12), it is clear that the diffusion term contains fourth-order calculation in 
the CHE while only second-order calculation in the ACE. Moreover, based on the conservative ACE, 
analytical setup of the interfaces can be done geometrically, making simulations independent of 
chemical potential parameters that appear in the CHE. 

B. LBM for the conservative ACE 
In general, the LB evolution includes two individual processes, i.e., collision and streaming, and 

the two-step equation can be written as 
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( ) ( ) ( )( ) ( ) ( )

( ) ( )

, , , 2

, ,

eq
i i ij j j ij ij i i

i i i

h t h t h t h I S R t

h t t t h t

δ

δ δ

⎧ ′ = − Λ − + − Λ +⎪
⎨

′⎪ + + =⎩

x x x

x e x
, (13) 

where ijΛ is an element of generalized collision matrix, eq
ih is the equilibrium distribution function, 

and iS and iR are the source terms. In our scheme, the equilibrium function is expressed as 

 ( )21eq
i i i sh w cφ= + ⋅e u , (14) 

where iw is the weighing factor, i.e., 0 4 9w = , 1~4 1 9w = , and 5~8 1 36w = for the D2Q9 model. e is the 

lattice vector, and in the D2Q9 model, it is defined as 

 
0 1 0 1 0 1 1 1 1
0 0 1 0 1 1 1 1 1

c
− − −⎡ ⎤= ⎢ ⎥− − −⎣ ⎦

e , (15) 

where c x tδ δ= is the lattice speed. sc is the lattice sound speed, usually equaling 3c . Note that in 

Eq. (14), high-order terms of velocity are canceled, thus resulting in the relationship
2eq

i i i sh cφ=∑ e e I . Through the Chapman-Enskog analysis shown in APENDIX A, we show that this 

change avoids a deviated term, i.e., ( )2 φ∇ uu . 

The new source terms are defined as 

 i i iS wθ= ⋅e n , and (16) 

 2
i i t

i
s

weR
c

φ∂= u
. (17) 

Through the Chapman-Enskog analysis, we note that in the SRT algorithm by Geier et al. [27], 

another deviated term, i.e., ( )3 11 0.5h
ts φ∇ − ∂ u , would be introduced. And by using the source term 

of Eq. (17), this term would be eliminated and the correct conservative ACE can be recovered. 
Based on Eq. (13), we further obtain the LBE using the multi-relaxation-time (MRT) algorithm, 

and it is expressed as 

 ( ) ( ) ( ) ( ) ( )1 1, , , 2h h h h h h
i eq S Rt t t t t tδ δ δ− −⎡ ⎤+ + − = − − + − +⎣ ⎦h x e h x M Λ m x m M I Λ m m , (18) 

where h eq
eq =m M h , h h

S =m MS , and h
R =m MR are the corresponding vectors in the moment space, 

respectively. I is the unit matrix and 0 1 2 8, , , ,
Th h h h hs s s s⎡ ⎤= ⎣ ⎦Λ L is the diagonal matrix. Here

3 5 1h h hs s τ= = and they are linked to the mobility through ( ) 20.5h
sM c tφ τ δ= − . Note that the 
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mobility only depends on the value of the relaxation time, while in the methods that solve the CHE, 

the mobility usually depends on another parameter, e.g., in Ref. [24], ( ) 20.5h
sM c tφ η τ δ= − , andη is 

used to tune the mobility. 
If the computational domain is partitioned into a uniform Cartesian grid, we apply the FDM for 

the spatial gradient and divergence, wherein the second-order isotropic scheme is formulated as 

 ( ) ( )2

1, , i i i
s

t w t t
c t

χ χ δ
δ

∇ = +∑x e x e , (19) 

where χ can be any scalar. The temporal derivative in Eq. (17) is calculated by the first-order 
Eulerian scheme, i.e., 

 
( ) ( )

t

t t t
t

χ χ δ
χ

δ
− −

∂ = . (20) 

C. LBM for the hydrodynamic equation 
In the derivation of the conservative ACE, the divergence-free velocity field is incorporated as a 

premise. To keep consistent, we follow the LB hydrodynamic equation developed by Liang et 
al. [24], which is proven to be capable of recovering the incompressible NS equations correctly. The 
MRT scheme is expressed as 

 ( ) ( ) ( ) ( ) ( )1 1, , , , 2g g g g g
i eq St t t t t t tδ δ δ− −⎡ ⎤+ + − = − − + −⎣ ⎦g x e g x M Λ m x m x M I Λ m , (21) 

where g eq
eq =m M g and g g

S =m MS are expressed as 

( ) ( ) ( )2 2 2 2 2 2

2 2 2 2

2 3
0, , - , , - , , - , , 

T

x y x y x yy y x yh x x
eq

s s

p u u p u u u uu u u uu u
c c c c c c c c

ρ ρ ρρ ρ ρρ ρ+ + + + −
=
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

m ,  a n d

 (22) 

 

( )
( )

( ) ( )

( ) ( )
( )( ) ( )( )

( ) ( ) ( )( )

2

2 2

22 2

2 2 2

2 2 2

2 2 2 2 2 2

2 2 2 2

3

6 9

6 3 9

3 6

3 6

2 3 3 2 3 3

1 3 1 3

s

s

s s

x

g
S x y s x y sx y

y

y x s x y sy x

x y x s y y x sx y

y x s x y sx y

c

c

c c

F

F u c u u c

F

F u c u u c

u u u c u u u c

u u c u u c

ρ

ρ

ρ ρ

ρ ρ

ρ ρ

ρ ρ

ρ ρ

⎡
⋅ ∇⎢

⎢
⋅ − + ∇⎢

− ⋅ − ⋅ ∇ + + ∇

= − + + ∇ + + ∇

− + + ∇ + + ∇

+ − + ∇ + − + − + ∇

− + ∇ + − + ∇
⎣

u

u F u u F

u F u u u F

m F F

F F

F F

F F

⎤
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

, (23) 
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where ( ),x y s aF F= = + +F F G F is the force vector. Here sF is the surface tension force, G is the 

gravitational force. aF is introduced by Li et al. [31] to eliminate an artificial interfacial force, and for 

the conservative ACE, this compensating force is formulated as 

 ( )2
a q d Mφ φρ φ θ⎡ ⎤= = ⋅ ∇ −∇⎣ ⎦F u n u . (24) 

The surface tension calculation follows the recommendation of Kim [32] and Chao et al. [33] as 

 
2

s κ φ= − ∇ ∇⋅F n n . (25) 

The macroscopic variables have the following explicit forms 

 ( )B
A B B

A B

φ φρ ρ ρ ρ
φ φ

−= − +
−

, (26) 

 
( )0.5

0.5
i i sg

qρ
+ +

=
−

∑e F G
u , and (27) 

 
2

20
2

00

1
1 2 2

s
i

i s

c wp g
w c

ρ ρ
≠

⎡ ⎤
= + ⋅ ∇ −⎢ ⎥− ⎣ ⎦

∑ u u . (28) 

In order to avoid the sharp-interface limit of phase-field based models, we apply a step form for 
the dynamic viscosity, i.e., 

 
( )
( )

,  0.5

,  0.5
A A B

B A B

μ φ φ φ
μ

μ φ φ φ
≥ +⎧⎪= ⎨
< +⎪⎩

. (29) 

In the diagonal matrix 0 1 2 8, , , ,
Tg g g g gs s s s⎡ ⎤= ⎣ ⎦Λ L , we have 7 8 1g g gs s τ= = and they are linked to 

the kinematic viscosity through ( ) 20.5g
sc tν τ δ= − . 

III. PHASE-TRACKING TESTS 

Our improved model (denoted as Model I) is compared with two models: the high-order FDM 
for the conservative ACE (denoted as Model II) and the original SRT model by Geier et al. [27] 
(denoted as Model III). 

Regarding Model II, the fifth-order upwind weighed essentially nonoscillatory (WENO) 
scheme [34,35] is applied to discretize the convection term, and the third-order total variation 
diminishing (TVD) Runge-Kutta scheme [35,36] is employed to propagate in time. The fourth-order 
isotropic scheme [25] is used to calculate the spatial gradient and divergence in the diffusion term, 
which is formulated as 

 ( ) ( ) ( )2

1, 8 , 2 , 
6 i i i i

s

t w t t t t
c t

χ χ δ χ δ
δ

∇ = + − +⎡ ⎤⎣ ⎦∑x e x e x e , (30) 
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where χ can be any scalar. 
Four standard benchmark cases [23,24,27] are presented below, including diagonal translation 

of a circular interface, circular interface in a shear flow, smoothed deformation of a circular interface, 
and three-dimensional (3D) spherical interface in a shear flow, where special velocity fields that 
satisfy the divergent-free condition are given. According to the analysis of Eq. (9), we define the 

Péclet number as 0 0Pe U L Mφ= , where 0U is the reference velocity, and 0L is the side length of the 

square computational domain. We note that in Ref. [27], the interface width acts as the reference 

length, i.e., 0Pe U W M φ= . However, it is improper because a wider interface would enhance the 

numerical stability, while a larger Pe would bring an opposite effect. In addition, due to different 
definitions of Pe in the conservative ACE and the CHE, comparisons are not made in this article. 

The Cahn number is defined as 0Ch W L= . Moreover, we also study the effect of the 

Courant-Friedrichs-Lewy (CFL) number, which is defined as 0CFL U t xδ δ= . Here the time step 

 tδ and the grid size   xδ are both set to be unity. In addition, the phase indicators  1 Aφ = and  0Bφ = . 

To evaluate the performance of the three models, we use the 2L -norm relative error of the order 

parameter between numerical and analytical results [23,24,27], i.e., 

 ( )2 2
0 02

, ,i j i j

δφ φ φ φ= −∑ ∑  (31) 

where 0φ is the initial value of the order parameter that satisfies the equilibrium state in Eq. (4) along 

the normal direction of the interface. 
Theoretically, in the equilibrium state, the maximum and minimum value of the order parameter 

would be limited to Aφ and Bφ , respectively. But in practice, this condition cannot be achieved due to 

numerical dispersion. Therefore, in order to evaluate the performance in light of numerical dispersion, 
relative maximum and minimum values of the order parameter are recorded respectively during the 
simulations, and they are shown as 

 ,
max max i j A

A B

φ φ
φ

φ φ
−⎧ ⎫

= ⎨ ⎬−⎩ ⎭
, and ,

min min B i j

A B

φ φ
φ

φ φ
−⎧ ⎫

= ⎨ ⎬−⎩ ⎭
. (32) 

A. Diagonal translation of a circular interface 

In this case, an initially circular interface with radius 0 4R L= is placed in a periodic 0 0L L×

domain. The circular interface is driven by a uniform velocity field, i.e., 
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( )
( )

0

0

,

,
x

y

u x y U

u x y U

=⎧⎪
⎨ =⎪⎩

. (33) 

Theoretically, after 0 0T L U= time steps, the interface would translate to the original position 

and coincide with the initial one. Based on this test, the effect of the CFL number and the 
convergence study are presented. 

In order to evaluate the effect of the CFL number, we tune the value of 0U , while keeping fixed 

value of the Péclet number and the Cahn number at a grid resolution 0 128 L lu= . Herein lu represents 

the lattice length unit. Additionally, in subsequent sections, ts and mu represent the lattice time unit 
and mass unit, respectively. Results for the effect of the CFL number are shown in FIG. 1. Herein for 
Model II that applies the high-order FDM, the CFL number is limited to 0.1, thus the effect of the 
CFL number can be ignored, and the relative errors are independent of the CFL number. By 
comparison, from Model I, the effect of the CFL is minor, and the relative errors are even smaller 
than those calculated by Model II. Meanwhile, because Model III recovers an incorrect ACE, the 
relative error keeps increasing as the reference velocity increases. 

0.02 0.04 0.06 0.08 0.10

0.008

0.016

0.024

0.032

0.040

0.048
 Model I
 Model II
 Model III

||δ
φ|

| 2

CFL  

FIG. 1. Effect of the CFL number: L2-norm relative error for the diagonal translation of a circular interface at

2, 500Pe = and 3 128Ch = . Model I: our improved model; Model II: high-order FDM; Model III: method 

introduced by Geier et al. 

In the convergence study, for the three individual schemes, we refine the grid while keeping 
constant Péclet number, Cahn number, and CFL number. Results are shown in FIG. 2, where both the 
horizontal and the vertical axis are logarithmic. Using a linear fitting method, the corresponding 
slopes are calculated, and the absolute values represent the convergence rate [27,37]. Generally the 
LBE is proven to be of second order while in practice the convergence rate is often less than two. 
Our results using Model I and Model III illustrate this point, and the convergence rate of Model I is 
almost twice that of Model III. For Model II, the convergence rate is right between that of the spatial 
and the temporal discretization order. Note that the results are quite different from Ref. [27], because 
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of different definitions of the Péclet number. 

100 200 300 400 50010-5

10-4

10-3

10-2

10-1

Slope=-0.83

Slope=-3.66
||δ

φ|
| 2

L0

 Model I
 Model II
 Model III

Slope=-1.65

 

FIG. 2. Convergence study for the diagonal translation of a circular interface at 2, 500Pe = , 3 128Ch = and

0.05CFL = . 

B. Circular interface in a shear flow 

In this test, a circular interface with radius 0 5R L= is initially placed at 0 2x L= and

03 10y L= in a periodic 0 0L L× domain. The velocity field follows Eq. (34) [24,27] and its direction 

is reversed after 2T time steps. Here the reference length is 0 256 L lu= and the time period is

0 02T L U= . After one period, the interface should rotate back to its original location. The interfaces 

at ( ) 2A Bφ φ φ= + are shown in FIG. 3, where the rotation and deformation by all models are 

satisfying. However, based on the relative maximum values of the order parameter, shown in FIG. 4, 
Model III shows the worst performance in terms of numerical dispersion. 

 
( )

( )

0
0 0

0
0 0

, sin cos

, cos sin

x

y

x yu x y U
L L

x yu x y U
L L

π ππ

π ππ

⎧ ⎛ ⎞ ⎛ ⎞
= ⋅ ⋅⎪ ⎜ ⎟ ⎜ ⎟

⎪ ⎝ ⎠ ⎝ ⎠
⎨

⎛ ⎞ ⎛ ⎞⎪ = − ⋅ ⋅⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩

. (34) 
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FIG. 3. Snapshots for circular interface in a shear flow at 5, 120Pe = , 3 256Ch = and 0.02CFL = . (a) Model I; (b) 

Model II; (c) Model III. Dashed lines at t T= represent the initial shape. 
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0.00
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t/T

 Model I
 Model II
 Model III

 

FIG. 4. Time evolution of relative maximum value of order parameter for circular interface in a shear flow at

5, 120Pe = , 3 256Ch = and 0.02CFL = . 

For high values of the CFL number (shown in TABLE I), numerical instability occurs easily 
using Model III, while both Model I and Model II are almost not influenced. The conclusion is 
similar with that of the diagonal translation of a circular interface, but herein the flow field is much 
more complicated because of the rotating movement and the deformation. 

It is also clearly shown in TABLE II that both Model I and Model III are not able to run at high 
Péclet numbers, suggesting that both models work in a limited range of Péclet number. Meanwhile, 
we note that Model II illustrates good performance for varying Péclet numbers. In fact, the 
high-order FDM model is even capable of solving the volume of fluid equation, which can be 
regarded as a special situation where the Péclet number becomes infinity. 

TABLE I. Relative error for circular interface in a shear flow at 5, 120Pe = and 3 256Ch = . 

Model 
CFL 

0.02 0.04 0.05 0.064 
I 0.0200 0.0199 0.0198 0.0196 
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II 0.0228 0.0228 0.0228 0.0228 
III 0.0171 unstable unstable unstable 

TABLE II. Relative error for circular interface in a shear flow at 0.02CFL = and 3 256Ch = . 

Model 
Pe 

2,560 5,120 10,240 20,480 
I 0.0126 0.0200 0.0326 0.138 
II 0.0136 0.0228 0.0383 0.0573 
III 0.0114 0.0171 0.0308 unstable 

C. Smoothed deformation of a circular interface 

In this test, a circular interface with radius 0 5R L= is placed in a periodic 0 0L L× domain. The 

velocity field follows Eq. (35) and here a temporal smoothing term, i.e., cos t
T
π⎛ ⎞
⎜ ⎟
⎝ ⎠

, is applied to 

avoid sharp changes [24,27]. We set 0 512 L lu= and 0 0T L U= . In the first half-period, the interface 

deforms smoothly and forms thin filamentary structures. The second half-period witnesses a reversed 
deformation of the interface shape corresponding to the varying velocity field. The overall evolution 
process using the improved model (Model I) is depicted in FIG. 5, followed by final interface 
configurations in FIG. 6. 
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( )

0
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4 4, sin sin cos

4 4, cos cos cos

x

y

x y tu x y U
L L T

x y tu x y U
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π π π

π π π

⎧ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − ⋅ ⋅ ⋅⎪ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎪ ⎝ ⎠ ⎝ ⎠

⎨
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ = − ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎩

. (35) 

 

FIG. 5. Snapshots for smoothed deformation of a circular interface at 10, 240Pe = , 1 256Ch = , and 0.05CFL =  using 

Model I. 
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FIG. 6. Snapshots for smoothed deformation of a circular interface at t T= , 10, 240Pe = , 1 256Ch = , and 0.05CFL = . 

(a) Model I; (b) Model II; (c) Model III. Dashed lines represent the initial shape. 

In addition, quantitative comparisons among the models are summarized in TABLE III and 
TABLE IV, illustrating effects of the CFL number and the Péclet number, respectively. The variation 
of the relative maximum error with time is shown in FIG. 7. 

It is clear that in this deformation-dominated test (i.e., large gradient of any component of the 
velocity vector), Model II shows the worst performance, while Model I and Model III both attain 
good interface shapes and good accuracy. It is also noted that the calculated relative error of Model I 
and Model III are almost the same. Meanwhile, from the perspective of the numerical dispersion 
reflected in FIG. 7, our improved model reveals better performance, especially in the second half 
period. 

TABLE III. Relative error for smoothed deformation of a circular interface at 10, 240Pe = and 1 256Ch = . 

Model 
CFL 

0.02 0.04 0.05 0.064 
I 0.0139 0.0142 0.0142 0.0144 
II 0.104 0.102 0.104 0.106 
III 0.0136 0.0136 0.0139 0.0143 

TABLE IV. Relative error for smoothed deformation of a circular interface at 0.05CFL = and 1 256Ch = . 

Model 
Pe 

5,120 10,240 20,480 40,960 
I 0.0120 0.0142 0.0326 0.0537 
II 0.181 0.104 0.0770 0.0755 
III 0.0141 0.0139 0.0319 0.0529 
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FIG. 7. Time evolution of relative maximum value of order parameter for smoothed deformation of a circular 

interface at 10, 240Pe = , 1 256Ch = , and 0.05CFL = . 
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D. 3D spherical interface in a shear flow 
In this section, we simulate a 3D spherical interface in a shear flow, i.e., the extension of 2D 

circular interface in a shear flow. Herein we adopt the D3Q15 model, and the 3D implementations of 
Model I can be found in APPENDIX B. 

In this test, a spherical interface with radius 0 5R L= is placed in a periodic 0 0 0L L L× × domain. 

The velocity field is shown in Eq. (36) [22] and the direction is reversed after the first half-period. 

Here similar parameters are chosen as for the 2D case. We have 0 256 L lu= and the period is also

0 02T L U= . After one period, the interface should rotate back to its original location. Simulation 

results for the case at 5,120Pe= , 3 256Ch = , and 0.02CFL = are shown in FIG. 8, which is shown 

from the isometric perspective. Here clear outlines of the interfaces are successfully obtained, even at 
the thin tails. And the relative error of the order parameter after one period equals 0.0273, close to 
that of the 2D case. 
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⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
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⎧
⎪
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⎪
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⎪
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. (36) 

 

FIG. 8. Snapshots for 3D spherical interface in a shear flow using Model I at 5, 120Pe = , 3 256Ch = , and

0.02CFL = . (a) to (h) represents 8t T= to t T= , respectively. 

From the above cases, we notice that while solving the conservative ACE, the conventional 
high-order FDM shows good performance but fails to simulate deformation-dominated flow like the 
smoothed deformation of a circular interface. Meanwhile, our improved model shows satisfying 
performance considering the effect of the CFL number and the Péclet number, the convergence rate, 
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and numerical dispersion. Due to the theoretically incorrect form of Model III, the independence of 
the CFL number cannot be achieved, and its performance in terms of numerical dispersion is not 
satisfying. 

IV. BINARY FLOW TESTS 

A. Layered Poiseuille flow 
For immiscible binary flow between two parallel plates driven by a constant body 

force [17,23,38–40], the fluid flow is governed by the following equations 

 2
A Au Gμ ∇ = , and 2

B Bu Gμ ∇ = . (37) 

whereG is the driving body force, and Aμ and Bμ are the dynamic viscosities of the two fluids. An 

analytical solution can be derived by applying the non-slip wall boundary condition, and the 
continuous velocity and shear stress condition in the interfacial region [17,23], i.e., 

 ( ) ( )
0 0

0 0

0

A By y

A y A B y By y

A By a y a

u u

u u

u u

μ μ
= =

= =

= =−

⎧ =
⎪
⎪ ∂ = ∂⎨
⎪

= =⎪⎩

. (38) 

In our simulation, the liquid phase flows in the region 0 y a< ≤ and the gas phase flows in the 

region 0a y− ≤ < . The grid resolution is 128×128. We set the density pair 31 A B mu luρ ρ= = . The 

dynamic viscosity ratio A Bμ μ equals 10 in Case A, 100 in Case B, and 1,000 in Case C, respectively, 

and we have ( )0.005 A mu lu tsμ = ⋅ . The constant driving force is related to the central velocity, i.e.,

( )2
c A Bu Ga μ μ= + , and we have 0.0005 cu lu ts= . Velocity profiles are normalized by the central 

velocity and shown in FIG. 9. To be clear, the 1L -norm relative errors of numerical and analytical 

results [23], i.e., 1 100%num anau u− × , are shown in FIG. 10. 

In the two cases, velocity profiles agree well with the analytical solutions, and the relative errors 
are below a very low level, i.e., 0.8%, and much smaller in non-boundary and non-interface regions. 
Hence, the numerical model appears to work very well for high viscosity ratio cases. 
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(c) 

FIG. 9. Velocity profile of layered Poiseuille flow. (a) Case A: 10
A B

μ μ = ; (b) Case B: 10 0
A B

μ μ = ; (c) Case C:

1, 0 00
A B

μ μ = . 



 

 17 - 17 
 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8  Case A
 Case B
 Case C

R
el

at
iv

e 
Er

ro
r (

%
)

Y/a  

FIG. 10. Relative errors for layered Poiseuille flow. Case A: 10
A B

μ μ = ; Case B: 10 0
A B

μ μ = ; Case C:

1, 0 00
A B

μ μ = . 

Previously, a dynamic viscosity ratio up to 1,000 was also achieved by Ginzburg [39] using a 
modified collision operator for the Richard’s equation (for heterogeneous anisotropic aquifers), and 
Porter et al. [40], where the multi-component pseudopotential model was used. Since the algorithm, 
mesh resolution, and parameters adopted in different literatures are quite different, direct 
comparisons are hard to make. However, as far as we know, for most previous simulations 
concerning the layered Poiseuille flow, the calculated velocity profiles deviate from analytical ones 

at the interfacial region. Here our smaller 1L − norm relative errors of numerical and analytical results 

in FIG. 10 show the benefit of this approach. 
Based on the phase-field theory with a recovered CHE, Zu et al. [23] also conducted cases with

1,000A Bμ μ = , where the mixture dynamic viscosity is approximated by linearly interpolating the 

reciprocals of the dynamic viscosity of binary fluids. In our opinion, since the analytical velocity 
profile changes sharply across the interface, in order to avoid the limitation of diffusive interface, it 
is more reasonable to adopt sharp changing dynamic viscosity, as shown in Eq. 29. 

B. Rayleigh-Taylor instability 
Rayleigh-Taylor instability [23,24,31,37,41,42] is a type of flow instability that occurs when a 

heavy phase is on top of a light phase with initial perturbation in the interface, and the wave length of 

the perturbation is larger than a certain threshold value [41], i.e., ( )24 A BL gπ σ ρ ρ> − . Hereσ is 

the surface tension coefficient and g is the gravitational acceleration. In the computational domain of

[ ] [ ]0, 2 ,2L L L× − , the initial interface is located at ( )0 2 cos 2y L x Lδ π= + , where 0 .1Lδ = is the 

amplitude of the perturbation. In this problem, the Atwood number is introduced, which is defined as

( ) ( )A B A BAt ρ ρ ρ ρ= − + , and cases of 0.5At = and 0.98At = will be presented. The Reynolds 
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number is defined as Re AL gLρ μ= , where μ is the dynamic viscosity, and the Péclet number is 

defined as Pe L gL Mφ= . We set the reference length equal to 256 L lu= , and the reference time

16,000 T L gAt ts= = . In addition, the surface tension coefficient is 5 25 10 mu tsσ −= × and the 

interface width is 5 W lu= . 

FIG. 11 depicts five stages of the instability at 0.5At = , Re 3,000= , and 1,000Pe= , and the 

same flow regime can also be found in the work of Ding et al. [37], Li et al. [31] and Zu et al. [23]. 
In this case, vortices and breakups near the rolling-up tails of the interface can be observed directly. 
Dimensionless positions of the spike of the falling heavy fluid (phase A) and the bubble of the rising 
light phase (phase B) are recorded till 3.25t T= and shown in FIG. 12. It is clear that present results 
are in good agreement with the results of Ding et al. [37] and Li et al. [31], but show a slight 
deviation from the results of Zu et al. [23]. The interfacial patterns shown in FIG. 11 also agree well 
with those in [31]. 

During the simulation, the variations of relative maximum and minimum values of the order 
parameter are shown in FIG. 13, revealing low numerical dispersion even at the last stage when the 
value of the maximum order parameter increases rapidly. 

 
FIG. 11. Snapshots of simulation of Rayleigh-Taylor instability at 0.5At = , Re 3, 000= , and 1, 000Pe = . The time is 

normalized by T L gAt= . 
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(b) 

FIG. 12. Time evolution of the positions of (a) the bubble front and (b) the spike tip, and comparisons with 
numerical results of Ding et al. [37], Li et al. [31], and Zu et al.. [23]. 
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FIG. 13. Time evolution of relative maximum and minimum of the order parameter 

In general, numerical instability occurs easily in cases where high density ratio is applied. 
Previous researchers have shown that cases with both high density ratio and high Reynolds number 
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can hardly be achieved at the same time [23,24,43,44]. However, the reasons have not been drawn 
clearly yet. 

In practice, we believe that one key point is to eliminate excessive dispersion in the 
phase-tracking procedure. We have shown in Sec. III that the values of order parameter during 

simulations could be much larger than Aφ or smaller than Bφ , and this problem become worse in 

situations where a complex velocity field is given or large values of the Péclet number are specified. 
In addition, since the density is calculated linearly through the order parameter, coupling effects 
would also be transferred to the hydrodynamic equation. 

To eliminate the numerical dispersion, one method is to apply more discretization lattice vectors, 
e.g., the D2Q17 model [45], and adopt higher-order discretization schemes to calculate the normal 
vector [20,25], which causes low computational efficiency. The other method is to suppress the range 
by applying a cut-off technique to the calculation of order parameter, i.e., 

 ( )   , if  
  , if  

A A

B B

φ φ φ
φ

φ φ φ
>⎧

= ⎨ <⎩
x . (39) 

While applying the cut-off technique, mass conservation in the whole system cannot be ensured. 
In the work of Chiu et al. [13], a mass compensating method is introduced to solve this problem, in 
which density is redistributed during every time step. However, in different situations, the rate of 
mass loss or mass rise might be quite variable, and we choose to track it explicitly. Herein we 
directly apply the cut-off technique in Rayleigh-Taylor instability at 0.98At = , and hence

99A Bρ ρ = . 

Interface structures are shown in FIG. 14 for two cases of different values of Reynolds number, 

i.e., Re 3,000= and Re 600= . It is shown that the roll-up, induced by the secondary 

Kelvin-Helmholtz instability [19], does not appear at large Atwood number. During the simulations, 
the total mass change is recorded, as shown in FIG. 15. It is clear that in these two cases, although 
mass loss occurs, the relative rate is below 0.2% in the whole process. 

Currently very few studies of the Rayleigh-Taylor instability of immiscible fluids with high 
density ratio have been conducted, and similar situation at 0.999At = and Re 200= was investigated 
by Shao et al. [35], where higher-order FDM was adopted for the phase-field equation. The current 
model fails in this situation, however, through the results illustrated in FIG. 14 and FIG. 15, the 
current model reveals satisfying numerical stability when dealing with high density ratio problems, 
and achieves much larger values of the Reynolds number. In addition, the current model fails to 
simulate some important situations, such as the water-air system, where the density ratio is around 
800, and the dynamic viscosity ratio is around 58. Further work is still needed to solve problems 
concurrently involving high density ratio, high viscosity ratio, and high-Re conditions. 
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FIG. 14. Snapshots of simulation of Rayleigh-Taylor instability at: (a) 0.98At = , Re 3, 000= , and 600Pe = ; (b) 
0.98At = , Re 600= , and 600Pe = . 

0.0 0.5 1.0 1.5 2.0
0.9980

0.9985

0.9990

0.9995

1.0000

m
/m

0

t/T

 Re=3000, Pe=600
 Re=600,   Pe=600

 
FIG. 15. Time evolution of total mass when applying the cut-off technique to the order parameter at 0.98At = . 

V. SUMMARY 

In this article, we propose a phase-field-based Lattice Boltzmann model to track the interfaces 
of binary flow systems. Through the Chapman-Enskog analysis, the correct form of the conservative 
ACE is recovered. Since the conservative ACE involves a lower-order diffusion term compared with 
the CHE, better accuracy and lower numerical dispersion are expected. 

In the interface-tracking tests, our improved model shows satisfying performance when 
considering the effect of the CFL number and the Péclet number, the convergence rate, and 
numerical dispersion. In the binary flow tests, our model is coupled with the hydrodynamic equation 
developed by Liang et al. [24]. In the cases of layered Poiseuille flow, the numerical results of the 
velocity profiles agree well with analytical results for high viscosity ratio situations. And in the 
Rayleigh-Taylor instability simulations, both high density ratio and high Reynolds number are 
successfully simulated to illustrate the model’s capacity in dealing with complicated situations. 

To conclude, this article provides a simple and reliable solution for the phase-field modeling of 
binary flows. Moreover, extensions to other lattice models, e.g., the D2Q5 and D3Q7 models, are 
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straightforward. 
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APPENDIX A: Chapman-Enskog analysis 

In Eq. 18, the equilibrium function and source terms in moment space are listed as 

 ,2 , 2 , , , , ,0,0
Th eq

eq x x y yu u u uφ φ φ φ φ φ φ⎡ ⎤= = − − −⎣ ⎦m Mh , (A1) 

 2 2 2 20,0,0, , , , ,0,0
Th h

S s x s x s y s yc n c n c n c nθ θ θ θ⎡ ⎤= = − −⎣ ⎦m MS , and (A2) 

 0,0,0, , , , ,0,0
Th

R t x t x t y t yu u u uφ φ φ φ⎡ ⎤= = ∂ −∂ ∂ −∂⎣ ⎦m MR . (A3) 

Here the matrix M can be found in Ref. [17,24,35,43,44]. By multiplying Eq. 18 by matrix M , 
we have 

 ( ) ( ) ( ) ( ) ( ), , , 2h h h h h h h h
i eq S Rt t t t t tδ δ δ⎡ ⎤+ + − = − − + − +⎣ ⎦m x e m x Λ m x m I Λ m m . (A4) 

Applying the Taylor expansion to Eq. (A4) and using the Chapman-Enskog expansion

2
1 2t t tε ε∂ = ∂ + ∂ , 1ε∇ = ∇ , and ( ) ( ) ( )0 1 22ε ε= + +m m m m , where tε δ= , we have 

 ( ) ( )2ˆ ˆ ,
2 2

h h
h h h h h h

eq S R
t t

t
δ

δ
⎛ ⎞

⎡ ⎤+ = − − + − +⎜ ⎟⎣ ⎦
⎝ ⎠

Λ ΛDm D m m x m I m m , (A5) 

where ˆ
t= ∂ + ⋅ ∇D I E , and ( ) 1

0 1 8, , ,diag −= ⋅ ⋅E M e e e ML . 

Retaining terms to scale ( )2O ε in scales ( )0O ε , ( )1O ε , and ( )2O ε , Eq. (A5) yields 

 ( ) ( )00 : h h
eqO ε =m m , (A6a) 

 ( ) ( ) ( ) ( )( )0 1 11
1

ˆ: 
2

h h
h h hh

S RO
t

ε
δ

⎛ ⎞= − + − +⎜ ⎟
⎝ ⎠

Λ ΛD m m I m m , (A6b) 
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 ( ) ( ) ( ) ( )( ) ( ) ( )0 1 1 2 22
2 1

ˆ: 
2 2 2

h h h
h h h h hh

t S R R
tO

t
δε

δ
⎛ ⎞ ⎛ ⎞⎡ ⎤∂ + − + + = − + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠ ⎝ ⎠

Λ Λ Λm D I m m m m I m . (A6c) 

To deduce the corresponding equation, we write the separated equations for the conserved 

moment 0
hm in scales ( )0O ε , ( )1O ε , and ( )2O ε as 

 ( ) ( )00
0: hO mε φ= , (A7a) 

 ( )1
1 1: 0x

t
y

u
O

u
φ

ε φ
φ
⎛ ⎞

∂ + ∇ ⋅ =⎜ ⎟
⎝ ⎠

, and (A7b) 

 ( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )

1 2
3 3 3 12

2 1 11 2
5 15 5

1 2 1 2
: 0

2 1 21 2

hh h
s x t x

t h hh
s y t y

s m s c n utO
s c n us m

θ φδε φ
θ φ

⎡ ⎤ ⎡ ⎤− ⋅ − ⋅ + ∂
⎢ ⎥ ⎢ ⎥∂ + ∇ ⋅ + ∇ ⋅ =
⎢ ⎥ ⎢ ⎥− ⋅ + ∂− ⋅ ⎣ ⎦⎣ ⎦

. (A7c) 

The separated equations for the conserved moments 3
hm and 5

hm from Eq. (A6b) in scale ( )1O ε

are written as 

 ( ) ( ) ( )11 2 23 3
1 1 3 1: 1

2

h h
h

t x x s s x t x
s sO u c m c n u

t
ε φ φ θ φ

δ
⎛ ⎞

∂ + ∂ = − + − + ∂⎜ ⎟
⎝ ⎠

, and (A8a) 

 ( ) ( ) ( )11 2 23 5
1 1 5 1: 1

2

h h
h

t y y s s y t y
s sO u c m c n u

t
ε φ φ θ φ

δ
⎛ ⎞∂ + ∂ = − + − + ∂⎜ ⎟
⎝ ⎠

. (A8b) 

Now we substitute Eq. (A8a) and Eq. (A8b) into Eq. (A7c) and we can obtain 

 
( ) ( )
( ) ( )

2 2
3 1

2 1 2 2
5 1

1 2
0

1 2

h
x s s x

t h
y s s y

s c c n
t

s c c n

φ θ
φ δ

φ θ

⎡ ⎤− ⋅ −∂ +
⎢ ⎥∂ + ∇ ⋅ =
⎢ ⎥− ⋅ −∂ +⎣ ⎦

. (A9) 

For isotropic-diffusion systems, we have 3 5
h hs s= . Combining Eq. (A7b) and Eq. (A9) together 

gives the correct form of the conservative ACE, i.e., 

 ( ) ( )2
t Mφφ φ φ θ⎡ ⎤∂ +∇⋅ = ∇ −∇⋅⎣ ⎦u n , (A10) 

where ( ) 2
31 0.5h

sM s c tφ δ= − is the mobility. 

APPENDIX B: D3Q15 MODEL IN MOMENT SPACE 

In the D3Q15 model, the values of the weighing factors are 0 2 9w = , 1~6 1 9w = , and

7~14 1 72w = , and the corresponding lattice vectors are 



 

 24 - 24 
 

 
0 1 1 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

c
− − − − −⎡ ⎤

⎢ ⎥= − − − − −⎢ ⎥
− − − − −⎢ ⎥⎣ ⎦

e . (B1) 

Similar to the D2Q9 model, the equilibrium function and source terms in moment space for the 
D3Q15 model are listed as 

 , , , , 7 3, , 7 3, , 7 3,0,0,0,0,0,0
Th

eq x x y y z zu u u u u uφ φ φ φ φ φ φ φ φ⎡ ⎤= − − − −⎣ ⎦m , (B2) 

 2 2 2 2 2 20,0,0, , 7 3, , 7 3, , 7 3,0,0,0,0,0,0
Th

S s x s x s y s y s z s zc n c n c n c n c n c nφ φ φ φ φ φ⎡ ⎤= − − −⎣ ⎦m , and (B3) 

 0,0,0, , 7 3, , 7 3, , 7 3,0,0,0,0,0,0
Th

R t x t x t y t y t z t zu u u u u uφ φ φ φ φ φ⎡ ⎤= ∂ − ∂ ∂ − ∂ ∂ − ∂⎣ ⎦m . (B4) 

The transformation matrix M for the D3Q15 model, which is used to derive these terms, can be 
found in Ref. [43]. 
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