
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Computation of the lattice Green function for a dislocation
Anne Marie Z. Tan and Dallas R. Trinkle

Phys. Rev. E 94, 023308 — Published 11 August 2016
DOI: 10.1103/PhysRevE.94.023308

http://dx.doi.org/10.1103/PhysRevE.94.023308


Computation of the lattice Green function for a dislocation

Anne Marie Z. Tan and Dallas R. Trinkle∗

Department of Materials Science and Engineering,

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

(Dated: July 1, 2016)

Abstract

Modeling isolated dislocations is challenging due to their long-ranged strain fields. Flexible

boundary condition methods capture the correct long-range strain field of a defect by coupling the

defect core to an infinite harmonic bulk through the lattice Green function (LGF). To improve the

accuracy and efficiency of flexible boundary condition methods, we develop a numerical method

to compute the LGF specifically for a dislocation geometry; in contrast to previous methods,

where the LGF was computed for the perfect bulk as an approximation for the dislocation. Our

approach directly accounts for the topology of a dislocation, and the errors in the LGF computation

converge rapidly for edge dislocations in a simple cubic model system as well as in BCC Fe with an

empirical potential. When used within the flexible boundary condition approach, the dislocation

LGF relaxes dislocation core geometries in fewer iterations than when the perfect bulk LGF is

used as an approximation for the dislocation, making a flexible boundary condition approach more

efficient.
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I. INTRODUCTION

Defects such as point defects, dislocations, interfaces, and grain boundaries play key

roles in determining material properties [1] and knowledge of their geometries is important

to model them accurately. The far-field geometry of many defects can be well described

by anisotropic continuum elasticity theory [2, 3], but atomistic methods such as density

functional theory (DFT) are needed to accurately determine the geometry within the defect

core, where the elastic solution diverges. Modeling defects such as isolated dislocations is

challenging because their long-range strain fields are incompatible with periodic or fixed

boundary conditions. Some DFT-based methods that have been used to model disloca-

tion core structures are reviewed in [4]. One way to circumvent the issues associated with

modeling isolated dislocations is to compute periodic arrays of dislocation dipoles [5, 6] or

quadrupoles [7, 8]. Alternatively, isolated dislocations can be directly simulated using multi-

scale methods that capture the long-range strain field of the defect by coupling the quantum

mechanical core to a continuum.

Many different coupling approaches have been developed, for example, using finite ele-

ments [9, 10], classical potentials [11, 12], or flexible boundary conditions (FBC) which dis-

place atoms outside the defect core according to the lattice Green function (LGF)[13]. These

approaches are all based on the same concept of using a different Hamiltonian for atoms in

the dislocation core than for those outside the core. A more accurate but computationally

demanding method like DFT is used in the highly distorted dislocation core region, while

a faster but less accurate method which captures the far-field response of the dislocation is

used outside the core. However, there are a few key differences between the various coupling

approaches. The FBC and finite element approaches ensure that the surrounding region has

the same elastic properties as the core by deriving the force-constants required to compute

the LGF and the finite element constitutive equations from DFT [9, 14]. Coupling DFT

to a classical potential is trickier—available potentials may not have been fit to reproduce

the relevant DFT quantities (force constant matrix, lattice and elastic constants, and higher

derivatives), leading to an unphysical mismatch in material behavior across the coupling

interface which can introduce substantial errors in the simulation [12]. Another difference

is that in the classical potential and finite element approaches, the region described by the

classical potential or finite elements is finite and appropriate boundary conditions must be
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applied at the outer boundary of the simulation. In contrast, the LGF used in the FBC

method smoothly transitions into the continuum elastic Green function at large distances

[15, 16], effectively embedding the defect within an infinite bulk. In this work, we focus

on the FBC method, which has been applied with DFT to relax isolated screw and edge

dislocations [17–20].

The accuracy and efficiency of the FBC method depends on the accuracy of the LGF.

Analytic results for LGF of simple systems such as cubic lattices with nearest-neighbor

interactions are known [21, 22]. Recently, computation of the LGF for a perfect bulk crystal

by inversion of the force-constant matrix was demonstrated for Bravais lattices [23], and later

extended to crystals with multiple-atom basis [24] or even a planar interface[25]. However,

difficulties may arise when applying the LGF for the bulk as an approximation to a lattice

containing a line defect. The LGF for the perfect bulk crystal gives the response between

atoms connected in the perfect lattice topology; however, the topology of atoms in a distorted

lattice can deviate significantly from that of the perfect lattice. In such cases, the bulk LGF

may not capture the response between atoms in the distorted lattice accurately, which could

lead to slower convergence.

We develop a method to compute the LGF specifically for a dislocation geometry. Section

II reviews the harmonic lattice response functions—the force-constant matrix and LGF—

and the FBC method. We develop a numerical method to compute the LGF for a dislocation

geometry in Section III. In Sections IV and V, we apply our new method for computing the

LGF to edge dislocations in a simple cubic model system and BCC Fe, respectively. We show

that the dislocation LGF captures the response of atoms in the dislocation geometry more

accurately than the perfect bulk LGF, and when used within the FBC approach, relaxes

dislocation core geometries in fewer iterations than when the bulk LGF is used.

II. HARMONIC LATTICE RESPONSE

Atoms in a crystal displace in response to external or internal forces; conversely, displacing

atoms from their equilibrium positions generates forces. For small forces and displacements,

the atoms behave harmonically and the two quantities are linearly related. The infinite

harmonic crystal has been well studied in both classical and quantum theory [26, 27]. For

a crystal containing N atoms, the 3N × 3N force-constant matrix Dαβ( ~Ri, ~Rj) relates the
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α-component of the force on atom i located at position ~Ri, fα( ~Ri), to the β-components of

the displacements on atoms j at positions ~Rj, uβ( ~Rj), as

fα( ~Ri) = −
∑
j,β

Dαβ( ~Ri, ~Rj)uβ( ~Rj), (1)

where α and β are Cartesian directions, and Dαβ( ~Ri, ~Rj) is given by the second derivative

of the total potential energy U total,

Dαβ( ~Ri, ~Rj) =
∂2U total

∂uα( ~Ri) ∂uβ( ~Rj)
. (2)

A perfect crystal has translational symmetry, so the force-constant matrix depends only

on the difference of positions ~Rij between atoms i and j: Dαβ( ~Ri, ~Rj) = Dαβ( ~Ri − ~Rj) =

Dαβ( ~Rij). In addition, Dαβ( ~Rij) = Dβα( ~Rji) = Dβα( ~Rij) due to independence of differ-

entiation order and inversion symmetry of Bravais lattices. The lattice Green function

Gαβ( ~Ri, ~Rj) relates the displacement uα( ~Ri) on atom i located at position ~Ri to the forces

fβ( ~Rj) on atoms j at positions ~Rj as

uα( ~Ri) = −
∑
j,β

Gαβ( ~Ri, ~Rj)fβ( ~Rj), (3)

The LGF obeys the same symmetries as the force-constant matrix: Gαβ( ~Ri, ~Rj) = Gαβ( ~Rij) =

Gβα( ~Rji) = Gβα( ~Rij), with the last equality only being valid for Bravais lattices. As

|Rij| → ∞, the LGF approaches the elastic Green function (EGF) from continuum elastic-

ity [21–24]. The LGF and force-constant matrix are inverses of each other,∑
k,γ

Gαγ( ~Ri, ~Rk)Dγβ( ~Rk, ~Rj) = δijδαβ, (4)

where δ is the Kronecker delta. By Newton’s third law, no forces are generated under a

uniform translation of the entire system, so the force-constant matrix obeys the sum rule∑
~Rj
D( ~Ri, ~Rj) = 0, and is a singular matrix. Hence, the LGF and force-constant matrix

are pseudoinverses of each other.

The FBC method couples atomistic relaxation within the dislocation core with LGF

relaxation outside the core in order to efficiently relax isolated defect geometries. Figure

1 shows the division of the area around a dislocation into the different regions required

for applying FBC (regions 1, 2 and 3 only) as well as for computing the LGF (all regions

shown). Region 1 contains atoms very close to the dislocation core whose interactions are
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FIG. 1. (Color online) Schematic showing the system setup used in the flexible boundary condition

(FBC) approach (regions 1–3 only), as well as to calculate the lattice Green function (LGF) (all

regions shown). Region 1 (white) contains the highly distorted dislocation core (indicated by the

⊥) which will be relaxed by atomistic methods. Region 2 (blue) contains atoms which will have

forces due to the displacements in region 1. Regions 1, 2 and 3 (red) contain the atoms which

will be displaced according to the LGF in the FBC approach. The buffer region (yellow) and the

far-field boundary region (green) are not required for the implementation of FBC, but are used in

our computation of the LGF. Atoms within the far-field boundary region are far away from the

core and are displaced according to the elastic Green function (EGF). The buffer region of radius R

allows for the LGF to approach the EGF in the far-field. The regions are defined in the dislocation

coordinate system, where ~t is the dislocation threading direction, and ~m and ~n are perpendicular

vectors in the plane normal to ~t.

nonlinear due to large lattice distortions, which we relax atomistically. Region 2 includes all

atoms on which a force may be exerted by any atom in region 1. Region 3 contains atoms

which might experience a force from atoms in region 2. Therefore, the thickness of regions

2 and 3 should each be at least equal to the range of the interactions between atoms in the

system. The FBC approach consists of two steps: in the first step, we relax atoms in the

defect core (region 1) using conjugate gradient with an atomistic method such as classical

potentials or density functional theory, while holding the atoms in regions 2 and 3 fixed.

Since later steps will disturb the atoms in region 1, we do not fully relax region 1. Instead,

only a small number of conjugate gradient step are performed during each core relaxation,

which makes early iterations of this step more efficient while still ensuring accuracy in the

final iteration since the final relaxation should only require small adjustments. Displacing
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atoms in region 1 generates forces on atoms in region 2, which we relax in the LGF update

step by displacing atoms in regions 1, 2 and 3 according to the LGF. This in turn builds up

forces in region 1, so we alternate between these two steps until all forces in regions 1 and

2 are smaller than a defined tolerance.

In addition to the three regions discussed above, our method for computing the LGF

requires defining two additional regions around the dislocation—the buffer region and the

far-field boundary. The far-field boundary contains atoms far away from the core whose

displacements we approximate using the bulk EGF. Strictly speaking, this assumption is

only valid for perfect bulk crystals; when defects are present, the long-range behavior of the

defect LGF is not necessarily given by the bulk EGF [28, 29]. However, for the systems that

we have considered, we find that the errors due to this approximation are sufficiently small

to consider this approximation reasonable (c.f., Figs. 5 and 9). Like regions 2 and 3, the

thickness of the far-field boundary is determined by the range of the interactions between

atoms, so that all atoms whose displacements could generate forces in the buffer region are

fully contained within our system setup. The buffer region contains the remaining atoms

between region 3 and the far-field boundary and its size R can be varied; increasing R pushes

the far-field boundary further away from the dislocation core, making the approximation of

the far-field displacements more accurate.

III. METHODS FOR COMPUTING THE LATTICE GREEN FUNCTION

A. Computing the LGF for the dislocation geometry including region 1

The FBC approach described in the previous section, requires the computation of the LGF

for displacements in regions 1, 2 and 3 due to forces in region 2. We start by partitioning

the force-constant matrix and LGF as follows:

D =

 Dii Dio

Doi Doo

 , G =

 Gii Gio

Goi Goo

 , (5)

where the superscripts i and o refer to atoms on the “inside”, i.e. regions 1, 2, 3 and buffer,

and atoms on the “outside”, i.e. far-field boundary region, respectively. For example,

Dio is the block of the force-constant matrix that gives forces on “inside” atoms due to

displacements on “outside” atoms. Since D and G are the pseudoinverse of each other, we
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have

DiiGii +DioGoi = 1. (6)

We approximate Dii and Dio for the dislocation geometry using a few different approaches

which we discuss in the next paragraph. We use the EGF (GE) to approximate Goi between

atoms in the far-field and region 2. We then solve for Gii according to

Gii = (Dii)−1(1−DioGE). (7)

We compute each column of Gii numerically by first applying a unit force f on an atom

in region 2 and determining the far-field displacements ufar-field = −GEf due to that force.

We then evaluate the forces on atoms in the buffer region fbuffer = −Dioufar-field = DioGEf

generated by the far-field displacements, and use conjugate gradient to solve for the dis-

placement field corresponding to the effective forces in the system, f eff = (1 − DioGE)f .

This gives us the LGF due to the initial applied force. By systematically looping through

every atom in region 2 in this way, we can compute the portion of the Gii matrix that gives

displacements in regions 1, 2 and 3 due to forces in region 2. As we treat all interactions

harmonically, this approach is computationally efficient and the only approximations are the

harmonic interaction, and the use of the elastic Green function for the far-field.

We consider three different approaches to estimate D for the dislocation geometry. Unlike

the LGF, the force-constants are short-range, and so each atom only interacts with its local

environment, which can be bulk-like even close to a dislocation. Therefore, we can make

a simple approximation for the force-constants between a pair of atoms i and j in the

dislocation geometry by using the force-constants from the closest equivalent pair of atoms

i′ and j′ in the bulk,

Ddisl,bulk-like( ~Ri, ~Rj) = Dbulk( ~Ri′ , ~Rj′). (8)

We can improve on this approximation by considering the effects of local strains in the

dislocation geometry:

Ddisl,str( ~Ri, ~Rj) = Ddisl,bulk-like( ~Ri, ~Rj)

+
∑
α,β

ε̄αβ( ~Ri, ~Rj) ·
∂D( ~Ri, ~Rj)

∂εαβ
, (9)

where α and β are Cartesian directions, ε̄( ~Ri, ~Rj) is the average of the local strains at atoms

i and j, and ∂D/∂εαβ is the appropriate strain-derivative of the force-constants. We can
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also account for local rotations in the dislocation geometry by rotating D between the pair

of atoms,

Ddisl,str+rot( ~Ri, ~Rj) =

θ̄( ~Ri, ~Rj) ·Ddisl,str( ~Ri, ~Rj) · θ̄T( ~Ri, ~Rj), (10)

where θ̄( ~Ri, ~Rj) is the average of the local rotation around atoms i and j.

m [100]

n
 [0

11
]

bulk-like FCs

m [100]

strained FCs

m [100]

strained+rotated FCs

0.0 0.6 (eV/ 2 )

FIG. 2. Errors in the onsite force-constants around a 〈100〉{011} edge dislocation in BCC iron,

with respect to the directly computed dislocation force-constants, computed using the different

approximations. The shading on each atom indicates the root-mean-square error in that atom’s

onsite force-constants. We evaluate these errors for atoms in region 2 and region 3 but not for region

1, since we do not expect the harmonic approximation to be valid that close to the dislocation core.

Instead, the region 1 atoms are filled in with grey. The error in the bulk-like force-constants (left)

has a long range component that decays as 1/R. This component of the error is eliminated when

we account for the local strains and rotations. The strained (center) and strained and rotated

(right) approximations give very similar force-constants.

Figure 2 compares the accuracy of the different approximations for force-constants around

a 〈100〉{011} edge dislocation in BCC iron. In order to quantify the errors in each of the

approximations described above, we compute the full dislocation force-constants by displac-

ing each atom in the dislocation geometry one at a time and evaluating the resulting forces

atomistically. The force-constant matrix obtained from this direct calculation accounts for

all geometry effects and therefore gives the most accurate harmonic lattice response of atoms
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around the dislocation. However, computing the full dislocation force-constants is compu-

tationally expensive, and we only evaluate them here in order to benchmark the accuracy of

the various approximate force-constant matrices. The leftmost plot in Fig. 2 shows that the

error in the bulk-like force-constants has a long range component that decays like 1/R. The

center and rightmost plots in the figure show that this component of the error is eliminated

when local strains and rotations—which also have 1/R behavior around a dislocation—are

included. The errors in the strained, and strained and rotated approximations are similar,

indicating that the effect of local rotations on the force-constants is small. Even after ac-

counting for strain and rotation effects, there are still relatively large errors on atoms close

to the core, due to higher-order terms such as anharmonicity that are not included in our

simple approximations.

B. Computing the LGF for the dislocation geometry after disconnecting region 1

We also compute the LGF for the case where region 1 is disconnected from the rest of

the system, which we use within a modified FBC approach. Similar to the FBC approach

described previously, this involves alternating between two steps: first, we relax atoms in

the defect core (region 1) using an atomistic method, which generates forces on atoms in

region 2. In the LGF update step, we relax these forces by displacing only atoms in regions

2 and 3 according to the LGF, in contrast to the previous case in which we displace all

atoms in region 1, 2 and 3. As before, we alternate between these two steps until all forces

in regions 1 and 2 are reduced below a chosen tolerance. This approach requires the LGF for

displacements in regions 2 and 3 due to forces in region 2, while constraining atoms in region

1 to have no displacements in response to forces in region 2. Therefore, the system of interest

becomes one in which region 1 is disconnected from region 2 but not entirely removed. The

force-constants between atoms in region 1 and atoms in region 2 in the disconnected system

are zero, while the onsite terms are the same as before, resulting in the sum rule being

broken, i.e.
∑

~Rj
D( ~Ri, ~Rj) 6= 0.

We compute the LGF for the disconnected geometry in a similar manner as was previously

used to compute the correction to the LGF due to the introduction of point defects [21, 30].

The LGF for the disconnected system is related to the LGF of the system including region
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1 according to

G = G0 + δG = (D0 + δD)−1 = D−1, (11)

where G0 and D0 are the LGF and force-constant matrix for the full system (computed

using the method discussed in the previous section), and δG and δD are the corrections

to the LGF and force-constant matrix due to disconnecting region 1. The quantity to be

computed is δG, while δD is known and is related to the breaking of bonds between atoms

in region 1 and region 2. Rewriting Eq. (11) in the form of a Dyson equation,

G = G0(1− δDG), (12)

and making use of the fact that δD is non-zero only for a small and localized group of atoms

near the boundary between regions 1 and 2, we compute δG as

δG = −(1 +G0δD)−1G0δDG0. (13)

IV. APPLICATION: SIMPLE CUBIC (SC) MODEL SYSTEM

In this section, we test our methods for computing the LGF by applying them to a simple

cubic (SC) model system containing an edge dislocation. We verify that the LGF computed

using our method specifically for the edge dislocation geometry captures the response of

atoms around the dislocation accurately. We show that using this dislocation LGF leads to

faster relaxation when used within the FBC approach, compared to using the bulk LGF.

We also study how the errors in the LGF computation converge with system size.

We set up a SC system with unit lattice spacing and atoms connected by first- and second-

nearest-neighbor radial springs, both with spring constant of 1. The system is elastically

isotropic, with elastic constants C11 = 3, C12 = 1 and 2C44 = C11−C12 = 1, or Poisson ratio

of 0.25 and shear modulus of 1. For this simple model system, we model the interactions

in region 1 using a version of the harmonic potential which modifies the spring constants

based on the orientation and length of the springs. To account for the spring orientation,

we rotate the force-constant matrix between each pair of first- and second-nearest-neighbor

atoms based on their orientation in the dislocation geometry relative to what they would be

in the ideal bulk. We introduce a scaling factor to modify the strength of the spring constants

based on the distance between each pair of atoms. We construct the scaling factor such that
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the strength of the first-nearest-neighbor springs decay gradually for distances greater than

the equilibrium first-nearest-neighbor distance, 1.0, becoming zero for distances greater than
√

2, the equilibrium second-nearest-neighbor distance. Similarly, we scale the strength of

the second-nearest-neighbor springs so that they decay gradually for distances either less

than or greater than
√

2, becoming zero for distances less than 1.0 or greater than 2.0. We

generate the initial edge dislocation geometry using the elastic displacement field for an edge

dislocation in an isotropic medium [3]. The system setup contains 14 atoms in region 1, 66

atoms in region 2, and 121 atoms in region 3. For this system, we approximate the edge

dislocation force-constant matrix using the bulk-like approximation described in Eq. (8).

Figure 3 shows that the errors in displacements due to applying the bulk LGF to a

SC system containing an edge dislocation are greatly reduced by using the LGF computed

specifically for the appropriate dislocation geometry. To test the accuracy of the displace-

ments generated by each LGF, we construct a test case for which we know the correct

displacements. We apply a unit displacement on an atom in region 2, evaluate the forces

due to this displacement, then use the LGF computed for the bulk (bulk LGF) and the

LGF computed for the edge dislocation (edge LGF) to generate displacements from these

forces. As the forces are generated from a displacement, we expect them to generate the

same displacement in response. Therefore, the deviation between the initial displacement

and the displacements computed by each LGF is a measure of the accuracy of each LGF

when applied to the edge dislocation geometry. As discussed briefly in the introduction, we

expect the bulk LGF to be a particularly poor approximation between atoms on opposite

sides of an edge dislocation where the topology deviates the most from bulk. We observe

this in the top figure of Fig. 3, where the largest errors are located on the opposite side (right

side) of the dislocation from the forces due to the initial displacement (left side). Using the

LGF computed specifically for the edge dislocation geometry eliminates this issue, leading

to a more even distribution of errors and reducing the largest errors by more than 3 orders

of magnitude compared to when the bulk LGF is used. The remaining errors are due to

using the EGF to approximate the far-field displacements when computing the edge LGF,

and they scale with system size R as 1/R2. The magnitude and convergence behavior of

these errors are in agreement with what we observe in Fig. 5. The far-field errors in the

computed edge LGF are an order of magnitude larger than that for the bulk LGF because

the presence of the edge dislocation causes heterogeneity in the elastic constants that is not
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FIG. 3. Error in the displacements generated by the bulk LGF (top) and the edge LGF (bottom)

for atoms in a SC edge dislocation geometry. We compute the displacements due to the set of forces

that are generated by applying a small displacement in the [100] direction on the atom indicated

by the cross. Both the bulk LGF and the edge LGF used to compute the displacements were

calculated using system size R = 60. The figures show the error in the [100] and [010] directions;

this SC edge dislocation has threading vector ~t = [001], so the system is effectively 2-dimensional.

In the top figure (using the bulk LGF), 19 atoms which are localized at the opposite side of the

edge dislocation from the forces have large errors > 5.0 × 10−3, while the rest of the atoms have

errors < 10−5. The errors in the bottom figure (using the edge LGF) are all < 1.5× 10−5. While

the figure plots the errors for a specific test case, we have applied test displacements on other atoms

as well and the errors are of similar magnitude to those shown here.

accounted for by the EGF used to evaluate the far-field response in both cases.

Figure 4 compares the FBC relaxation of the SC edge dislocation using different LGF,

and shows that the edge LGF leads to the fastest convergence to the relaxed geometry.

When we displace atoms in regions 1, 2 and 3 during the LGF update step, the edge LGF

12



0 2 4 6 8 10
# relaxation cycles

10-10

10-8

10-6

10-4

10-2

100

m
ax

. f
or

ce
 in

 1
+2

SC bulk, update 2+3
SC bulk, update 1+2+3
SC edge, update 2+3
SC edge, update 1+2+3
SC disconn. edge, update 2+3

FIG. 4. Comparison of the relaxation of the SC edge dislocation geometry using different LGF.

All the LGF used during the relaxations were calculated using system size R = 60. Relaxing the

edge dislocation with the bulk LGF (red) and the edge LGF (blue), the forces in region 1 and

2 decrease and the geometries converge to the relaxed geometry, with the edge LGF converging

faster. Including region 1 in the LGF update step (solid lines) leads to faster convergence than

when region 1 is fixed (dotted lines). When relaxing with the disconnected edge LGF (brown), the

forces in regions 1 and 2 increase and the geometry does not converge due to the incompatibility

in applying the far-field bulk elastic response to the disconnected system.

results in faster convergence to the relaxed geometry as it is able to capture the response of

atoms in the dislocation geometry more accurately than the bulk LGF. When we displace

only regions 2 and 3 during the LGF update step, the geometries converge slower than when

we displace all 3 regions. By fixing the atoms in region 1 and not displacing them during

this step, the reduction of forces in region 2 is less effective, leading to the slower overall

force convergence. While the relaxations carried out using the bulk and edge LGF converge,

the relaxation using the LGF for the edge dislocation geometry with region 1 disconnected

(“disconnected edge LGF”) does not. We believe that the disconnected edge LGF does not

work well because the far-field response of bulk is not compatible with the disconnected

system which breaks the sum rule. Our approach for determining the correction to the LGF
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only accounts for the local changes in the force-constants without considering the changes

in the far-field response due to disconnecting region 1, resulting in the disconnected edge

LGF not being computed accurately.

FIG. 5. Convergence behavior of the errors in the computed G (top) and the relaxed edge dislo-

cation geometry (bottom) for the SC model system, with respect to system size R. In each figure,

the solid line is the best-fit line through the data points (filled circles). (Top) The vertical axis is

the deviation of G(R = 20, 25, 30, 40, 50, 60) from G(R → ∞). The figure plots the convergence

of one specific entry of G; we found that other entries of G show similar convergence behavior as

well. (Bottom) The vertical axis is the maximum difference between the geometries obtained from

relaxation using G(R = 20, 25, 30, 40, 50) compared to that obtained from using G(R = 60). Both

the errors in the computed G and the relaxed edge dislocation geometry are small and converge as

1/R2.

Figure 5 shows that the errors in both the computed LGF and the relaxed SC edge

dislocation geometries converge as 1/R2, where R is the radius of the system up to the buffer

region. Our method for computing the LGF involves approximating the displacements of
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atoms at the far-field using the EGF, an approximation that gets better for large R. We

compute the LGF using different system sizes R—while keeping the size of regions 1, 2

and 3 fixed—and extrapolate the data to estimate the LGF as R → ∞. The errors in

the LGF due to the far-field approximation are small (on the order of 10−5), controllable,

and converge rapidly as 1/R2, which suggests that the approximation we used in the far-

field is appropriate for this system. We also investigate the effect of these errors on the

accuracy of the relaxed geometries by comparing the geometries relaxed with FBC using

LGFs computed with R = 20, 25, 30, 40, 50 to that obtained from FBC relaxation using the

LGF computed with R = 60. We quantify the difference in the geometry around each atom

by computing the root-mean-square difference between the vectors from each atom to its

neighbors in the different geometries, and plot the maximum value of these local geometry

differences as measure of the overall difference in geometry. The differences in the relaxed

geometries are also small (on the order of 10−6) and converge rapidly as 1/R2.

V. APPLICATION: BCC IRON

In this section, we apply our new method for computing the LGF to the 〈100〉{011} edge

dislocation geometry in BCC Fe. As in the SC case, we show that the LGF computed using

our method specifically for this edge dislocation geometry captures the response of atoms

around the dislocation more accurately than the bulk LGF, leading to faster relaxation when

used within the FBC approach. We also study how using different approaches to estimate the

force-constants around the dislocation affects the computed LGF and relaxation behavior.

Finally, we verify that the errors in the LGF computation converge rapidly with system size.

For computational efficiency during testing, we treat the atoms in the dislocation core

region using a classical potential. We use the lammps package [31] with the Mendelev em-

bedded atom method potential for Fe [32] to evaluate the forces and perform the relaxations,

and the program phon [33] to compute the force-constants. For this potential, the lattice

constant is a0 = 2.8553 Å and the elastic constants are C11 = 243.4 GPa, C12 = 145.0 GPa

and C44 = 116.0 GPa. The system setup contains 84 atoms in region 1, 312 atoms in region

2, and 466 atoms in region 3.

In order to obtain an accurate relaxed geometry using the FBC approach, we must ensure

that forces in region 3 of the initial geometry are small. We generate the initial edge dislo-
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cation geometry using the elastic displacement field for an edge dislocation in an anisotropic

medium [3]. If we generate the initial geometry by simply evaluating the displacements

based on the undislocated atom coordinates (i.e. at perfect lattice positions), this results in

localized forces on the order of 0.1 eV/Å in region 3 that decay slowly as we move away from

the dislocation core. This is undesirable because the FBC approach only relaxes forces in

regions 1 and 2, so large forces in region 3 at the end of the relaxation would lead to an inac-

curate final geometry. To generate a better initial geometry, we evaluate the displacements

based on the final displaced atom coordinates. We do this by iterating the calculation of

the displacements until the displacements of each atom from their perfect lattice positions

are self-consistent with those given by the anisotropic elastic solution evaluated at the final

displaced positions. Sinclair et al. discussed the importance of using this approach to set

up the initial geometry in their original paper on FBC [13].

Figure 6 shows that the LGF computed specifically for the edge dislocation geometry

gives more accurate displacements in response to forces around the dislocation than the

bulk LGF. Unless otherwise specified, we refer to the edge LGF computed using the bulk-

like approximation for the force-constants (Eq. (8)). We carry out the same tests as in

the SC case to determine the error in the displacements generated by each LGF when it

is applied to the edge dislocation geometry. However, unlike Fig. 3, Fig. 6 summarizes the

results from applying the test displacement on every atom in region 2 that does not generate

forces in region 3 or beyond. For each of these atoms outlined in black, the intensity of the

shading indicates the maximum error in the displacements computed in response to a set

of forces that were generated by applying an initial test displacement on that atom. For

the purpose of this test, we evaluate all the forces and displacements—even those in region

1—using the force-constant matrix and LGF, respectively. Therefore, the responses in this

harmonic approximate BCC iron system are linear and the errors in the displacements are

proportional to the initial displacement. As in the SC case, we find that using the edge LGF

instead of the bulk LGF around the edge dislocation geometry reduces the maximum errors

by three orders of magnitude, which shows that the edge LGF is better able to capture the

response of atoms in the dislocation geometry. Again, the small errors that remain are due

to the far-field approximation, and scale with the system size R as 1/R2.

We use the bulk and edge LGF within the FBC approach to relax a 〈100〉{011} edge

dislocation geometry in BCC Fe, and compare these relaxed geometries against that obtained
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FIG. 6. Maximum error in the displacements generated by the bulk LGF (top) and the edge LGF

(bottom) for atoms in a BCC iron 〈100〉{011} edge dislocation geometry. We only apply initial

displacements on those atoms which generate no forces in region 3 or beyond (atoms outlined

in black). For each of these atoms, the intensity of the shading indicates the maximum error

in the displacements computed in response to a set of forces that were originally generated from

applying a displacement u0 in the [100] direction on that atom. The errors in the displacements are

proportional to the initial displacement u0 as we carry out this test in a “harmonic approximate

BCC iron” system. Both the bulk and edge LGF were calculated using system size R = 50a0, and

the edge LGF was computed using the bulk-like approximation for force-constants. The atoms

outlined in grey provide context for the location of the atoms of interest within the system; atoms

in region 1 are filled in with grey while the unfilled/white atoms are other atoms in region 2. The

errors in the top figure (using the bulk LGF) are ≈ 5.0× 10−2u0 , while the errors in the bottom

figure (using the edge LGF) are more than 3 orders of magnitude smaller, ≈ 2.5× 10−5u0.
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from relaxation with fixed boundaries. We use a similar procedure as we used to relax the

edge dislocation in the SC system, except this time we perform the conjugate gradient

relaxations of region 1 using LAMMPS. We compute the fully relaxed geometry by carrying

out a fully atomistic relaxation of the same edge dislocation geometry using fixed boundary

conditions, which requires a much larger simulation box containing almost 100,000 atoms.

The geometries we obtain from the FBC relaxations using less than 1000 atoms agree well

with this fully relaxed geometry, with the difference in atomic positions being on the order

of 10−3 Å. The accuracy of the geometries relaxed with FBC is limited by forces on the order

of 10−3 eV/Å that remain in region 3 at the end of the relaxation, as the FBC approach

does not relax forces in region 3. This effectively sets a practical limit for the relaxation of

forces in regions 1 and 2 to ≈ 10−3 eV/Å as well.
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FIG. 7. Comparison of the relaxation of the BCC Fe edge dislocation geometry using different

LGF. Both the bulk and edge LGF used during the relaxations were calculated using system size

R = 50a0, and the edge LGF was computed using the bulk-like approximation for force-constants.

When we include region 1 in the LGF relaxation step (solid lines), the forces in regions 1 and 2

decrease and the geometries converge to the relaxed geometry, with the edge LGF (blue) resulting

in faster convergence than the bulk LGF (red). Excluding region 1 in the LGF update step (dotted

lines) leads to a failure to converge.
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Figure 7 compares the FBC relaxation of the BCC Fe edge dislocation using the bulk and

edge LGF, and shows that using the edge LGF to displace atoms in regions 1, 2 and 3 during

the LGF update step leads to fastest convergence to the relaxed geometry. When the atoms

in regions 1 are fixed during the LGF update step, the relaxations do not converge or do so

very slowly. Therefore, even though the LGF may not give accurate displacements for atoms

close to the dislocation core, displacing atoms in region 1 according to the LGF in response

to forces in region 2 is still more effective than not displacing them at all during this step of

the relaxation. When we use either the bulk or the edge LGF to displace atoms in regions

1, 2 and 3 during the LGF update step, the relaxations converge. Both relaxations initially

proceed at a similar rate until the forces in regions 1 and 2 are ≈ 10−5 eV/Å, after which

they start to deviate and the relaxation with the edge LGF performs better. For practical

purposes the FBC relaxation is typically only carried out until the forces in regions 1 and

2 are ≈ 10−3 eV/Å, and the bulk and edge LGF both seem to perform similarly up to this

point in the relaxation. To better understand the reason for this, we take a more detailed

look at the forces in regions 1 and 2 during the first few relaxation cycles.

Figure 8 compares the evolution of forces in regions 1 and 2 during the initial stages of

relaxing the BCC Fe edge dislocation geometry, which illustrates how the choice of LGF

affects the LGF update steps as well as the overall relaxation behavior. In addition to the

bulk LGF and the bulk-like edge LGF, we also compare the behaviors of the edge LGF

computed from the strained, strained and rotated, and full dislocation force-constants. To

compare the effectiveness of the different LGF at reducing forces during each LGF update,

we track the forces after each conjugate gradient (CG) relaxation of the core and after every

LGF update. As expected for FBC relaxations, after each CG relaxation, forces in region

1 decrease while forces build up in region 2, and after each LGF update, forces in region 2

decrease but those in region 1 increase slightly. The LGF computed using more accurate

force-constants are more effective at relaxing the forces in region 2 during each LGF update,

but these effects do not carry over to subsequent steps in the relaxation. After the next CG

relaxation, the forces in region 2 increase in all cases to about the same level again, indicating

that these forces are mostly due to the rearrangement of atoms in region 1 during the CG

relaxation rather than the previous LGF update. We find that all the harmonic approaches

are similarly limited during the first few relaxation cycles when forces and displacements

are large enough that anharmonic effects are likely to be significant. For this BCC Fe edge
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FIG. 8. Comparison of the root-mean-square forces in region 1 and region 2 during the first 5

relaxation cycles, when we relax the BCC Fe edge dislocation geometry using different LGF. In ad-

dition to the bulk LGF (BCC bulk; red) and edge LGF computed using the bulk-like force-constants

(BCC edge, bulk-like FCs; blue), we also consider the edge LGF where we account for local strain

(BCC edge, strained FCs; cyan) and local strain and rotation (BCC edge, strained+rotated FCs;

orange), as well as the edge LGF computed using the full dislocation force-constant matrix (BCC

edge, full disl. FCs; grey). Each relaxation cycle consists of two steps—relaxing atoms in the

region 1 by CG, followed by displacing atoms in regions 1, 2 and 3 according to the LGF. During

the CG relaxation, forces in region 1 (dashed lines) decrease while those in region 2 (solid lines)

increase. This trend is reversed during the LGF update step. The LGF computed using more

accurate force-constants are slightly more effective at relaxing the forces in region 2 after each

LGF update step. However, these differences in behavior during each LGF update do not carry

over to subsequent steps in the relaxation.
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dislocation, the effect of topology only becomes evident later on in the relaxation, while the

different approximations for the force-constants have an even smaller effect on the computed

LGF and overall relaxation behavior. For more complicated geometries that deviate more

greatly from bulk—such as dislocations in multiple atom basis crystals which have larger

Burgers vector—the topology effect could become significant earlier on in the relaxation

than we observe in this particular system. If that is the case, we expect that using the

edge LGF would lead to more noticeable improvement in the relaxation even in the first few

relaxation cycles.

Figure 9 shows that the errors in both the computed LGF and the relaxed BCC Fe edge

dislocation geometries converge as 1/R2. As we did for the SC case, we compute the LGF

using different system sizes R and extrapolate the data to estimate the LGF as R→∞. The

figures plot the convergence of the edge LGF computed using the bulk-like approximation for

the force-constants; we also find similar behavior for the edge LGF computed using the other

methods for approximating the force-constants. The errors in the LGF are small (on the

order of 10−4Å
2
/eV), controllable, and converge rapidly as 1/R2, which again suggests that

the approximation we used in the far-field is appropriate. Again, we also compare the edge

dislocation geometries obtained after relaxation with FBC using edge LGF computed with

different R. We calculate the differences in the relaxed geometries obtained from relaxations

using LGFs computed with R = 15a0, 20a0, 30a0, 40a0 compared to that obtained from using

the LGF computed with R = 50a0. The differences in the relaxed geometries are small (on

the order of 10−5 Å) and converge rapidly as 1/R2. These results show that the LGF can

be computed accurately using small system sizes and with low computational cost.

VI. CONCLUSION

We present a numerical method for computing the LGF specifically for a dislocation

geometry, and show that the efficiency of FBC approaches can potentially be improved by

using the LGF computed with this method. We have applied our method for computing

the dislocation LGF to two systems—a simple cubic model system and BCC iron—each

containing an edge dislocation. The errors in the LGF computation converge rapidly with

system size in both cases. By directly accounting for the topology of the dislocation, the

dislocation LGF is able to capture the response of atoms in the dislocation geometry more
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FIG. 9. Convergence behavior of the errors in the computed G (top) and the relaxed edge dislo-

cation geometry (bottom) for the BCC Fe system, with respect to system size R. In each figure,

the solid line is the best-fit line through the data points (filled circles). (Top) The vertical axis

is the deviation of G(R = 15a0, 20a0, 30a0, 40a0, 50a0) from G(R → ∞). The figure plots the

convergence of one specific entry of G; we found that other entries of G show similar convergence

behavior as well. (Bottom) The vertical axis is the maximum difference between the geometries

obtained from relaxation using G(R = 15a0, 20a0, 30a0, 40a0) compared to that obtained from us-

ing G(R = 50a0). Both the errors in the computed G and the relaxed edge dislocation geometry

are small and demonstrate close to 1/R2 convergence behavior.

accurately than the perfect bulk LGF. When used within the flexible boundary condition

approach, the dislocation LGF relaxes dislocation core geometries in fewer iterations than

when the bulk LGF is used. We expect to see even greater improvement in the efficiency of

FBC relaxations if the dislocation LGF is used to relax more complicated geometries, such as

dislocations in multiple atom basis crystals which have larger Burgers vector or dislocations

in grain boundaries. Reducing the number of iterations needed to relax dislocation core
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geometries by using the dislocation LGF would greatly benefit density functional theory

based FBC approaches which are computationally expensive.
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