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Abstract 

We present a systematic study on the effects of tangential-type boundary condition 

discontinuities on the accuracy of the lattice Boltzmann equation (LBE) method for Dirichlet and 

Neumann problems in heat and mass transfer modeling. The second-order accurate boundary 

condition treatments for continuous Dirichlet and Neumann problems are directly implemented 

for the corresponding discontinuous boundary conditions. Results from three numerical tests, 

including both straight and curved boundaries, are presented to show the accuracy and order of 

convergence of the LBE computations. Detailed error assessments are conducted for the interior 

temperature or concentration (denoted as a scalar ϕ) and the interior derivatives of ϕ for both 

types of boundary conditions, for the boundary flux in the Dirichlet problem, and for the 

boundary ϕ values in the Neumann problem. When the discontinuity point on the straight 

boundary is placed at the center of the unit lattice in the Dirichlet problem, it yields only first-

order accuracy for the interior distribution of ϕ, first-order accuracy for the boundary flux, and 

zeroth-order accuracy for the interior derivatives compared with the second-order accuracy of all 

quantities of interest for continuous boundary conditions. On the lattice scale, the LBE solution 

for the interior derivatives near the singularity is largely independent of the resolution and 

correspondingly the local distribution of the absolute errors is almost invariant with the changing 
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resolution. For Neumann problems, when the discontinuity is placed at the lattice center, second-

order accuracy is preserved for the interior distribution of ϕ; and a “superlinear” convergence 

order of 1.5 for the boundary ϕ values, and first-order accuracy for the interior derivatives are 

obtained. For straight boundaries with the discontinuity point arbitrarily placed within the lattice 

and curved boundaries, the boundary flux becomes zeroth-order accurate for Dirichlet problems; 

and all three quantities, including the interior and boundary ϕ values and the interior derivatives, 

are only first-order accurate for Neumann problems. 

Keywords: lattice Boltzmann equation method, order of accuracy, convection-diffusion 

equation, discontinuous boundary conditions, Dirichlet condition, and Neumann condition. 

 

I. Introduction 

The lattice Boltzmann equation (LBE) method has become an effective alternative 

numerical method for heat and mass transfer modeling [1-21]. With the temperature and mass 

concentration considered as scalar variables, the governing equations for thermal and mass 

transport become a simple scalar convection-diffusion equation (CDE) [10-17]. For the energy 

equation, the viscous heat dissipation and pressure work terms can be conveniently incorporated 

as source terms [10-21]. Thus, the LBE method for CDE inherited the same benefits of the 

hydrodynamic version of the LBE: explicit algorithms, easy implementation, compatibility with 

parallelization, and ease of handling complex geometry. 

Transport phenomena involving discontinuous boundary/interface conditions are 

frequently encountered in a wide range of science and engineering problems such as shock 

waves in acoustics and compressible viscous flows [22], diffusion of chemical reactants in 

porous catalyst pellets with partial external or internal wetted surfaces or with non-uniform 



3 
 

catalyst distribution and surface reaction [Ref. 23 and references therein], and heat conduction 

between two solids that have partial contact [24, 25]. With analytical solutions available for only 

a limited number of transport problems with discontinuous boundary conditions, numerical 

methods become the only practical tool for most of the problems. The presence of discontinuities 

along the boundary or in the internal field (such as shock waves or hydraulic jumps) poses great 

challenges to any numerical method and is known to result in degradation of accuracy. In 

traditional finite-difference and finite-element based numerical computation of singularity 

problems, the singularity treatments can be categorized into three groups: the local refinement 

method, the singular function method, and the combined method [see 26-28 and Refs. therein]. 

The LBE method for hydrodynamic problems does not deal with internal shock waves since the 

method is only applicable to incompressible flows with nearly constant density and 

discontinuities in the velocity or pressure conditions along the boundary are rarely encountered.  

For a physical variable  when the discontinuity in the material properties occurs at an 

interface, jumps in  and the normal derivative (flux) / n   may develop across the interface. 

The pressure jump due to surface tension in two-phase flows and temperature derivative jump in 

conjugate heat transfer problems [20, 29, 30] are just two examples. For convenience, the type of 

discontinuity in ϕ and / n   across the interface is hereinafter referred to as “normal 

discontinuity”. Ginzburg and d’Humières [31] addressed Darcy’s flow in anisotropic and 

heterogeneous stratified aquifers where mass conservation is described by a pure diffusion 

anisotropic equation. The heterogeneity of the cross-diffusion entries results in the discontinuous 

boundary derivatives when the physical (continuous) Neumann conditions are prescribed [31]. 

Discontinuous Neumann conditions across the interface have been studied in [32] for both 

hydrodynamic and advection-diffusion equations. An interface treatment for heat and mass 
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transfer with interfacial flux and/or temperature jumps has recently been proposed by Guo et al. 

[33] for conjugate heat/mass transfer problems.  It was shown that the numerical accuracy of the 

LBE solutions is unaffected by the presence of the jumps in ϕ or / n   across the interface, or 

the “normal discontinuity”. 

To explore the applicability of the LBE method for heat and mass transfer problems with 

discontinuous Dirichlet and Neumann boundary conditions, we consider the effects of another 

important type of discontinuity which is hereinafter referred as “tangential discontinuity”. As the 

name suggests, the discontinuity in ϕ or / n   occurs along the boundary, as opposed to that 

occurs across the interface in the “normal discontinuity” case. For heat and mass transfer 

problems, the “tangential discontinuity” occurs when ϕ or / n   suddenly changes the value 

along the physical boundary. The understanding on the effects of “tangential discontinuity” on 

the accuracy of LBE solution will be of interest to researchers using LBE method for solving 

engineering problems. The specific questions the present paper attempts to address include: i) 

How do the tangential type boundary condition discontinuities affect the order of accuracy of the 

LBE solution ϕLBE in the interior field for both Dirichlet and Neumann problems with straight 

walls? ii) How do the tangential discontinuities affect the orders of accuracy of the interior 

derivatives and the boundary flux (or ϕw) values for the Dirichlet (or Neumann) problem? iii) 

Does the placement of the tangential discontinuity point in the lattice affect the results in i) and 

ii)? iv) How does convection affect the error behavior in i) to iii)? and v) What are the effects of 

tangential boundary condition discontinuities along curved walls on the accuracy of LBE results? 

The rest of the paper is organized as follows. Section II briefly describes the LBE model 

for the general convection-diffusion equation governing thermal and mass transport processes. 

The boundary treatments for the Dirichlet and Neumann conditions with tangential discontinuous 
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are presented in Section III, where the asymptotic distribution functions near the discontinuity 

are also derived. The error assessments and detailed examination of the effects of tangential 

discontinuities on the accuracy of the LBE solutions are presented in Section IV with three 

numerical tests, including both straight and curved boundaries. Section V summarizes the 

difference between the two types of discontinuity in LBE modeling. And some concluding 

remarks are given in Section VI. 

 

II. Lattice Boltzmann Equation for Thermal and Mass Transport 

The macroscopic governing equation for thermal and mass transport can be written as a 

general convection-diffusion equation (CDE) 

 j ij

j i j

v D G
t x x x

 


    
        

,       (1) 

where  is a scalar variable such as temperature in heat transfer or concentration in mass transfer 

problems, t is the time, vj is the velocity component in the xj-direction, Dij is the diffusion 

coefficient, and G is the general source term. 

Of the various LBE models proposed in the literature [10-16] for the CDE (1), the 

multiple-relaxation-time (MRT) based D2Q5 (DnQm denotes m discrete lattice velocities in n 

dimensions) models proposed by Yoshida and Nagaoka [12] are used in the present work to 

formulate the transport problem since their second-order accuracy in space and first-order 

accuracy in time have been verified via a detailed asymptotic analysis. When presented in the 

moment space [17], the D2Q5 MRT-LBE model in [12] is very similar to the one used in [16]. 

The implementation of the D2Q5 model and the corresponding boundary condition treatment are 

much simpler compared to the D2Q9 models in [5, 8, 15]. It should also be noted that the 
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boundary treatment applied in this work for the discontinuous boundary conditions is 

independent of the specific LBE models and it is also applicable to other LBE models. 

In order to recover the macroscopic CDE (1), the following lattice Boltzmann equation 

for the evolution of the microscopic distribution function, g(x, ξ, t), was proposed in [12] 

       , , L , ,g t t t g t t G t t   
         x e x g x x ,    (2) 

where gα(x, t)   g(x, ξα, t), x is the spatial vector, ξ is the particle velocity vector in the phase 

space (x, ξ) and it is discretized to a small set of discrete velocities {ξα|α = 0, 1, …, m   1}, eα is 

the αth discrete velocity vector ({eα} = (0, 0), (±1, 0), and (0, ±1) for D2Q5), δt is the time step, 

L is the standard collision operator in the LBE method, and ωα is the weight coefficient. 

For MRT-based LBE models, it is more natural to represent the collision operator in the 

moment space as [34] 

       eq-1L , M S , ,   
 

g x m x m xt t t ,       (3a) 

where M is a matrix to transform the distribution functions g to their moments m by m = Mg, 

and S is a matrix of relaxation coefficients τij. To recover the CDE (1), the equilibrium moments 

of the distribution functions are defined in [11, 14, 16, 17] as 

 eq T(0, , , ,0)u v a  m ,        (3b) 

where u and v are the macroscopic velocity components in Cartesian coordinates. For the D2Q5 

model used in this work for isotropic convection-diffusion, the matrices are [35, 12] 

M = 

1 1 1 1 1

0 1 1 0 0

0 0 0 1 1

4 1 1 1 1

0 1 1 1 1

 
 


 
 
 

    
   

, S-1 = 

0

11

22

3

4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0











 
 
 
 
 
 
 
 

,     (3c) 
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and ω0 = 1/3, ωα = 1/6 (α = 1, 2, 3, 4), and a = (5ω0 – 1) = 2/3. In particular, when 0 = 0,11 = 

22 =D, 3 =4 =p, the MRT model reduces to two-relaxation-time (TRT) model [13, 32]. 

The asymptotic analysis in [12] showed that the leading-order solution of the CDE (1) is 

obtained from the moment of the distribution functions 

   
1

0

, ,




x x
m

t g t


 ,         (4) 

with second-order accuracy in space and first-order accuracy in time when the following 

relationship is preserved 

2

1

2 ( )
ij ij ij

D

t
D

x


 

 
  ,        (5) 

where 
ij

 
is the Kronecker delta and the constant εD = 1/3 in D2Q5. 

For computation and memory efficiency, the evolution equation (2) with the MRT 

collision operator in Eq. (3) is usually solved in two steps 

collision step: 

            eq-1ˆ , , M S , , ,g t g t t t G t t  


     
 

x x m x m x x , and   (6) 

streaming step: 

    ˆ, ,g t t t g t     x e x ,       (7) 

where ĝ  
represents the post-collision state. It is noted that an efficient implementation of the 

collision step does not require the storage of ĝ . The collision step in Eq. (6) is completely local 

and the streaming step in Eq. (7) is simple and requires little computational effort. 

 

III. Boundary Treatment for Discontinuous Boundary Conditions 
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Accurate implementation of hydrodynamic or thermal boundary conditions by converting 

the macroscopic physical variables on the boundary into corresponding microscopic distribution 

functions in the LBE methods has been of significant interest since the LBE method has been 

proposed. The boundary schemes are typically constructed in such a way that the boundary 

velocity, temperature or heat flux obtained from the LBE computation matches the respective 

physical boundary condition to a certain degree of accuracy. A short review of the boundary 

treatments for hydrodynamic and thermal and mass transport modeling involving straight and 

curved boundaries was given by Li et al. [17].  

The tangential-type discontinuous boundary condition on straight and curved boundary 

walls and the placement of the discontinuity points in the square lattice of unit spacing (δx = δy = 

1) are schematically depicted in Fig. 1. To avoid the numerical involvement of double values at 

the exact discontinuity point, we place the discontinuity point between two lattice nodes along 

the tangential direction of the boundary (∆d ≠ 0 in the x-direction in Fig. 1) so that the boundary 

condition at the discontinuity point is not needed. In the normal direction (see vector e
 
in Fig. 

1), the intersection link fractions are ∆sw = ||xf − xsw||/||xf − xe|| for the boundary node xsw on the 

straight wall, and ∆cw = ||xf − xcw||/||xf − xe|| for the boundary node xcw on the curved wall. 

In the LBE method, the evolution equation (2) governs the behavior of the microscopic 

distribution functions  , tg x
 
at the interior of the computational domain. To complete the 

streaming step in Eq. (7), a boundary treatment is required to convert the macroscopic boundary 

information, such as a Dirichlet boundary value (Φd), a Neumann boundary flux (Φn), or their 

combination (the mixed boundary condition) at the boundary node (xsw or xcw in Fig. 1), into 

appropriate boundary conditions for  , tg x
 
at the first interior lattice node (xf in Fig. 1) adjacent 

to the boundary node. 
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With the placement of the discontinuity point between the lattice nodes, the regular 

boundary treatments can be directly applied. The second-order accurate boundary treatment by 

Li et al. [17] based on the “(anti)-bounce-back” idea and spatial interpolation is capable of 

preserving the exact local geometry and can be extended to curved boundary situations. These 

boundary schemes for Dirichlet and Neumann conditions are thus used in this work. 

A. Discontinuous Dirichlet condition treatment 

 For the macroscopic Dirichlet condition  =
d

 
at the boundary node xw (xsw or xcw in 

Fig. 1), the distribution function at the first interior lattice node, xf, along the lattice velocity 

direction e (see Fig. 1) at the current time t + δt, can be expressed as [17] 

       1 2 3 4
ˆ ˆ ˆ, , , ,     x x x xf d f d ff d f d D dg t t c g t c g t c g t c     ,  (8) 

where xff is the second interior lattice node along e  direction, i.e., xff = xf + e δt, and cd1-cd4 are 

coefficients related to the local link fraction ∆ (∆sw or ∆cw in Fig. 1). The asymptotic analysis in 

[17] showed that second-order accuracy is preserved for the Dirichlet boundary condition with 

treatment (8) when the following relationship is maintained, with cd1 (≠ 1) an adjustable variable 

1
2

2 1

2 1

d
d

c
c

 
 


, 1

3

2

2 1

d
d

c
c

 


 
, and 1

4

1

2 1

d
d

c
c

 


 
.    (9) 

Three particular schemes were examined in [17] and they all reduce to the “anti-bounce-back” 

scheme at ∆ = 0.5. 

Scheme 1: 

 
   

   

ˆ ˆ( 2 ) , (2 1) , , (0 0.5)

, 1 1 1
ˆ ˆ, 1 , , ( 0.5),

2 2 2

f ff D d

f

f f D d

g t g t

g t t
g t g t

 



 






          


       
           

       

x x

x
x x

 (10a) 

Scheme 2: 
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     

 

2(2 1)
ˆ ˆ, 2( 1) , ,

2 1

2 1 3 2
ˆ2 , ,

2 1 2 1

  
     

  

      
     

      

x x x

x

f f ff

f D d

g t t g t g t

g t

  







, and     (10b) 

Scheme 3: 

       
2 1 2 1 2

ˆ ˆ ˆ, , , ,
2 1 2 1 2 1

      
           

        
x x x xf f ff f D dg t t g t g t g t     . (10c) 

B. Discontinuous Neumann condition treatment 

For the Neumann (flux) boundary condition 
n nD

n


  


 at xw in the normal direction, 

the second-order accurate boundary condition treatment proposed in [17] is 

       1 2 3 4
ˆ ˆ ˆ, , , ,     x x x xf n f n ff n f n n

t
g t t c g t c g t c g t c

x
    





,   (11) 

where it should be noted that n  is the boundary flux along the lattice velocity e  
direction. 

The asymptotic analysis in [17] showed that the coefficients cn1-cn4 in Eq. (11) are unique for 

second-order accuracy. The boundary scheme can be written as 

       
2 1 2 1 2

ˆ ˆ ˆ, , , ,
2 1 2 1 2 1

 
     

  
x x x xf f ff f n

t
g t t g t g t g t

x
    





.  (12) 

As emphasized in [17, 18], when the local boundary normal n is aligned with e  (e.g., boundary 

node xsw in Fig. 1(a)), 
n n   and thus Eq. (12) can be directly applied. When n is not in the 

e  direction (boundary node xcw in Fig. 1(b)), which is usually encountered on inclined or 

curved boundaries, n  
is not equal to n  

and also depends on the unknown tangential flux. A 

Cartesian decomposition method proposed in [17] should be used to obtain n  based on n
. 

For details about the Neumann condition treatment for curved boundaries and its extension to 

mixed boundary conditions please refer to [17]. 
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C. Evaluation of Boundary Flux/Boundary Value and Interior Derivatives 

To gain a full understanding on the effects of the tangential-type boundary condition 

discontinuities on the accuracy of LBE solutions, we also assess the accuracy of the boundary 

flux (or boundary temperature/concentration values) for given Dirichlet (or Neumann) problems. 

In addition, the interior derivatives for both types of problems are assessed. These quantities can 

be obtained from the microscopic distribution functions using the techniques proposed in [17, 

18] without any finite-difference calculations that are based on the computed values of the 

macroscopic temperature/concentration field. 

Combining the boundary schemes in Eqs. (8, 11) with the coefficients in Eqs. (9, 12), the 

boundary flux for a Dirichlet problem can be evaluated from [17] 

     1

1 1

1 2 2
ˆ ˆ ˆ(2 1) , 2 , 1 , ,

2 1 1

     
              

       
x x xd

n f ff f D d

d d

c x
g t g t g t

t c c
   






 (13) 

and the boundary temperature (concentration) for a Neumann problem can be evaluated using 

[17] 

     
1 1 1

1 2 2 2
ˆ ˆ ˆ(2 1) , 2 , 1 , .

1 1 1

      
               

        
x x xd f ff f n

D d d d

t
g t g t g t

c c c x
   



 

 (14) 

For both Dirichlet and Neumann problems, the interior derivatives can be obtained using [12, 18] 

1
(neq)

1

1 m

ij i

j D

e g
x x

 





 






 


 ,        (15a) 

where (neq) (eq)g g g     is the non-equilibrium component of the distribution function with 

   eq , ,
j

j

D

tv
g t e t

x
   


  

 

 
  
 

x x  [12]. For isotropic diffusion in 2D cases (Dxx = Dyy = D, τxx 

= τyy = τD), the following can be obtained from Eq. (15a) [18] 



12 
 

4 4
(neq) (neq)

1 1

1 1
1 , 1

2 2
x y

D D

x x
D e g D e g

x t y t
   

 

   

    

     
          

     
  .  (15b) 

The second-order accuracy of the schemes given by Eqs. (13-15) has been verified in [17, 18] for 

continuous boundary conditions. 

D. Analysis of the microscopic distribution functions near the discontinuity 

The effect of the discontinuous boundary conditions on the accuracy of the LBE 

computations is more severe in the local region near the discontinuity. To understand the causes 

for the deteriorated accuracy, we also investigate the errors in the simulated microscopic 

distribution functions with regard to their asymptotic values. Following the asymptotic analysis, 

e.g., in Ref. [12], the micro- and macroscopic quantities can be expressed as g = (0)g + ϵ (1)g + 

ϵ2 (2)g +…, and  = (0) + ϵ (1) + ϵ2 (2) +…, respectively, where ϵ = δx/L is the small parameter 

with L the characteristic length. With the presently implemented LB model, the following 

second-order asymptotic distribution functions ( g = _ asymptoticg + ϵ2 (2)g +…) can be readily 

derived 

(0)
(0) (0)

_ asymptotic

j

j D j

D j

vt
g e e

x x
    

 
    

 

   
    

   

.    (16) 

Thus one can examine the errors for the individual distribution functions,  

_ LBE _asymptoticg g     , by replacing (0)  in Eq. (16) with the exact solution ex . Moreover, the 

error transfer from the microscopic distribution functions to the macroscopic ϕ value and its 

derives can be clearly analyzed. For isotropic 2D diffusion problems, the following expressions 

for the absolute errors can be obtained 

4

0

E 





 , 
4

/

1

x xE e  


  



  , and 
4

/

1

y yE e  


  



  ,    (17) 
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according to Eqs. (4) and (15b), respectively, with  1/ D D    . 

 

IV. Numerical Tests and Discussion 

Three numerical tests are conducted in this study to investigate the effects of the 

tangential-type discontinuous boundary conditions on the accuracy of the LBE computations. 

The first test is for heat conduction in a square block. The second involves convection-diffusion 

in a channel with straight boundaries. And the third test deals with a curved boundary for heat 

conduction in a circle. All the tests are steady-state problems, and both the Dirichlet and 

Neumann boundary conditions with tangential discontinuities are considered. For all cases, only 

isotropic diffusion is considered thus τij = τDδij (see Eq. (5)) throughout the domain. It is worth 

noting that according to [13, 32, 36], the coefficient of the convergence curves is determined by 

the combination Λ = (τD – 0.5)( τp – 0.5). This is also verified in this study with numerical tests 

including both continuous and discontinuous boundary conditions. For all the results shown 

below, a specific choice of τD = 0.75 and τp = 1.0 with Λ = 1/8 is thus used for most cases unless 

stated otherwise. It should be noted that as shown in Refs. [36, 37], the choice of Λ = 1/8 is 

equivalent to extending the second-order accuracy of the “anti-bounce-back” scheme to the third-

order for straight boundaries located halfway in the lattice (Δ = 0.5). While this analysis is more 

sophisticated and complex than the second-order asymptotic analysis in [12], the numerical 

evidence of the superiority of using the recommended value Λ = 1/8 in this work will be 

demonstrated in the presence of strong discontinuity.   

A. Heat conduction in a square block 

The placement of the lattices on the square block (H = L) is shown in Fig. 2. The 

boundary conditions on the right, top and bottom walls are fixed with ϕw = 0. On the left wall, a 



14 
 

tangential-type discontinuous boundary condition is imposed and the discontinuity is fixed at y = 

H/2. The variations in Δd and Δw are realized by moving the whole block in the lattice. The exact 

solution to the steady conduction equation in the block subject to the continuous boundary 

condition ϕw = 0 on the three walls can be written as 

   ex ex

1

( , ) ( , ) sin sinh ( / ) ;  / ;  /n

n

x y n n L H x H y H         




     ,  (18) 

where the coefficients βn are to be determined from the specific boundary condition on the left 

wall. 

1. Discontinuous Dirichlet boundary condition 

a. Analytical solutions 

When the Dirichlet condition on the left wall is given as 

( 0, ) ( )f     ,        (19) 

the exact solution in Eq. (16) becomes 

 
 
 ex

1

sinh ( / )
( , ) 2 sin

sinh /
n

n

n L H
b n

n L H

 
   











     (20a) 

with      
1

0

( )sinnb f n d    .          (20b) 

Three different types of discontinuous functions, f(), are examined in this study, 

piecewise linear: linear

,    1/ 2
( ) ( )

1, 1/ 2,


  

 
f f

 
 

 
    (21a) 

piecewise parabolic: 
 

 
parab

2 1 ,   1/ 2
( ) ( )

2 1 , 1/ 2,

 
  

  

f f
  

 
  

   (21b) 
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piecewise sine: 

 

 
sine

1
sin ,   1/ 2

2
( ) ( )

1
sin , 1/ 2.

2




  
 


f f

 

 

 

   (21c) 

The jump magnitudes of all three functions at = 1/2 are unity. It should be noted that for 

relatively large values of n (say n ≥ 10), the absolute values of both  sinh ( / )n L H    and 

 sinh /n L H  in Eq. (20a) are exponentially large and direct division of the “sinh” values 

yields poor numerical accuracy that is unsuited for the present work. Thus Eq. (20a) is rewritten 

as 

 
 
 

  ( 2 / )

ex

1 1

sinh ( / )
( , ) 2 sin 2 sin e e

sinh /

NM
n n L H

n n

n n M

n L H
b n b n

n L H

   
    





 

  


    

  . (22) 

In the present computations, M = 10 is used; the error in approximating 
2e M

 (with L = H) as 

zero is less than 10-27. Large values of N∞ are used for small  so that the relative error resulting 

from the truncation of the series such as given by Eq. (22) is less than 10-16. 

The derivatives in the field, 0 <  ≤ L/H, 0 ≤   ≤ 1, are obtained from the exact solution, 

 
 
 

  ( 2 / )ex

1 1

cosh ( / )
2 sin 2 sin e e ,

sinh /

NM
n n L H

n n

n n M

n L H
b n n b n n

n L H

   
   

 



 

  


     

 
 

 (23a) 

 
 
 

  ( 2 / )ex

1 1

sinh ( / )
2 cos 2 cos e e .

sinh /

NM
n n L H

n n

n n M

n L H
b n n b n n

n L H

   
   

 



 

  


     

 
 

 (23b) 

On the left wall (= 0), ex (0, ) /     can be evaluated directly from the Dirichlet boundary 

condition given by Eq. (21) without the need of Eq. (23b). For ex (0, ) /    ,  one cannot set  

= 0 in Eq. (23a) since the series solution does not converge at  = 0 in its current form. To obtain 
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a reliable normal derivative at = 0, a fourth-order accurate extrapolation is applied using 

ex /    values near  = 0 at  = , 2, 3, and 4 evaluated from Eq. (23a), i.e., 

5
4ex ex ex ex ex ex

0 2 3 4 5
4 6 4        

     


     
    

     
    

     
.  (24) 

The 4( )O  term is not included in the actual computation; it is shown here to illustrate the 

extrapolation error. For very small  or , the series in Eq. (23a) converges very slowly. Shanks 

transformation [38] is used to accelerate the convergence of the series. For linear ( )f f  , 

extremely high accuracy is needed for ex /    in assessing the LBE solution accuracy and very 

small  is desired. In this case, quadruple precision (with at least 33 significant decimal digits) is 

used to further reduce the round-off errors. To assess the truncation error in Eq. (24) and to 

interpret the behavior of the LBE solution errors, it is important to understand the behavior of the 

derivatives near the left wall, especially near the discontinuity point. 

Since ex ( , )    is a harmonic function, its derivatives  ex ex/ ,  /        are also 

harmonic. The local solution may be constructed using elementary functions for the Laplace 

equation. Further using the numerical values for  ex ex/ ,  /        computed from Eq. (23), 

the leading asymptotic behavior of the derivatives near the discontinuity, (=0, =1/2), can be 

obtained for linear ( )f f  , as 

ex

2 2

1 0.5
~ 1.0471( 0.5)

( 0.5)

 


   

 
 

  
,     (25a) 

ex

2 2

1
~ 1 1.0471  

( 0.5)

 


   


  

  
.     (25b) 
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The singular terms in the above describe the behavior of a vertically oriented dipole for ex /    

and a horizontally oriented dipole for ex /    if the derivatives are viewed as electric 

potentials. For convenience, the local solutions given by the entire right-hand-side (RHS) of Eq. 

(25) are simply referred to as “dipole models” hereinafter. The phrase “singular term” will refer 

to the first term in each of Eqs. (25a-b). For parab ( )f f   and sine ( )f f  , the leading singular 

terms are identical to the above because the dipole strength is dictated by the jump magnitude. 

The differences among the solutions corresponding to the three forms given by Eqs. (21a-c) are 

in the non-singular terms which have only high-order effects. 

From Eq. (25a), 

55

ex
05

24 1
~

2





 





  
 

  
. For H=202 in the lattice scale and Δd=0.5, 

5

13ex

5
~ 8.22 10









 at =0, −0.5=1/(2H).  Using =10-6, the maximum extrapolation error in 

using Eq. (24) for H=202 is 
118.22 10 . Since  

5

ex

5







  
 and the corresponding truncation error in 

Eq. (24) decrease rapidly away from the singularity, Eq. (24) is sufficient for normal derivative 

evaluation on the wall in the present work dealing with finite jump discontinuities. 

b. LBE solution contours and profiles 

We first investigate the effect of the tangential-type discontinuous boundary condition on 

the LBE solutions by placing the discontinuity point at the center of the unit lattice, i.e., Δd = Δw 

= Δ = 0.5 (see Fig. 2) is used for all four boundary walls in the results shown in Figs. 3-8. Thus 

the thermal “anti-bounce-back” scheme, which is recovered by all three schemes in Eqs. (10a-c), 

is applied. For the LBE results in Figs. 3 and 4, H = 64 is used. For illustration purposes, Fig. 3 

shows the contours of LBE for linear ( )f f  . Very similar distributions are noted for the other 
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two forms of ( )f   and are thus not shown for brevity. Figs. 4a-b show the contours for the 

derivatives, 
1

( )
x H

 



 


 
 and 

1
( )

y H

 



 


 
, from the LBE solutions. The magnitude of the 

derivatives in the vicinity of the discontinuity is much larger than that in the rest of the field due 

to the presence of the singularity in the derivatives. The contours show that ∂ϕ/∂x is dominated 

by a vertically oriented dipole (or doublet) and ∂ϕ/∂y by a horizontally oriented dipole of the 

same strength, as the leading order terms in Eq. (25) suggest. Fig. 5 compares the normal 

derivative, ∂ϕ/∂x, on the upper half of the left wall, x=0, between the exact and LBE solutions for 

all three cases; the lower half is anti-symmetric with respect to y/H=0.5. Also shown is the dipole 

model given by Eq. (25a) for linear ( )f f  . Excellent agreement is observed for the wall normal 

derivative between the LBE and the exact solutions, and between the dipole mode and the exact 

solution for linear ( )f f  . This analysis gives credence to the dipole model for its simple and 

accurate description of the singular behavior of the derivatives. 

c. Invariance of the error for interior derivative with resolution 

In discussing the accuracy of the derivatives, ∂ϕ/∂x and ∂ϕ/∂y are used in this study as 

opposed to ∂ϕ/∂ and ∂ϕ/∂ since for a given ( )f  , it is observed that ∂ϕ/∂x and ∂ϕ/∂y remain 

almost the same on the lattice scale as the resolution H changes. Figs. 6a-b show vertical 

distributions of ∂ϕ/∂x and ∂ϕ/∂y of the LBE solutions for H=32, 48, 64, and 128 on the lattice 

scale for i = 2, 3, and 4 using linear ( )f f  . The LBE solutions near the singular point, (x, y)=(0, 

H/2), with different resolution, H, are almost identical for ∂ϕ/∂x. The leading order behavior of 

∂ϕ/∂y remains the same as H changes from 32 to 128; the spread in ∂ϕ/∂y at the same horizontal 

lattice position is caused by the high-order effects other than the singularity and can be explained 
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by the dipole model. Denoting 'i = i – 1.5 = x, and  ' ( / 2 1.5)j j H   / 2y H  , Eq. (25) can 

be expressed as 

ex

2 2 2

1 ' '
~ 1.0471 ,   

' '

j j

x i j H








 
      (26a) 

ex

2 2 2

1 ' 1 '
~ 1.0471 .

' '

i i

y i j H H






  

 
     (26b) 

The first terms on the RHS of Eq. (26) are independent of H on the lattice scale near 

( ', ') (0,0)i j  . For ex / x  , the next term is of 
2( )O H 

; hence the spread caused by the change 

in H is rather small. For ex / y  , the next terms is of 
1( )O H 

 and is independent of '  and 'i j ; 

hence the spread caused by the change in H is the same as shown in Fig. 6b. Eq. (26) predicts 

LBE / x  and LBE / y   shown in Fig. 6 well except at ( ', ') (0.5,0.5)i j   where the LBE results 

over-predict the exact solution by about 15% in magnitude. For f = parab ( )f  and sine ( )f   the same 

is observed on the lattice scale for the leading order behavior; the spread is slightly different 

from that for linear ( )f f   due to the difference in the details of the smooth portion of ( )f  ; 

hence they are omitted for brevity. 

Figure 7a compares ∂ϕ/∂y values from the exact solution, the dipole model, and the LBE 

solution for H = 64 along the entire upper half of the vertical line at i=2 ( ' 0.5i  , or x/H=1/128). 

Again, the dipole model captures the behavior of the singularity very nicely near =y/H=0.5. At 

' 0.5j  , the LBE solution has about 15% error due to the influence of the singularity as 

discussed in the preceding paragraph; this error is more clearly seen in the inset as indicated by 

the first open circle (LBE solution) away from the horizontal axis at y/H=0.5078. It is 

emphasized that errors from the two lattice points, (x/H, y/H)=(1/(2H), 0.5±1/(2H)), or 

( ', ') (0.5,  0.5)i j    on the lattice scale, are the biggest source of the error in the overall interior 
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derivatives of the LBE solutions. Fig. 7b compares ∂ϕ/∂y values between the exact and LBE 

solutions at i=2, 3, and 4, corresponding to x/H=1/128, 3/128, and 5/128. The agreement 

becomes much better away from i=2. Fig. 7c shows the absolute errors in ∂ϕ/∂y, defined as err = 

(∂ϕ/∂y)LBE − (∂ϕ/∂y)ex, as a function of lattice node position, 'j  = y−H/2, along the same vertical 

lines (i=2, 3, and 4) near the left wall for H=32, 64 and 128. Clearly the largest absolute error 

occurs at the lattice nodes closest to the discontinuity. Since both the LBE and exact solutions for 

the derivatives behave the same on the lattice scale, the errors of the LBE solutions remain 

invariant of the resolution, H, near the singularity. The implication of this behavior will be 

further discussed in the error analysis in later paragraphs. To further elucidate the behavior of the 

LBE errors near the discontinuity, the results from the three types of discontinuous boundary 

conditions, Eqs. (19 a-c), are compared. Figs. 8a-b show the local relative errors for ∂ϕ/∂x 

(R.E.=err/(∂ϕ/∂x)ex) and the normalized errors for ∂ϕ/∂y (N.E.=

LBE,max

err

/ y 
) along the vertical 

line at i = 2 for different resolution for all three cases. The normalized error, instead of the 

relative error, is used for ∂ϕ/∂y since its exact solution at i = 2 goes through a zero between y = 

H/2 and y = H and is thus inappropriate to be used in the denominator. On the other hand 

LBE,max
/ y   is an appropriate L1-norm of the function based on the LBE solution. Fig. 8 (a, b) 

also shows that the local errors for the interior derivatives behave the same for three different 

discontinuous boundary profiles. It is thus appropriate to conclude that the local error behavior 

for the derivatives shown in Fig. 8 (a, b) is universally applicable for a unity jump in the 

Dirichlet boundary condition for conduction or diffusion problems governed by the Laplace 

equation. 
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In order to understand how the discontinuity affects the accuracy of the macroscopic 

quantities in the LBE computation, it is vital to examine the error behavior of the individual 

microscopic distribution functions, especially near the discontinuity. Fig. 9 (a-e) shows the 

respective profiles of gα (α = 0 – 4) along the vertical line at i = 2 from both the asymptotic and 

LBE solutions for the linear case, where the asymptotic values are obtained from Eq. (16) in 

which (0)  is replaced by ex . It is clear that 0_ LBEg  matches well with its asymptotic value 

throughout the domain, while the other components all have much larger discrepancies near the 

discontinuity at 'j = 0.5. This comparison is further illustrated by the errors,  

_ LBE _asymptoticg g     , in Fig. 10 (a). Based on the results in Fig. 10 (a), Fig. 10 (b) also shows 

the absolute errors for the macroscopic ϕ value and its derivatives following Eq. (17) (here 

4

0

E 





 ,  / 1 2xE        , and  / 3 4yE        ). Clearly, the large errors in the 

derivatives are attributed to the difference between the errors of the distribution functions; while 

for the macroscopic ϕ value, the dominating errors in   (α = 1 – 4) cancel each other out. This 

explains well that while the interior derivatives have zeroth-order accuracy with resolution, the 

error for the interior distribution of ϕ does decrease with resolution. It should also be noted that 

the errors for / x 
 
and / y   in Fig. 10 (b) obtained from the comparison with the 

asymptotic microscopic distribution functions match very well with the errors in Figs. 7 (c) and 8 

(a, b), where the solutions are directly compared to the exact macroscopic quantities. 

Furthermore, the same error behavior in Fig. 10 (a, b) is observed for the other two cases with 

piecewise parabolic and sine Dirichlet conditions, confirming that the LBE solution near the 

discontinuity is controlled by the local solution dominated by the jump in the boundary 

condition. 
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Fixed relaxation time coefficients τD = 0.75 and τp = 1.0 (thus Λ = (τD – 0.5)(τp – 0.5) = 

1/8) have been used in the foregoing discussion. The effect of Λ on the accuracy of the interior 

derivative is examined next. Fig. 11 shows the variation of the absolute errors for (∂ϕ/∂x)LBE and 

(∂ϕ/∂y)LBE with Λ at the interior lattice node P ( ' ' 0.5)i j   next to the singularity point. The 

variation of Λ is realized by changing τD while keeping τp = 1. For each Λ, the two derivatives 

computed have the same error magnitude and with opposite signs. Both show monotonic 

behavior and a sign change. This indicates that for certain Λ values, the maximum error 

magnitude for the derivatives is not at P, the closest lattice node near the singularity. The present 

computation shows that for these cases (e.g., Λ = 0.0005, 0.0025, 0.25, 0.375) the maximum 

error magnitudes for (∂ϕ/∂x)LBE and (∂ϕ/∂y)LBE are found at the lattice nodes next to P on the 

right and at the top, respectively. For all other Λ values examined, the maximum errors are found 

at P. It should be noted that for all Λ values tested, the overall derivative error in the interior 

field, which represents the convergence orders, do not change with grid resolution. This will be 

further studied in the following section. 

d. Order-of-accuracy of LBE solutions 

To assess the numerical accuracy of the LBE results, the following relative L2-norm 

errors are defined following [17] 

 
1 2

2 2

2 LBE ex ex

interior nodes interior nodes

/

E /  
 

  
 
  ,      (27) 

1 2
2 2

2 LBE ex ex

interior nodes interior nodes
  

      
     

       
 

/

/ xE
x x x



  
,   (28a) 

1 2
2 2

2 LBE ex ex

interior nodes interior nodes
  

      
     

       
 

/

/ yE
y y y



  
,   (28b) 
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1 2
2 2

2 qw LBE ex ex

boundary nodes boundary nodes

/

E D D D
x x x

  


      
     

       
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where the “interior nodes” denote the lattice nodes inside the block but not on the boundary 

walls, and the “boundary nodes” in Eq. (29) refer to those on each straight section of the 

boundary walls. 

 We first computed the L2-norm errors in Eqs. (27-29) by choosing different τD and τp 

values while maintaining the same value of Λ = (τD – 0.5)(τp – 0.5). It is verified that for each Λ 

value, the different τD and τp combinations result in almost exactly the same L2-norm errors for 

this pure diffusion problem (as shown later in Fig. 30, the errors are determined by Λ also for 

convection-diffusion problems with both continuous and discontinuous boundary conditions). 

The variations of the L2-norm errors with Λ is thus examined and the results for the case with 

flinear(η) are shown in Fig. 12 with τp = 1. The comparison between Fig. 12 (a) and (b) clearly 

shows that the errors are much less when the discontinuity point is placed at the center of the 

lattice with the symmetry preserved. An optimal Λ value near 1/8 is seen in Fig. 12 (a) and Λ = 

1/8 is also a good choice for Δd = 0.25 in Fig. 12 (b). Thus the choice of Λ = 1/8 is recommended 

and used in most cases shown below. For Δ = 0.5 in Fig. 10 (a), the dependence of E2 on Λ can 

be well approximated by a power function 2

0 093 Λ 0 038 Λ 1 8

0 095 Λ 0 034 Λ 1 8
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. . , /

  


 

. This leading-

order power in Λ  is consistent with that reported in [36]. 

 Figures 13-14 show the respective relative errors defined in Eqs. (27-28) versus the grid 

resolution 1/H at Δd = Δw = Δ = 0.5 and τD = 0.75. Due to the tangential discontinuity of the 

Dirichlet boundary conditions at x=0, the order of accuracy of the interior field is reduced to 

first-order, as shown in Fig. 13, and that of the interior derivatives to zeroth-order, as shown in 
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Fig. 14, for all three forms of ( )f  . For the same H, the relative errors for all three cases are 

close in magnitude because the jump magnitudes of all three cases are equal to unity. The zeroth-

order accuracy for the interior derivatives can be explained by the results shown in Figs. 5-8. As 

the resolution increases on the lattice scale, the absolute errors on the lattice nodes near the 

discontinuity point remain invariant with H. Since the errors are much higher near the 

discontinuity than those far away from the discontinuity, both the numerators and denominators 

in Eqs. (28a) and (28b) change very slowly with H, resulting in a zeroth-order accuracy. 

Figure 15a shows the boundary flux errors at x=0, x=L=H, and y=H, respectively (∂ϕ/∂x 

is changed to ∂ϕ/∂y in Eq. (29) for y=H), when the discontinuous linear ( )f f   is used at x=0 and 

Δd = Δw = Δ = 0.5 is maintained. The most striking feature is the exceptionally small relative 

error in the normal flux at x=0 where the discontinuous linear profile of (0, y) is imposed; and 

quadruple precision was used in the evaluation of wall normal derivative mainly for this case to 

ensure that the roundoff error in the exact solution does not exceed the exceptionally small 

numerical error for wall normal flux. However, the relative errors on the right and top walls, 

where ϕw = 0 are imposed, are not so small; they show second-order convergence behavior and 

have magnitudes in line with those observed in earlier studies [17-20] for wall flux. The 

exceptionally small flux error at x=0 also prompted the use of the discontinuous parabolic and 

sine profiles parab ( )f  and sine ( )f   for f(η) in this study as it is believed that the small flux error 

may be caused by the use of the linear or zeroth-order f(η) at x=0. Fig. 15b shows the relative 

flux errors on two walls, x=0 and x=L, when f(η)= parab ( )f  and sine ( )f   at x=0 are enforced. The 

second-order convergence is observed and the magnitude of the flux errors is indeed in line with 

previous observations [17-20]. Another test was also conducted by setting (=1, ) = 

0.5sin() in addition to keeping (0, ) = linear ( )f   and (, =0) = (, =1) = 0. Not 
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surprisingly, the L2-norm error, 2 qwE


, for the wall flux at x=0 becomes comparable with 2 qwE


 

shown in Fig. 15b. This suggests that the exceptionally small magnitude of the flux error at x=0 

for the discontinuous linear linear ( )f   is indeed an exception. 

To elucidate the effect of the location of the tangential-type boundary condition 

discontinuity on the accuracy of the LBE results, Figs. 16-18 show the relative L2-norm errors 

defined in Eqs. (27-29), respectively, versus 1/H for three cases with (Δd, Δw) = (0.5, 0.25), 

(0.25, 0.5), and (0.25, 0.25) when f(η)= linear( )f   is used at x=0. Scheme 2 in Eq. (10b) is applied 

for all the Dirichlet boundary conditions. Other combinations with Δd = 0.75, 0.01, 0.99 and Δw = 

0.75, 0.01, 0.99 are also examined and they show the same convergence behavior as in Figs. 16-

18 and are not shown for brevity. When the discontinuity is placed away from the lattice center, 

the accuracy of the interior ϕ values remains first-order; however the relative errors in Fig. 16 are 

substantially larger than those in Fig. 13. The loss of the geometric symmetry of the lattices 

relative to the discontinuity position results in the disappearance of the anti-symmetry of the ϕLBE 

values on the two sides of the discontinuity relative to the averaged discontinuous value, 

1
[ (0, 0.5 ) (0, 0.5 )]

2
       . Hence the error near the discontinuity is larger than the case 

when (Δd, Δw) = (0.5, 0.5).  For the interior derivatives, the accuracy is again of zeroth-order with 

larger magnitude, as one can observe by comparing Fig. 17 with Fig. 14. Most strikingly, the 

error for the wall flux changes from second-order (Fig. 15) to zeroth-order (Fig. 18) with the loss 

of the geometric symmetry. Thus whenever possible the discontinuity point should be placed at 

the center of the lattice in order to reduce the LBE errors for the quantities of interest. 

2. Discontinuous Neumann boundary condition 

For the Neumann problem, the boundary condition on the left wall is imposed as 
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The same discontinuous functions f(η) given in Eqs. (21a-c) are used in Eq. (30) for consistency. 

Similar to Eq. (22), the exact solution  for the Neumann problem can be expressed as 
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where the Fourier coefficients, bn, are the same as given in Eq. (20b). For the interior derivatives, 

the exact values can be obtained from Eq. (31) through direct differentiation. For Neumann 

problems ϕex(ξ=0, ) is calculated using Eq. (31) in order to assess the accuracy of the computed 

LBE boundary value d  using Eq. (14). 

 To assess the accuracy of the LBE solution for d , the relative L2-norm error for d  at 

x=0 is defined in the following in addition to those defined in Eqs. (27, 28), 

 
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2 tw ,LBE ex ex

boundary nodes boundary nodes

ΦdE  


 
  
 

  ,      (32) 

where the “boundary nodes” refer to those on the left boundary wall. 

 Similar to the Dirichlet problem, Δd = Δw = Δ = 0.5 is considered first for the LBE results 

in Figs. 19-22. Fig. 19 shows the contours of ϕLBE for f = flinear(η) with H=64; those for f = 

fparab(η) and fsine(η) are very similar and are not shown. Fig. 20 compares the profiles of ϕLBE(x=0, 

y) evaluated using Eq. (14) with the exact solutions for all three forms of f(η). Excellent 

agreement is observed between the LBE and exact solutions. Clearly, ϕ(x=0, y) is continuous in 

the vicinity of y = H/2 where a discontinuity of boundary flux is present. Figs. 21a-b show the 

contours for the derivatives ∂ϕ/∂x and ∂ϕ/∂y based on the LBE solution for H=64. In the absence 

of a singularity, the magnitude for each derivative is much smaller than that for the Dirichlet 
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problem. Fig. 22 shows the absolute errors, err = (∂ϕ/∂y)LBE − (∂ϕ/∂y)ex, along the vertical lines 

near the left wall for H=32, 64 and 128. The magnitude of the absolute errors for the derivatives 

decreases with the improvement of grid resolution instead of remaining invariant with resolution 

in the Dirichlet problem. 

 The results for E2, E2_tw, E2_∂ϕ/∂x and E2_∂ϕ/∂y defined in Eqs. (27), (32), and (28a-b) versus 

the grid resolution for all three forms of f(η) at x = 0 for Δd = Δw = Δ = 0.5 are shown in Figs. 23-

25, respectively. For different Δd and Δw values, flinear(η) is selected and the corresponding results 

are shown in Figs. 26-28 for (Δd, Δw) = (0.5, 0.25), (0.25, 0.5), and (0.25, 0.25). Scheme 2 in Eq. 

(10b) is used for computing the boundary d  values in Eq. (14). The results in Figs. 23, 24 and 

26, 27 indicate that when the discontinuity point is placed halfway in the lattice along the 

tangential direction of the boundary, i.e., Δd = 0.5, the LBE results are second-order accurate for 

interior ϕ field and superlinear (order ~ 1.5) for the boundary d
 
values no matter what Δw 

values are used. When Δd ≠ 0.5, both the interior and boundary values become first-order 

accurate. The interior derivatives are first-order accurate for all cases as shown in Figs. 25 and 

28. Other combinations of Δd and Δw values are also examined and the same patterns as in Figs. 

23-28 are observed; thus they are not shown. Compared to the Dirichlet problem, the effect of 

the boundary condition discontinuity on the accuracy of the LBE results is less severe in general 

in the Neumann problem. 

For both Dirichlet and Neumann problems, it is much preferred to place the discontinuity 

point at the lattice center with half lattice link fractions in both directions (Δd = Δw = 0.5). Such 

an arrangement could potentially improve the order of accuracy and/or reduce the magnitude of 

the errors. 
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B. Convection-diffusion in a channel 

 In this test, steady convection and diffusion of temperature or concentration in channel 

flow are considered. The geometric configuration and the lattice distributions are depicted in Fig. 

29. Discontinuous Dirichlet or Neumann boundary conditions are imposed on the top and bottom 

walls, and periodic boundary conditions are assumed in the x-direction for both  and the 

distribution function gα [17]. To obtain closed-form exact solutions, a plug flow is assumed 

following [17]. The governing CDE reads 

2 2

2 2
U D

x x y

     
  

   
,         (33) 

where U is the constant velocity in the x-direction, and the velocity in y-direction is zero. This 

thermal or mass transport problem is characterized by the Péclet number defined as Pe = UH/D.  

1. Discontinuous Dirichlet boundary condition 

 As shown in Fig. 29, the tangential-type discontinuous Dirichlet boundary conditions are 

imposed as 
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Using Fourier series expansion, F(x) in Eq. (34) can be expressed as 
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Thus the exact solution for the scalar variable ϕ can be expressed using complex variables as 
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where “Real” means taking the real part of a complex number, and 
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 As discussed in the previous diffusion problem, the solution in Eq. (36) can be rearranged 

as 
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    (37) 

with negligible loss of accuracy for relatively large M and order-one ratio for H/L. For the 

boundary flux on the top and bottom walls, the same extrapolation technique, Eq. (24), is used. 

The interior derivatives ex / x   and ex / y   can be directly calculated from ϕex. The 

distribution of ϕLBE at Pe = 20 with H =L= 66 and Δd = Δw = Δ = 0.5 is very similar to that in Fig. 

6 of [17] where a sinusoidal variation of wall temperature is imposed. 

To examine the accuracy of the LBE solutions, the relative L2-norm errors for the interior 

distribution of , the boundary flux / y HD y   , and the interior derivatives / x 
 
and 

/ y   are computed. Fig. 30 shows the errors at different τD values when Λ = 1/8 is fixed and 

Δd = Δw = 0.5. It is clear that the magnitude of the errors is governed by Λ once the resolution 

and Pe are fixed. This holds for both cases with continuous and discontinuous boundary 

conditions as shown in Fig. 30 (a, b), respectively. As expected, the case with discontinuous 

boundary conditions has much higher error magnitude for all the L2-norm errors computed. It is 

of particular interest to examine if the dependence of the solution on Λ holds when the boundary 

is placed in an arbitrary position in the lattice. Using the requirements given in Ref. [36] it is 

found that Scheme 3 in Eq. (10c) is able to satisfy the equivalent relations for the “anti-bounce-
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back” scheme and thus it would produce exactly the same non-dimensional solution when Λ is 

fixed to 1/8. Contrarily, Schemes 1 and 2 in Eq. (10a, b) fail to satisfy these relations. Fig. 31 

shows the results for Δd = Δw = 0.75 for both continuous and discontinuous boundary conditions 

computed using these three schemes. Indeed the results from Scheme 3 are independent of τD.  

Other values of Δd and Δw are also checked and the same solution behavior is observed. 

Figures 32-34 show the L2-norm errors versus the grid resolution for Pe = 0 (pure 

diffusion) and Pe = 20, 100 (moderate convection). First-order accurate solutions for the interior 

LBEand zeroth-order accurate solutions for the interior derivatives are observed for all three 

cases with Pe = 0, 20 and 100. Similar to the diffusion problem presented in Section A-1 with 

the piecewise discontinuous function f = flinear(η) as a boundary condition, the boundary flux for 

Pe = 0 in this test also has exceptionally small relative errors. Only first-order accuracy is 

obtained for the boundary flux when a finite Pe (= 20, 100) is used, which is one degree lower 

than the quadratic convergence of the boundary flux computed for the diffusion problem in the 

block for f = fparab(η)  and fsine(η) and Δd = Δw = 0.5. Finite convection results in a boundary layer 

near each of the horizontal walls, and a higher Pe implies a thinner boundary layer. Furthermore, 

the convection also results in asymmetry of the contours near the discontinuity points, making it 

more difficult to resolve the downstream region than the upstream region of the discontinuity due 

to the boundary layer effect. This is directly responsible for the change of the order of accuracy 

from second- to first-order for the normal boundary flux. The convection clearly brings in 

another important mechanism in affecting the transport and enhancement of the errors. 

The combined effect of convection and discontinuity placement on the accuracy of the 

LBE results is elucidated in the contours for err = ϕLBE − ϕex in Figs. 35 (a-f) for (Pe, Δd) = (0, 

0.5), (0, 0.25), (20, 0.5), (20, 0.25), (100, 0.5), and (100, 0.25). For all six cases Δw = 0.5 in the y-
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direction is used. For each Pe, there is a drastic increase in the magnitude of error when Δd 

changes from 0.5 to 0.25. On the other hand, for Δd =0.5, the error increases only by a factor of 

2-3 when Pe changes from 0 to 100.  This indicates that the error is much more sensitive to the 

placement of the discontinuity points within the lattice. For each nonzero Pe, the error contours 

of Δd = 0.5 and 0.25 are very similar; the difference is in the magnitude caused by the 

discontinuity location. This is simply because the error in ϕLBE is also governed by the same 

convection-diffusion equation for  except that the source for generating the error at the 

discontinuity is much stronger with Δd = 0.25 due to geometric asymmetry.  Nevertheless, for all 

cases with Δd = 0.25, first-order accuracy is obtained for the interior ϕLBE at finite Pe. The 

accuracy for the boundary flux and interior derivatives remains to be zeroth-order. Figs. 36 (a-b) 

also show how Δd and Δw affect the L2-norm errors respectively for the interior ϕLBE, the 

boundary flux and the interior derivatives at Pe = 20 and H = 66. In Fig. 36 (a) the case with Δd = 

0.5 has minimum errors for all four quantities and a sharp increase in the error magnitude is 

observed for E2 and E2_qw when the discontinuity location moves away from the midpoint (Δd = 

0.5) to either side. In Fig. 36 (b), E2 and E2_qw also have minimum values at Δw = 0.5. The 

smallest error for E2_∂ϕ/∂y is noticed at Δw ~ 0.35 and E2_∂ϕ/∂x decreases monotonically as Δw 

increases from 0.01 to 0.99; however, the differences between the E2_∂ϕ/∂x and E2_∂ϕ/∂y values at 

Δw = 0.5 and their minimum values in the whole range of 0 ≤ Δw ≤ 1 are not significant. Overall, 

the placement of the discontinuity point at the lattice center with Δd = Δw = 0.5 is recommended. 

It is also instructive to examine if using more distribution functions from neighboring 

lattice nodes would change the order of accuracy of the LBE solutions. To this end, the “third-

order” Dirichlet boundary schemes by Ginzburg [37], which include five distributions at three 

lattice nodes near the boundary, are implemented (see Refs. 35 and 17 for implementation 
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details). It should be noted that the correction term 
. .p c

qF
 
in [37], was not included in [17]. Here, 

we correct this implementation and present the updated results in Fig. 37 (a, b). For the 

continuous boundary conditions ϕw(y = 0) = ϕw(y = H) = cos(2πx/L), the results in Fig. 37 (a) 

include the second-order boundary scheme in [17] (it reduces to “anti-bounce-back” at Δ= 0.5), 

and the “third-order” schemes with or without the correction term. It is noted that second-order 

accuracy is obtained for all cases and by including the correction term the magnitude of the 

errors is significantly reduced. These “third-order” schemes with the correction term are also 

implemented for the present discontinuous boundary condition in Fig. 37 (b), where first-order 

accuracy for E2 is obtained for each case. Fig. 38 also shows the variations of all the L2-norm 

errors with Λ at Pe = 20 and H = 34 with the implementation of both the second-order and 

“third-order” boundary schemes. For most cases, the “third-order” scheme leads to slightly 

smaller error magnitude and the optimal Λ value is also at Λ = 1/8. Similar to the results in Fig. 

12 (a), the dependence of E2 on Λ in Fig. 38 can also be well approximated by the power 

functions 2
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for the “third-order” scheme. Overall, the results in Figs. 37 

and 38 indicate that the same order of accuracy is obtained for the second-order and “third-

order” Dirichlet boundary schemes; and one can tune the adjustable parameter in the “third-

order” schemes to reduce the error magnitude. The optimal choice of the adjustable parameters is 

out of the scope of this work and thus not pursued. 

2. Discontinuous Neumann boundary condition 

 For the Neumann problem, the boundary conditions in Eq. (34) are replaced by 



33 
 

0 0

( )
n y y

F x
D D

y H


 


   


, and       (38a) 

( )
n y H y H

F x
D D

y H


 


    


.        (38b) 

where ( )F x  is given in Eq. (34). The exact solution for ϕ can be expressed as 
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    (39) 

The distribution of ϕLBE for Pe = 20, H = 66, and Δd = Δw = 0.5 is very similar to that 

shown in Fig. 14 of [17]; thus they are not shown here. The relative L2-norm errors for the 

interior distribution of , the boundary values (w), and the interior derivatives ( / x 
 
and 

/ y  ) are shown in Figs. 39-41 for Δd = Δw = 0.5. The results for both pure diffusion (Pe = 0) 

and moderate convection diffusion (Pe = 20, 100) are included. The orders-of-accuracy for these 

three quantities are consistent with those in the square block diffusion problem with 

discontinuous Neumann conditions and Δd = 0.5; i.e., second-order accuracy for the interior field 

of ϕ, a superlinear order ~ 1.5 for the boundary values, and first-order accuracy for the interior 

derivatives in both directions are obtained for the present problem with all three Pe = 0, 20 and 

100. Other combinations of Δd and Δw values are also examined and the same patterns for the 

orders-of-accuracy as in Figs. 26-28 for the diffusion problem are observed; thus they are not 

shown. 

C. Heat conduction in a circular cylinder 

 All the boundaries in the previous two tests involve straight walls. To investigate the 

combined effect of curved geometry and tangential-type boundary condition discontinuity on the 
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order of accuracy of LBE solutions, steady heat conduction in a circular cylinder is considered 

next. The geometry and lattice distribution are depicted in Fig. 42. The imposed Dirichlet and 

Neumann boundary conditions have discontinuities at θ = 0 and θ = π. The specific lattice link 

fractions in both x- and y-directions for the lattice nodes next to the boundary are calculated (e.g., 

Δx and Δy for node P in Fig. 42) so that the boundary condition treatments in Eqs. (10) and (12) 

are implemented. 

1. Discontinuous Dirichlet boundary condition 

 The discontinuous Dirichlet boundary condition is given by a unit step function 
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The exact solution for ϕ is 
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and the radial and azimuthal derivatives are 
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It is noted that the boundary fluxes cannot be obtained from Eq. (42) since the series do not 

converge at r = R, and the extrapolation in Eq. (24) is used again. 

 The three particular Dirichlet schemes in Eqs. (10 a-c) are directly implemented with the 

local link fractions calculated. Figs. 43-45 show the L2-norm errors for the interior distribution of 

ϕ, the boundary flux and the interior derivatives, as defined in Eqs. (27-29), respectively, versus 

the grid resolution, 1/R when Δd = Δw = 0.5 is used. The “boundary nodes” in Eq. (29) for this 
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test include all the intersection nodes by the lattice velocity vectors in both x- and y-directions. It 

is also emphasized that the boundary flux from the LBE computation is evaluated in the 

Cartesian x- and y-directions parallel to the intersecting lattice velocity vectors (see Eq. (13)) so 

that the extrapolated analytical boundary fluxes in the normal and tangential directions are 

projected to the x- and y-directions. The results in Figs. 43-45 from using the three Dirichlet 

schemes are very close to each other at R > 10. First-order accuracy for the interior ϕ values and 

zeroth-order accuracy for the interior derivatives are clearly seen in Figs. 43 and 45. The 

numerical convergence of the boundary flux in Fig. 44 is also close to zeroth-order 

asymptotically. The respective orders-of-accuracy are the same as those for the square block 

diffusion problem when the discontinuity point is placed away from the lattice center. 

 Ginzburg and d'Humieres [31, 39] pointed out that when a boundary scheme is 

incompatible with that for the interior solution, an accommodation layer will develop and the 

“accommodation” in the LBE method manifests itself differently for different orders of the 

incompatibility with the bulk non-equilibrium, from relatively smooth non-equilibrium layers 

which do not impact the macroscopic solution, e.g., [40], to jumps in boundary/interface 

derivatives for inaccurate collision strategies with discontinuous coefficients [31, 32]. We also 

observed that in the cases with continuous boundary conditions [17] or normal discontinuities 

(jumps) across the interface [33], the presence of incompatibility and accommodation layer does 

not lead to degradation of accuracy when straight wall is involved for Dirichlet problems. For 

curved boundary problems, the order of accuracy for the field of ϕ is unaffected by the presence 

of the accommodation layer while that for the interior derivative decreases from 2 to 1.5 

(superlinear) when a continuous Dirichlet condition
 

is imposed on the surface of a circular 

cylinder [17]. Fig. 46 (a) shows the distribution of the absolute error for the interior derivative in 
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the x-direction, i.e., A.E. = |(∂ϕ/∂x)LBE − (∂ϕ/∂x)ex|, at R = 30 and Δd = Δw = 0.5 (see Fig. 42) for 

the Dirichlet condition of ( , ) cos(4 )w r R    .  The presence of such an accommodation layer 

is clearly demonstrated in this example. When the resolution, R, increases, the magnitude of the 

error in the accommodation layer decreases as R-1.5. In contrast, for the Dirichlet problem with 

tangential-type discontinuous boundary condition given by Eq. (40), the error for ∂ϕ/∂x shown in 

Fig. 46 (b) has two simple peaks near the discontinuities. The two peaks have much larger 

magnitude than those in Fig. 46 (a) although both problems have order one variation in the 

bourndary values.  Varying the resolution, R, does not change the magnitude of the two peaks as 

the derivatives near the discontinuities remain invariant with R. Thus the error caused by the 

discontinuity clearly dominates that caused by the boundary scheme incompatibility. It is 

concluded that for Dirichlet problems with tangential-type boundary condition discontinuity on 

curved geometry, the increase in the magnitude of numerical error and/or degradation in the 

order-of-accuracy are mainly due to the presence of the discontinuity.   

 The placement of the discontinuity point in the lattice for curved geometry is also studied 

by shifting the whole circle in the lattice structure (see Fig. 42). For a representative radius R = 

36, the L2-norm errors for the interior ϕLBE and boundary flux are (E2, E2_qw) = (3.0710-4, 

8.4310-2), (1.8110-3, 1.3310-1), (7.4710-3, 4.8010-1), and (7.2710-3, 4.9010-1) for (Δd, 

Δw) = (0.5, 0.5), (0.5, 0.25), (0.25, 0.5), and (0.25, 0.25), respectively. The same increasing trend 

is observed for the L2-norm errors for the interior derivatives. Clearly, when the discontinuity 

point is moved away from the lattice center, a remarkable increase in the error magnitude is 

noticed. And the influence of the intersection fraction Δd is more significant than that of Δw, 

which is consistent with the results in the previous two tests. 

2. Discontinuous Neumann boundary condition 
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 For the Neumann problem, the boundary condition in Eq. (40) is changed to 
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The exact solution becomes 
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 The discontinuous Neumann boundary condition in Eq. (43) also involves nonzero 

tangential flux along the azimuthal direction on the curved boundary. The Cartesian 

decomposition method [17, 18], which first converts the normal boundary flux, n , into the flux 

n
 
in the discrete lattice velocity direction, and then uses the Neumann scheme in Eq. (12), are 

thus implemented. Three particular schemes were examined in [17] with their corresponding 

choices of the adjustable coefficient cd1 as in Eqs. (10 a-c). Using those three particular schemes, 

Figs. 47-49 show the L2-norm errors for the interior distribution of ϕ, the boundary ϕw values, 

and the interior derivatives, respectively when Δd = Δw = 0.5 is used. First-order accuracy is 

observed for all cases and the three boundary schemes give very close numerical results for each 

quantity investigated. 

It should be noted that for Neumann problems with curved geometry and nonzero 

tangential flux, even with continuous normal flux distribution, the Cartesian decomposition 

method would result in first-order accuracy for the interior and boundary ϕ values [17, 19, 20]. 

To separate the contributions of the wall flux discontinuity and the Cartesian decomposition 

method on the order of accuracy of the LBE results, another test for the same problem is 

conducted by applying the exact boundary fluxes, n , in the  x- and y-directions following the 

similar test in [17], where it was verified that second-order accuracy could be obtained for the 
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interior and boundary ϕ values as well as for the interior derivatives if the exact n
 
values were 

used. In the present test, the tangential flux on the circular boundary is calculated from Eq. (44) 

at r=R.  Both the normal flux given by Eq. (43) and computed tangential fluxes determine the 

precise n . All results for E2, E2_tw, E2_∂ϕ/∂x and E2_∂ϕ/∂y obtained from this test are very close to 

those in Figs. 47-49 for each R value and thus not shown. It is thus concluded that the first-order 

accuracy in Figs. 47-49 is attributed to the tangential-type boundary condition discontinuity on 

the curved geometry; the Cartesian decomposition method has a much smaller impact on the 

error than that caused by the normal wall flux discontinuity. 

For both Dirichlet and Neumann problems with curved geometry, the errors in the LBE 

solutions caused by the tangential-type boundary condition discontinuities are much higher than 

those by the particular boundary schemes, as also demonstrated by the very close error 

magnitude in Figs. 43-45, and 47-49 for Schemes 1, 2 and 3. 

 To summarize, the orders-of-accuracy for the various quantities of interest from those 

three tests are listed in Table I. 

 

V. Difference Between Normal Discontinuity Across an Interface and Tangential 

Discontinuity Along a Boundary 

The present study focuses on the “tangential discontinuity” along the boundary, as 

opposed to the “normal discontinuity” across the interface. It is important to recognize that these 

two types of boundary condition discontinuities are fundamentally different. In [31-33] the 

effects of normal discontinuities in  and / n   across the interface have been investigated. 

One can theoretically (based on the analysis of the distribution functions within the LB 

framework) derive the relationships between the “known” and “unknown” distributions near the 



39 
 

interface by taking into account the physical constraints, e.g., the governing equations on each 

phase adjacent the interface, and the particular discontinuity condition at the interface. For 

instance, Ref. [32] presented the detailed analyses for two types of interface tracking, “explicit 

interface” and “implicit interface”, for both hydrodynamic and advection-diffusion problems 

with discontinuous interface conditions.  In the recent work [33], we have developed an interface 

treatment for both temperature and/or flux discontinuities (jumps) across the interface in the LB 

method. The second-order accuracy for straight interfaces was verified and the effect of curved 

geometry on the accuracy of the LBE solution was also presented in [33]. 

However, for the tangential discontinuity along the boundary considered in this work, 

such simple relations across the discontinuity do not exist. The local problem becomes two-

dimensional with the errors originating from the discontinuity on the boundary and propagating 

in all directions as shown in Figs. 4, 21, 35 and 46. On the contrary, the local problem for the 

normal discontinuity across the interface considered in [31-33] is essentially one-dimensional 

from one sub-domain to the other; there is no large variation along the interface.  In fact, if the 

flux discontinuity appears only on part of the interface of two materials the tangential type of 

boundary condition discontinuity in the present study will be observed. A much larger error 

would be encountered.  

It is also worth noticing that for tangential discontinuity problems, the degradation of the 

numerical accuracy due to the discontinuity is much more severe than encountered in the normal 

discontinuity type. As in the first test with a discontinuous Dirichlet condition on the straight 

boundary located halfway (Δ = 0.5) in the lattice, the interior solution and its derivative have 

only first-order and zeroth-order accuracy, respectively; they are considerably worse than the 

second-order LBE solutions in [33] with both temperature and flux jumps across the interface. 
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VI. Conclusions 

 The effects of tangential-type discontinuities in Dirichlet and Neumann boundary 

conditions on the accuracy of numerical solutions using the lattice Boltzmann equation (LBE) 

method for thermal and mass transport are investigated. For straight boundaries that are aligned 

with the lattice velocity vectors, the discontinuous Dirichlet condition reduces the accuracy of 

the interior temperature (concentration) field from second- to first-order; while its second-order 

accuracy is preserved for discontinuous Neumann conditions when the discontinuity point is 

placed halfway in the lattice along the tangential direction of the boundary. The effect of 

discontinuity on the accuracy of LBE solutions in Dirichlet problems is stronger than that in 

Neumann problems. This is also demonstrated by the zeroth- and first-order accuracy of interior 

derivatives for the problems with discontinuous Dirichlet and Neumann boundary conditions, 

respectively. 

For Dirichlet problems with a finite jump on the boundary values, the local solution for 

the derivatives can be described by a singular dipole model. The LBE solution for the derivatives 

on the lattice scale largely remains invariant with changing resolution, which is consistent with 

the dipole model. The local errors for the LBE derivatives are also invariant with respect to the 

resolution. The present results for the local derivative errors should be generally applicable for 

Laplace equations with finite boundary value jumps in Dirichlet problems. The transfer of the 

errors in the individual microscopic distribution functions to those in the macroscopic value and 

its derivatives is scrutinized to reveal the cause for the deteriorated accuracy. 

The placement of discontinuity points away from the lattice center results in either a 

degradation in the order of accuracy or a significant increase in the magnitude of the error. Thus 
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it is highly preferable to place the discontinuity point at the lattice center and keep the straight 

walls aligned with the lattice directions. 

 The convection has a strong effect on the accuracy of LBE solutions in the presence of 

boundary condition discontinuities. This can be clearly observed compared to the pure diffusion 

problem with the discontinuity placed at the center of the lattice. The convection reduces the 

accuracy for boundary flux from second- to first-order in the Dirichlet problem due to the 

asymmetry of the solution field with respect to the discontinuity position caused by convection. 

The error magnitude in general increases with increasing Péclet number. When the discontinuity 

point is moved away from the lattice center, however, the increase in the absolute error caused 

by this off-center placement of the discontinuity is far greater than that caused by the change in 

the Péclet number from 0 to 100. It is strongly suggested that in arranging the lattice structure 

one should make every effort possible to place the discontinuity at the center of the lattice. 

 For curved geometry, the tangential-type discontinuous Dirichlet condition results in a 

first-order accurate temperature (concentration) field and zeroth-order accurate boundary flux 

and interior derivatives. The degradation in the accuracy for the interior derivative caused by the 

boundary discontinuity is much more significant than that caused by the incompatibility between 

the boundary condition treatment and the solution scheme for the interior domain. For Neumann 

problems, the discontinuity in the boundary condition causes the interior and boundary 

temperatures (concentrations) and their interior derivatives to be first-order accurate. The 

placement of a discontinuity point in the lattice structure is also critical for curved boundaries 

and it is recommended that the tangential-type boundary condition discontinuity be placed at the 

lattice center. 
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Table I. Numerical accuracy in LBE computation for convection-diffusion with discontinuous 

Dirichlet/Neumann boundary conditions (ϕ denotes temperature or concentration, Δd and Δw denote the 

lattice link fractions at the discontinuity point xd along the tangential and normal directions of the 

boundary, respectively). 

 

 
Interior 

distribution of ϕ 

Boundary 

flux 

Boundary ϕ 

value 

Interior 

derivatives 

1. Discontinuous Dirichlet condition     

a. Boundary aligned with lattice vector 

with xd at lattice center (Δd=Δw=0.5) 
1st-order 

2nd-order§ 

1st-order¶ 
− 0th-order 

     

b. Boundary aligned with lattice vector 

with xd off lattice center (Δd≠0.5 or 

Δw≠0.5); 

1st-order 0th-order − 0th-order 

     

c. Curved boundary 1st-order 0th-order − 0th-order 

2. Discontinuous Neumann condition     

a. Boundary aligned with lattice vector 

with Δd=0.5, 0≤Δw≤1. 
2nd-order − 

superlinear 

order ~ 1.5 
1st-order 

     

b. Boundary aligned with lattice vector 

with Δd≠0.5, 0≤Δw≤1; 
1st-order − 1st-order 1st-order 

     

c. Curved boundary 1st-order − 1st-order 1st-order 
§ Pure diffusion problems; ¶ general convection diffusion problems. 
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        (a)                (b) 

Fig. 1. Illustration of the placement of (a) a straight wall, and (b) a curved boundary wall in the square 

lattice. The imposed Dirichlet (Φd) or Neumann (Φn) boundary condition has a discontinuity along the 

boundary in the tangential direction (horizontal in the figures). The location of the discontinuity point in 

the lattice along the horizontal direction is indicated by ∆d; the intersection link fractions in the lattice 

velocity vector e
 
direction (vertical in the figure) are ∆sw = ||xf − xsw||/||xf − xe|| for the boundary node xsw 

on the straight wall, and ∆cw = ||xf − xcw||/||xf − xe|| for the boundary node xcw on the curved wall. 

 

 

 
Fig. 2. Schematic depiction of the computational domain and lattice distribution for the square diffusion 

problem. 
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Fig. 3. Contours of ϕLBE at H = L = 64 with the discontinuous Dirichlet boundary condition flinear(η) (Eq. 

(21a)) on the left wall (Δd = Δw = Δ = 0.5 and the “anti-bounce-back” scheme is used). 

 

 

    
           (a)                                                            (b)  

Fig. 4. Contours of interior derivatives (a) ∂ϕ/∂x, and (b) ∂ϕ/∂y, near the discontinuity point at H = L = 64 

with flinear(η) on the left wall. 
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Fig. 5. Comparisons of ∂ϕ/∂x on the left wall for H = 64, τD = 0.75, and D = 1/12 between exact and LBE 

solutions for three discontinuous Dirichlet conditions given by Eqs. (21a-c). The result from the dipole 

model is for the linear case flinear(η). 

 

 

    
 

     (a)                                                                             (b)  

Fig. 6. Comparison of LBE results for the interior derivatives of (a) ∂ϕ/∂x, and (b) ∂ϕ/∂y, for different 

resolutions at H = 32, 48, 64 and 128, along the vertical lines at i = 2, 3 and 4 (“i” denotes the lattice 

nodes along the x-direction, with the left wall placed halfway between i = 1 and i = 2, see Fig. 2), with 

flinear(η) on the left wall. 
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          (a) 

 

  
     (b)                                                                                 (c)  

Fig. 7. (a) Comparison between the exact solution, the dipole model, and the LBE solution for ∂ϕ/∂y 

along the vertical line at i = 2, (b) comparison of ∂ϕ/∂y near the left wall at i = 2, 3, and 4, and (c) the 

absolute errors of err = (∂ϕ/∂y)LBE − (∂ϕ/∂y)ex along the vertical lines near the left wall for different grid 

resolutions, with flinear(η) on the left wall. 
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     (a)                                                                                 (b)  

Fig. 8. (a) Relative errors for ∂ϕ/∂x, and (b) normalized errors for ∂ϕ/∂y along the vertical line at i = 2 at 

different grid resolution for the three types of discontinuous Dirichlet conditions on the left wall. 

 

 

 
(a)    (b)    (c) 

 
(d)    (e) 

Fig. 9. Profiles of the microscopic distribution functions, (a) g0, (b) g1, (c) g2, (d) g3, and (e) g4, along the 

vertical line at i = 2, for both the asymptotic and LBE solutions for the linear case. 
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     (a)                                                                                 (b)  

Fig. 10. (a) Absolute errors, γα, for the microscopic distribution functions, gα_LBE, compared to the 

corresponding asymptotic values, gα_asymptotic, in Fig. 9, and (b) the absolute errors for the macroscopic 

values, 
4

0

E 






 ,  / 1 2xE        , and  / 3 4yE        , using the data in (a). 

 

 

 
Fig. 11. Variation of the absolute errors for (∂ϕ/∂x)LBE and (∂ϕ/∂y)LBE with Λ = (τD – 0.5)( τp – 0.5) at the 

interior lattice node P next to the singularity point.  
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     (a)                                                                                 (b)  

Fig. 12. Relative L2-norm errors versus Λ = (τD – 0.5)( τp – 0.5) for steady diffusion in the square block (H 

= 32) with a discontinuous boundary condition flinear(η) on the left wall at (a) Δd = Δw = 0.5, and (b) Δd = 

0.25, Δw = 0.5. 

 
Fig. 13. Relative L2-norm error, E2, of the interior distribution of ϕ versus the grid resolution, 1/H, for 

steady diffusion in the square block with discontinuous Dirichlet boundary conditions and the 

discontinuity point placed at the center of the unit lattice, i.e., Δd = Δw = Δ = 0.5 (see Fig. 2). 
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Fig. 14. Relative L2-norm errors, E2_∂ϕ/∂x and E2_∂ϕ/∂y, of the interior derivatives versus 1/H for steady 

diffusion in the square block with discontinuous Dirichlet boundary conditions (Δd = Δw = Δ = 0.5). 

 

 

   
         (a)                                                                                 (b)  

Fig. 15. Relative L2-norm error, E2_qw, of the boundary flux versus 1/H for steady diffusion in the square 

block with discontinuous boundary conditions (a) flinear(η), and (b) fparab(η) and fsine(η), on the left wall (Δd 

= Δw = Δ = 0.5). 
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Fig. 16. Relative L2-norm error, E2, of the interior distribution of ϕ versus 1/H for steady diffusion in the 

square block with flinear(η) on the left wall and the discontinuity point off the lattice center. 

 

 

 
Fig. 17. Relative L2-norm errors, E2_∂ϕ/∂x and E2_∂ϕ/∂y, of the interior derivatives versus 1/H for steady 

diffusion in the square block with flinear(η) on the left wall and the discontinuity point off the lattice center. 
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Fig. 18. Relative L2-norm error, E2_qw, of the boundary flux versus 1/H for steady diffusion in the square 

block with flinear(η) on the left wall and the discontinuity point off the lattice center. 

 

 

 
Fig. 19. Contours of ϕLBE at H = L = 64 with a piecewise linear discontinuous Neumann condition on the 

left wall (Δd = Δw = Δ = 0.5). 
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Fig. 20. Profiles of ϕw(x=0, y) on the left wall at H = 64, τD = 0.75, and D = 1/12 with discontinuous 

Neumann conditions on the left wall. 

 

 

 
              (a)                                                                                (b)  

Fig. 21. Contours for interior derivatives (a) ∂ϕ/∂x, and (b) ∂ϕ/∂y, at H = L = 64 with a piecewise linear 

discontinuous Neumann condition on the left wall. 
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Fig. 22. Absolute errors of err = (∂ϕ/∂y)LBE − (∂ϕ/∂y)ex along the vertical lines near the left wall at i = 2, 3, 

and 4 for different grid resolutions, with a piecewise linear discontinuous Neumann condition on the left 

wall. 

 

 
Fig. 23. Relative L2-norm error, E2, of the interior ϕ values versus 1/H for steady diffusion in the square 

block with discontinuous Neumann boundary conditions (Δd = Δw = Δ = 0.5). 
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Fig. 24. Relative L2-norm error, E2_tw, of the boundary ϕw values versus 1/H for steady diffusion in the 

square block with discontinuous Neumann boundary conditions (Δd = Δw = Δ = 0.5). 

 

 

 
Fig. 25. Relative L2-norm errors, E2_∂ϕ/∂x and E2_∂ϕ/∂y, of the interior derivatives versus 1/H for steady 

diffusion in the square block with discontinuous Neumann boundary conditions (Δd = Δw = Δ = 0.5). 

 

 



59 
 

 
Fig. 26. Relative L2-norm error, E2, of the interior ϕ values versus 1/H for steady diffusion in the square 

block with the Neumann condition flinear(η) on the left wall and the discontinuity point off the lattice 

center. 

 

 

 
Fig. 27. Relative L2-norm error, E2_tw, of the boundary ϕw values versus 1/H for steady diffusion in the 

square block with the Neumann condition flinear(η) on the left wall and the discontinuity point off the 

lattice center. 
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Fig. 28. Relative L2-norm errors, E2_∂ϕ/∂x and E2_∂ϕ/∂y, of the interior derivatives versus 1/H for steady 

diffusion in the square block with the Neumann condition flinear(η) on the left wall and the discontinuity 

point off the lattice center. 

 

 

 
Fig. 29. Schematic depiction of the computational domain and lattice distribution for convection-diffusion 

in a channel with discontinuous boundary conditions. 
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                                             (a)                                            (b) 

Fig. 30. Relative L2-norm errors versus (τD – 0.5) for convection-diffusion in the channel at fixed Λ = (τD – 

0.5)( τp – 0.5) = 1/8,  Pe = 20 and H = 18 with (a) continuous boundary conditions ϕw(y = 0) = ϕw(y = H) = 

cos(2πx/L), and (b) discontinuous boundary conditions (see Fig. 29) on the horizontal walls. 
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                                                (a)                                         (b) 

  
                                                (c)                                         (d) 

  
                                                (e)                                         (f) 
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Fig. 31. Relative L2-norm errors versus (τD – 0.5) for convection-diffusion in the channel at fixed Λ = (τD – 

0.5)( τp – 0.5) = 1/8, Pe = 20, H = 18.5 and Δ = 0.75: (a) E2, (c) E2_qw, (e) E2_∂ϕ/∂x and E2_∂ϕ/∂y with 

continuous boundary conditions ϕw(y = 0) = ϕw(y = H) = cos(2πx/L), and (b) E2, (d) E2_qw, (f) E2_∂ϕ/∂x and 

E2_∂ϕ/∂y with discontinuous boundary conditions (see Fig. 29) on the horizontal walls. 

 

 
Fig. 32. Relative L2-norm error, E2, of the interior distribution of ϕ versus the grid resolution, 1/H, for 

steady pure diffusion (Pe = 0) and convection-diffusion (Pe = 20, 100) in the channel with discontinuous 

Dirichlet boundary conditions. 

 

 

 
Fig. 33. Relative L2-norm error, E2_qw, of the boundary flux versus 1/H for steady pure diffusion (Pe = 0) 

and convection-diffusion (Pe = 20, 100) in the channel with discontinuous Dirichlet boundary conditions. 
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Fig. 34. Relative L2-norm errors, E2_∂ϕ/∂x and E2_∂ϕ/∂y, of the interior derivatives versus 1/H for steady pure 

diffusion (Pe = 0) and convection-diffusion (Pe = 20, 100) in the channel with discontinuous Dirichlet 

boundary conditions. 
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                                   (a)                             (b) 

  
                                   (c)                             (d) 

  
                                   (e)                             (f) 

Fig. 35. Contours of the absolute errors of err = ϕLBE − ϕex in the upper half channel (H = L = 66) with 

discontinuous Dirichlet boundary conditions for (a) Pe = 0, Δd = 0.5, (b) Pe = 0, Δd = 0.25, (c) Pe = 20, Δd 

= 0.5, (d) Pe = 20, Δd = 0.25, (e) Pe = 100, Δd = 0.5, and (f) Pe = 100, Δd = 0.25. 
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                                             (a)                                            (b) 

Fig. 36. Variations of the relative L2-norm errors with (a) the lattice fraction Δd when Δw = 0.5, and (b) the 

lattice fraction Δw when Δd = 0.5, for the channel flow Dirichlet problem at Pe = 20. 

 

 

    
                                             (a)                                            (b) 

Fig. 37. Relative L2-norm error E2 versus the grid resolution 1/H for convection-diffusion (Pe = 20) in the 

channel with (a) continuous boundary conditions ϕw(y = 0) = ϕw(y = H) = cos(2πx/L), and (b) 

discontinuous boundary conditions (see Fig. 29) on the horizontal walls. 
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Fig. 38. Variations of the relative L2-norm errors with Λ = (τD – 0.5)( τp – 0.5) for convection-diffusion in 

the channel at Pe = 20. 

 

 

 

 
Fig. 39. Relative L2-norm error, E2, of the interior distribution of ϕ versus 1/H for steady pure diffusion 

(Pe = 0) and convection-diffusion (Pe = 20, 100) in the channel with discontinuous Neumann boundary 

conditions. 
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Fig. 40. Relative L2-norm error, E2_tw, of the boundary ϕw values versus 1/H for steady pure diffusion (Pe 

= 0) and convection-diffusion (Pe = 20, 100) in the channel with discontinuous Neumann boundary 

conditions. 

 

 
Fig. 41. Relative L2-norm errors, E2_∂ϕ/∂x and E2_∂ϕ/∂y, of the interior derivatives versus 1/H for steady pure 

diffusion (Pe = 0) and convection-diffusion (Pe = 20, 100) in the channel with discontinuous Neumann 

boundary conditions. 
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Fig. 42. Schematic depiction of the lattice distribution for diffusion in a circular plane. The circular 

geometry is preserved by calculating the exact link fraction Δ values in both x- and y-directions for the 

interior nodes next to the boundary, e.g., Δx and Δy for P. 

 

 
Fig. 43. Relative L2-norm error, E2, of the interior ϕ values versus the grid resolution, 1/R, for steady 

diffusion in the circular plane with a discontinuous Dirichlet boundary condition. 
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Fig. 44. Relative L2-norm error, E2_qw, of the boundary flux versus 1/R for steady diffusion in the circular 

plane with a discontinuous Dirichlet boundary condition. 

 

 

 
Fig. 45. Relative L2-norm errors, E2_∂ϕ/∂x and E2_∂ϕ/∂y, of the interior derivatives versus 1/R for steady 

diffusion in the circular plane with a discontinuous Dirichlet boundary condition. 
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                                       (a)                                      (b) 

Fig. 46. Distribution of the absolute error for the interior derivative, A.E. = |(∂ϕ/∂x)LBE − (∂ϕ/∂x)ex| for 

diffusion in a circular domain (R = 30) with (a) continuous boundary condition ( , ) cos(4 )
w

r R     , 

and (b) discontinuous boundary condition in Eq. (40). 

 

 

 
Fig. 47. Relative L2-norm error, E2, of the interior ϕ values versus 1/R for steady diffusion in the circular 

plane with a discontinuous Neumann boundary condition. 
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Fig. 48. Relative L2-norm error, E2_tw, of the boundary ϕw values versus 1/R for steady diffusion in the 

circular plane with a discontinuous Neumann boundary condition. 

 

 

 
Fig. 49. Relative L2-norm errors, E2_∂ϕ/∂x and E2_∂ϕ/∂y, of the interior derivatives versus 1/R for steady 

diffusion in the circular plane with a discontinuous Neumann boundary condition. 

 

 

 

 

 


