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Abstract

Determining the correct matching boundary condition is fundamental to our understanding of

several everyday problems. Despite over a century of scientific work, existing velocity boundary

conditions are unable to consistently explain and capture the complete physics associated with

certain common but complex problems such as moving contact lines and corner flows. The widely

used Maxwell and Navier slip boundary conditions make an implicit assumption that velocity

varies only in the wall normal direction. This makes their boundary condition inapplicable in the

vicinity of contact lines and corner points where, velocity gradient exists both in the wall normal

and wall tangential directions. In this paper, by identifying this implicit assumption we are able

to extend Maxwell’s slip model. Here, we present a generalized velocity boundary condition that

shows that slip velocity is a function of not only the shear rate but also the linear strain rate. In

addition, we present a universal relation for slip length which shows that, for a general flow, slip

length is a function of the principal strain rate. The universal relation for slip length along with

the generalized velocity boundary condition provides a unified slip boundary condition to model

a wide range of steady Newtonian fluid flows. We validate the unified slip boundary for simple

Newtonian liquids, by using molecular dynamics simulations and studying both, the moving

contact line and corner flow problems.
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I. INTRODUCTION

The interface between two phases of matter is often accompanied by rapid changes in

scales, multi-physics, geometrical complexities and intriguing chemical phenomena, making

it an ideal benchmark to expand our knowledge beyond the confines of the bulk material.

Determining the correct matching boundary conditions is essential for accurate predictions,

as they govern the transfer of mass, momentum and energy across such interfaces. Among

these, the boundary condition governing the transfer of tangential momentum across a fluid-

solid interface is a topic that is still being debated, despite over a century of scientific work [1–

7]. The no-slip boundary condition is known to be valid for many continuum scale problems.

However, in some cases, such as spreading of fluid on a solid surface (moving contact line)

[8–14], corner flow [15–17] and extrusion of polymer melts [18–20], assuming no-slip at

the boundary leads to velocity and stress singularities, and the breakdown of the no-slip

boundary condition. While steady flow boundary conditions for simple regular interfaces

are fairly well understood [21–23], there is still a significant void in our understanding of

the behavior near the intersection of multiple interfaces, such as a moving contact line

(MCL) or a corner point. Here, the limiting factor is that the breakdown of the no-slip

boundary condition at these intersections occurs at molecular scales. One of the proposed

methods to alleviate these singularities is to assume fluid slip at these intersections. The

two most common slip models are those presented more than a century ago, by Navier [24]

and Maxwell [25]. However, Navier’s and Maxwell’s assumption of constant slip length for

a given wall-fluid interface contradicts the findings presented in literature [10, 11], which

shows perfect slip at the singular point and no-slip far away from it. Thompson & Troian

[22] showed that at high shear rates slip length is no longer a constant but rather a function

of the shear rate. They suggested that their model resolves this, as it naturally allows for

varying degrees of slip on approaching regions of high shear stress and shear rate. However,

as shall be shown in this paper, the non-linear relationship of slip with shear rate and the

universality of their boundary condition is valid only for flows with velocity variation in the

wall normal direction. Hence, the existing models [14, 22, 24, 25] are unable to consistently

explain and capture the complete physics associated with more complex problems.

In this paper, we present a unified slip boundary condition that is applicable for a wide

range of Newtonian fluid flow problems and includes the no-slip, Navier/Maxwell [24, 25],

2



and Thompson & Troian [22] velocity boundary conditions as limiting cases. The unified

slip boundary condition, which is validated with molecular dynamics (MD) simulations,

consists of two parts: First is the generalized velocity boundary condition, which accounts

for the variation of flow velocity not only in the wall normal direction, as is the case for

the Navier/Maxwell [24, 25] models, but also in the wall tangent direction. From this

follows the second part where slip length is shown to be not just a constant, as suggested

by Navier/Maxwell [24, 25], nor a non-linear function of just the shear rate, as suggested

by Thompson & Troian [22], but rather a non-linear function of the principal strain rate.

This universal relation for slip length along with the general velocity boundary condition

provides a unified slip boundary condition to model a wide range of Newtonian fluid flows

over a solid surface.

II. NUMERICAL SETUP

The molecular dynamics simulations presented in this paper are performed using the

LAMMPS package [26]. The pairwise interaction of molecules, separated by a distance r, is

modeled by the Lennard Jones (LJ) potential

V LJ = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

. (1)

Here, ǫ and σ are the characteristic energy and length scales, respectively. The potential is

zero for r > rc = 2.5σ, where rc is the cutoff radius.

Each wall is comprised of at least two layers of molecules oriented along the (111) plane

of a face centered cubic (fcc) lattice, with the molecules fixed to their respective lattice

sites. The fluid molecules are initialized on a fcc lattice, with initial velocities randomly

assigned so as to obtain the required temperature. The fluid in its equilibrium state, has

a temperature T = 1.1kB/ǫ and number density ρ ≈ 0.81σ−3 for the corner flow problem,

and ρ ≈ 0.73σ−3 for the moving contact line problem. The temperature is maintained using

a Langevin thermostat with a damping coefficient of Γ = 0.1τ−1, where τ =
√

mσ2/ǫ is

the characteristic time and m is the mass of the fluid molecule. The damping term is only

applied to the z direction to avoid biasing the flow. Table I, lists the different interfacial

properties used in our study.

In this paper we consider both the moving contact line and the corner flow problems. In
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TABLE I. Parameters for different cases of wall-fluid interfacial properties with slip

increasing from Case 1 to 4. ǫwf and σwf are the Lennard-Jones (LJ) parameters for wall-

fluid interaction and, ρw/ρ is relative density of wall. ǫwf determines the extent of affinity of the

wall molecules to the fluid molecules and is inversely related to slip length. σwf corresponds to the

molecular diameter or length scale associated with the LJ potential. An increase in its value leads

to greater slip and vice-versa. Higher relative wall density (ρw/ρ) means a smoother perceived

surface leading to greater slip.

Case ǫwf/ǫ σwf/σ ρw/ρ

1 1.0 1.0 1.1

2 0.6 1.0 1.1

3 0.6 0.75 4.5

4 0.4 0.75 4.5

addition, we also simulate a single phase Couette flow to verify Thompson & Troian’s [22]

boundary condition.

Moving contact line: The moving contact line is simulated by modeling a two-phase,

two dimensional Couette flow, where the fluid channel measures 153.0σ × 27.4σ × 144.0σ.

The walls move in opposite directions with a speed U = 0.1σ/τ and periodic boundary

conditions are imposed along the x and z directions (Fig. 1(a)).

Corner flow : The corner flow is simulated by modeling a cavity flow with an inclined

wall. The cavity measures 91.0σ × 24.4σ × 72.0σ. The top and bottom walls move in

opposite directions with a speed U = 0.1σ/τ , while the side walls are stationary (Fig. 1(b)).

A periodic boundary condition is imposed along the z direction, which is the out of plane

axis. θ, describes the corner angle.

Single phase Couette flow: For the single phase Couette flow, the fluid channel measures

22.8σ× 25.0σ× 13.7σ. The top wall moves with a speed U = 0.1σ/τ , while the bottom wall

is stationary. Periodic boundary conditions are imposed along the x and z directions.
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In the case of the moving contact line problem the immiscibility of the two fluids is

modeled by choosing appropriate LJ interaction parameters, such that the interatomic forces

between them is predominantly repulsive. For the results presented here these parameters

are ǫf1f2 = 0.2ǫ, σf1f2 = 3.0σ and rc = 2.5σ, which ensure a purely repulsive force. For

simplicity the two fluids are assigned identical fluid properties.

The equations of motion are numerically integrated using the Verlet [27] algorithm with

a time step ∆t = 0.002τ . The simulation is initially run until the flow equilibrates, after

which spatial averaging is performed by dividing the fluid domain into rectangular bins

of size ∼ 0.5 × 1.0σ along the x–y plane, and extending through the entire depth of the

channel. In addition to spatial averaging, time averaging is done for a duration of 8000τ for

the moving contact line problem. In the case of a non-wetting wall, averaging was done for

an extended time of 16000τ in order to resolve the data. For the corner flow problem time

averaging is performed for a duration of 200000τ .

The velocity results presented in this paper are normalized by the wall velocity, |U | =

0.1στ−1. The dynamic viscosity of the bulk fluid is, µ = 1.9 ± 0.2ǫτσ−3 and the Reynolds

number of the flows is, Re = 0.9± 0.1. In order to compute various quantities at the wall, a

reference plane is defined at a distance of 1σwf away from the wall lattice site. For the single

phase Couette flow problem, the velocity at the reference plane is evaluated by fitting the

MD data with the analytical solution for a Couette flow. However, as there is no analytical

solution for the MCL and the corner flow problem, the velocity at the reference plane is

evaluated by linear extrapolation of the velocity to the reference plane. The strain rates

are evaluated by discretizing the velocity field using a second order accurate finite difference

scheme. Spurious data points at 2σ − 3σ away from the contact point and corner point are

excluded as the data is unresolved.

Studies by Priezjev [28] and Pahlavan & Freund [29] have shown that the stiffness of

thermal walls effect the slip length and its dependence on shear rate. It is also well known

that the property of the secondary fluid in a two-phase flow governs the contact angle which

in turn could effect the local stresses in the vicinity of the contact line in the primary fluid.

In this paper, for simplicity and in order to isolate these effects, the test cases are modeled

with wall molecules fixed to the lattice site and the two immiscible fluids having identical

properties.
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III. VERIFYING THOMPSON & TROIAN’S SLIP MODEL FOR A MOVING

CONTACT LINE PROBLEM

Thompson and Troian showed that for high shear rates slip is no longer a constant

rather it is a function of the shear rate. Their model provided a mechanism to relieve the

stress singularity at contact lines and corner points. By scaling slip length (Ls) with its

asymptotic value (Lo
s) and shear rate (γ̇) with its critical value (γ̇c), they showed that the

data for a steady Couette flow experiment collapses to a single universal curve, given by

Ls/L
o
s = (1 − γ̇/γ̇c)

−1/2. The reproduced results can be seen in, Fig. 2(a). However, the

non-linear relationship of slip length with shear rate and the universality of their boundary

condition were only demonstrated for a steady single phase flow. In order to verify their

boundary condition for more complex flows, we perform MD simulations of a two-phase

Couette flow (moving contact line problem). Using the values of Lo
s and γ̇c obtained from

the single phase Couette flow experiment, we scale the slip length and shear rate for the

two-phase Couette flow. It is seen that Thompson & Troian’s scaling does not result in

collapsed data for the moving contact line problem (Fig. 2(b)). In addition, it is observed

that the slip length starts to diverge even though the local shear rate has not approached

the critical value. Similar results can be shown in the case of a corner flow.

IV. THE GENERALIZED VELOCITY BOUNDARY CONDITION

In order to address the limitations of existing models, Maxwell’s slip model for rarefied

gases [25] is revisited with the aim to identify the functionality associated with slip in a

general steady fluid flow. Even though Maxwell’s model [25, 30, 31] was established for

rarefied gases, it is illustrated here that an analogous formulation shows promise to identify

model functionalities for slip modeling in liquids, or fluids in general. This is emphasized

by the fact that the Navier slip model gives the same functionality of slip velocity with

shear rate as Maxwell. Similar steps were taken by Thalakkottor & Mohseni [32] to extend

Maxwell’s slip model to unsteady flows with success.

Maxwell proposed that the fluid molecules reflected by the wall can be divided into two

categories namely, diffusive and specular reflection.
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Diffusive reflection
(

udiff
)

: The incident fluid molecules can be imagined as being ad-

sorbed by the wall and then emitted into the fluid, such that the net velocity will be the

same as that of the fluid being at rest with respect to the wall, that is

udiff(t+c ) = s ·U(tc). (2)

Here, tc is the time of collision, t+c is the instantaneous time immediately after collision

with the wall, U is the wall velocity vector and s is the wall-tangent unit vector. All the

parameters are evaluated at the wall unless specified.

Specular reflection (uspec): The incident fluid molecules undergo perfect elastic collision

with the wall, such that there is no tangential momentum transfer with the wall. Therefore,

uspec(t+c ) = s · u(t−c ), (3)

where t−c is the instantaneous time immediately before collision and u is the fluid velocity

adjacent to the wall. The velocity of the incident molecule is obtained by collision with a

fluid molecule located at a distance away from the wall. Using the mean free path method

[31, 33], the incident velocity can be calculated by performing a spatial discretization of

the fluid velocity about the wall. Here, Maxwell and other researchers make an implicit

assumption that the fluid velocity can only vary in the wall normal direction. Based on this

assumption, they evaluate the Taylor series expansion of the fluid velocity, by computing

the gradient of velocity only along the wall normal direction. However, for a general flow

the fluid velocity is not limited to variation in only the wall normal direction and can also

vary in the wall tangent direction. Therefore, using the mean free path method in three

dimensions, we obtain

uspec(t+c ) = s · (u (tc)−∆x · ∇u (tc)) (4)

= s ·

(

u (tc)−
2

3
λδ · ∇u (tc)

)

.

∆x can be written as ∆x = 2λ/3δ, where 2λ/3 is the average distance traveled by a

molecule in the x, y and z directions in a mean free time, λ is the mean free path and

δ = (±1,±1,±1) is the direction vector of the incident fluid molecule [31]. Hence, the

spatial discretization of the fluid velocity, is the source of the primary difference between

7



the Maxwell slip model and our general velocity slip model and as will be seen, has significant

ramifications on correct prediction near an interface irregularity.

Now, the momentum of diffusively reflected molecules together with specularly reflected

molecules give the net momentum of the reflected molecules. The fractions of diffusive and

specular molecules making up the net reflected molecules are determined by the tangential

momentum accommodation coefficient (σ̃). Therefore, the net reflected velocity is written

as

u(t+c ) = σ̃udiff(t+c ) + (1− σ̃)uspec(t+c ). (5)

As the incident and reflected velocities together constitute the actual fluid molecules close

to the surface, the average fluid velocity at the wall is given as the mean of the velocity before

and after collision,

u(tc) =
u(t+c ) + u(t−c )

2
. (6)

By substituting and simplifying, the slip velocity can be written as

Us =
2

3

(2− σ̃)

σ̃
λδ · ∇u · s, (7)

where Us = s ·U −s ·u. The velocity gradient tensor can further be written as the sum of a

symmetric (strain rate) and anti-symmetric (rotation rate) tensor, ∇u = 1/2(∇u+∇uT )+

1/2(∇u − ∇uT ). It is known [14] and we have independently verified that slip velocity is

independent of the rotation rate tensor. This is because the rotation rate tensor does not

cause any strain in the fluid element. Therefore, the generalized velocity boundary condition

is given by

Us = Lsδ ·
1

2
(∇u+∇u

T ) · s. (8)

Here, the coefficient [2 (2− σ̃)λ]/3σ̃ is a measure of slip at the interface and is replaced by

slip length, Ls. This allows the model to be applicable for liquids as well, for which the

mean free path is not well defined.

If we consider a two dimensional problem, then the above slip model simplifies to Us =

Ls

[

∂u
∂s

+ ∂u
∂n

]

, where n is the wall-normal unit vector. Comparing to the Navier/Maxwell

[24, 25] slip model, it is seen that the slip velocity has an additional dependency on the

linear strain rate, ∂u/∂s. It is known that far away from the corner or contact line ∂u/∂s

reduces to zero, yielding the Navier/Maxwell boundary condition. Thus, their models can

be viewed as a limiting case of the more general velocity boundary condition presented here.
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Qian et. al [34] derived their Generalized Navier boundary condition based on a force

balance argument, which says that slip is proportional to the tangential fluid force, βUs =
∫ z0
0

dz(∂xσ̃xx + ∂zσ̃zx). Here, β is the slip coefficient, z0 is the boundary layer thickness

and (̃.) refers to the hydrodynamic part of the stress. It can be seen that even though our

respective approach in deriving the boundary condition are different, they too account for

the linear stress similar to the linear strain rate in our boundary condition. This further

justifies our generalized velocity boundary condition. However, in order to use the slip

boundary condition, slip length needs to be known a priori. This is addressed next.

V. UNIVERSAL CURVE

The above findings suggest that for an arbitrary flow, slip length must not just be a

function of shear rate [22], but rather a function of a flow parameter that captures the total

strain rate experienced in a fluid element. One such parameter is the principal strain rate,

which represents the maximum and minimum strain rate in a fluid element. It must be noted

that for simple flows where velocity varies in only the wall normal direction, the principal

strain rate is equivalent to the shear rate. Thus principal strain rate can be considered as

the more general parameter. This is validated using MD simulations, for a moving contact

line and a corner flow. The schematics of the problem are shown in Fig. 1 and the different

wall-fluid properties used are listed in Table I.

The variation of slip length versus the local principal strain rate for a moving contact line

problem is plotted in Fig. 3 and 4, for the trailing and leading edge, respectively. The prin-

cipal strain rate for a 2D case is evaluated as e1,2 = (exx+eyy)/2±
√

((exx − eyy)/2)2 + e2xy),

where exx = ∂u/∂x, eyy = ∂v/∂y and exy = 1/2(∂u/∂y+∂v/∂x). Depending on whether we

are considering the leading or trailing edge, the principal strain rate e1 or e2 are used, respec-

tively. e1 represents the maximum extension experienced by the fluid which corresponds to

the acceleration of the fluid as it moves away from the leading edge, while e2 corresponds to

the maximum compression corresponding to the deceleration of the fluid on approaching the

trailing edge. In addition we also present the results for a corner flow with the wall moving

towards and away from the corner, as shown in Fig. 5 and 6, respectively. We observe a

non-linear relationship between slip length and principal strain rate, the functional behavior

of which suggests the existence of a universal curve. Scaling slip length by its asymptotic
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value and the principal strain rate (e1,2) by its critical value (ec), the data collapses onto a

single curve, described by Ls = Lo
s(1 − e1,2/ec)

α. The MD results show that α is approx-

imately −0.5, Fig. 7. This relation implies that close to the critical principal strain rate,

slip lengths would approach macroscopic values and at the critical value one would observe

perfect slip. This is analogous to material failure by plastic yielding or fracture, where the

limiting stress is a function of the principal stresses [35]. The value of Lo
s and ec are constants

associated with a given wall-fluid pair. It must be noted that the asymptotic value Lo
s and ec

is approximately the same as that evaluated for a single phase Couette flow, Fig. 2. Hence,

we can say that Thompson & Troian’s [22] slip model is the zero-linear-strain-rate limit of

this universal relation and in turn, Navier’s/Maxwell’s [24, 25] model is the low-shear-rate

limit of Thompson & Troian’s model.

Knowing Lo
s and ec for a given wall-fluid pair, one can evalute the slip length for any

given strain rate using the universal relationship for slip length presented here. Thereby, not

having to perform computationally expensive MD simulations. The universal relationship

for slip length, along with the generalized velocity boundary condition, provides a unified

boundary condition for steady Newtonian fluid flows. The unified boundary condition while

being consistent in the limits with the no-slip, Navier/Maxwell and Thompson & Troian

boundary conditions, is also able to capture the complete physiscs associated with more

complex problem such as the moving contact line and corner flow.

VI. CONCLUSION

To summarize, by extending the Maxwell slip model we obtain a generalized velocity

boundary condition which shows that, for a general flow, slip velocity is a function of both

the shear rate and the linear strain rate. Knowing this, we find that slip length is a function of

principal strain rate. By scaling slip length (Ls) with its asymptotic value (Lo
s), and principal

strain rate (e1,2) with its critical value (ec), we obtain a universal relationship for slip length,

Ls = Lo
s(1 − e1,2/ec)

−1/2. The universal relationship for slip length, together with the

generalized velocity boundary condition, gives a unified boundary condition that describes

slip at the boundary for a wide range of steady Newtonian flows. This was validated using

molecular dynamics simulations for the moving contact line and the corner flow problems.

The boundary condition captures the physics associated with complex problems, such as

10



single-phase corner flows and two-phase moving contact lines, while also being consistent

with the slip models of Navier/Maxwell and Thompson & Troian, for simpler flows. Our

results suggest that the moving contact line and the corner flow problems, both of which

exhibit boundary singularities, are fundamentally similar in nature and are governed by the

flow conditions presented here.
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FIG. 1. Schematics of the problem geometry. Schematics for, (a) a moving contact line

problem and, (b) a corner flow problem.
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FIG. 2. Breakdown of Thompson & Troian’s slip model for a moving contact line

problem. Scaled slip length versus shear rate is plotted for (a) a single phase unidirectional

Couette flow problem and (b) a two-phase, moving contact line problem. For both plots the

properties of primary fluid is the same (ρ ≈ 0.73σ−3 and T = 1.1kB/ǫ). The different cases

correspond to different wall-fluid properties, where hydrophobicity increases from Case 1 to 4. As

predicted by Thompson & Troian, the data for a single phase Couette flow collapses to a single

curve. However, the same scaling does not result in the collapse of data for moving contact line

problem. Here, ec is the critical principal strain rate. The principal strain for a single phase Couette

flow is computed as e1,2 = 1/2(∂u/∂y+∂v/∂x). Hence, in the case of a steady incompressible single

phase Couette flow the critical principal strain rate is half of the critical shear rate, ec = (1/2)γ̇c.
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FIG. 3. Moving contact line: Slip length versus principal strain rate at the trailing

edge. (a) Unscaled data and (b) scaled data. Results are presented for four different cases of

wall-fluid properties.
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FIG. 4. Moving contact line: Slip length versus principal strain rate at the leading

edge. (a) Unscaled data and (b) scaled data. Results are presented for four different cases of

wall-fluid properties.
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FIG. 5. Corner flow: Slip length versus principal strain rate at the edge where wall is

moving towards the corner. (a) Unscaled data and (b) scaled data. Results are presented for

different contact angles and for wall-fluid properties corresponding to Case 2.
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FIG. 6. Corner flow: Slip length versus principal strain rate at the edge where wall is

moving away from the corner. (a) Unscaled data and (b) scaled data. Results are presented

for different contact angles and for wall-fluid properties corresponding to Case 2.
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FIG. 7. α for different corner angles θ. The parameter α is seen to be approximately −0.5,

when the results are computed at a reference plane 0.5σwf away from the wall lattice site. This is

consistent with Thompson & Troian. If the values are not evaluated at the reference plane then α

could show corner/contact angle dependency.
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