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Hydrodynamic interactions between air bubbles and particles have wide applications in multiphase
separation and reaction processes. In the present work, we explore the fundamental mechanism of
such complex processes by studying the collision of a single bubble with a fixed solid particle inside
a Hele-Shaw cell. Physical experiments show that an air bubble either splits or slides around the
particle depending on the initial transverse distance between the bubble and particle centroids. An
air bubble splits into two daughter bubbles at small transverse distances, and slides around the
particle at large distances. In order to predict the critical transverse distance that separates these
two behaviors, we also develop a theoretical model by estimating the rate of the bubble volume
transfer from one side of the particle to the other based on Darcy’s law, which is in good agreement
with experiments.

I. INTRODUCTION

Hydrodynamic interactions between rigid particles and
bubbles are a topic of fundamental interest in fluid me-
chanics and are central in numerous industrial applica-
tions. For instance, the success of mineral flotation criti-
cally hinges on the collision, attachment, and detachment
of particles with bubbles in a suspension [1]. There ex-
ist a number of limited theories describing the collision
efficiency between particles and a rising bubble (i.e. see
[2] for review), as well as experimental work involving
particle-bubble interactions in a turbulent flow [3–5] or
a single bubble collecting particles [6]. In the context
of microfluidics, acoustic bubbles are used to trap and
sort micro-particles [7, 8], based on acoustically actuated
streaming flows [9] or secondary radiation forces [10]. Re-
gardless of the specific application, the central focus of
the aforementioned studies is the dynamics of the rigid
particles in the presence of a bubble. In particular, in
systematic experiments both in flotation and acoustoflu-
idics, the bubble is considered a static element whose
location and shape are fixed or externally controlled.

Distinct from the previous work on the particle-bubble
interactions, we presently focus on the dynamics of a
freely rising and evolving bubble around a fixed parti-
cle. We hereby adopt the experimental and theoreti-
cal approach typically used in the fundamental study of
drops and bubbles. The dynamics of bubbles and drops
has been extensively studied particularly inside the Hele-
Shaw cell, which allows for greater visualization and con-
trollability [11–13]. For instance, Maxworthy et al. [14]
observed complex interactions between multiple air bub-
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bles in a Hele-Shaw cell, including merging and break-up
of bubbles as similarly observed in [15–17].

While the bubble or drop break-up can be induced by
capillary forces under shear [18], geometrical obstacles
have also been introduced in the microfluidic channels
as means to induce and control droplet break-ups [19–
21]. Link et al. [19] conducted systematic experiments
of droplet breakup due to geometric obstacles; this phe-
nomenon was later theoretically resolved based on a one-
dimensional Darcy flow [20]. In particular, a threshold
capillary number, Ca, (ratio of viscous forces to interfa-
cial tension) for drop break-up was obtained based on the
simple model and used to generate and control the daugh-
ter droplet sizes in microfluidic channels. More recently,
Salkin et al. [22, 23] modeled an analogous problem by
estimating the pressure drop along the microfluidic chan-
nel. The critical capillary number that separates the
break-up and sliding phenomena was predicted, which
showed good agreement with the experimental data.

In this paper, we examine the interaction between a
fixed particle and a rising bubble in a Hele-Shaw cell, in
a flow configuration that has not been previously con-
sidered. We perform experiments in the regions of high
Bond number, Bo, and low capillary number, Ca, so that
gravity and surface tension are dominant forces in the
system. The experimental setup and methods are de-
tailed in Sec. II. Bubble morphologies during the inter-
action with the particle are recorded and analyzed with
image processing tools, which yields the bubble volume
and the position of the bubble centroid for all experimen-
tal runs. In particular, the rising bubble is observed to
either slide around the particle or split into two daughter
bubbles, depending on the transverse distance between
the bubble and particle centroids, as shown in Sec. III A.
This transitional behavior of the bubble from sliding to
splitting is analogous to that of the droplet from sliding
to break-up in the 1-D channel experiments [20]. The
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experimental results are then rationalized by considering
the Darcy flow in the liquid phase around the evolving
bubble as it interacts with the fixed particle in Sec. III B.

II. EXPERIMENTAL SETUP

In this study, we focus on the dynamics of a single
air bubble rising in the presence of a fixed particle in-
side a Hele-Shaw cell. The two-dimensional channel con-
sists of two 20×25 cm2 glass plates separated by a gap
of h = 1.5 mm. A spherical steel particle of 1.2 mm in
diameter is attached to the plate with a small amount
of adhesive glue prior to the experiment (Fig. 1(a)), so
that it spans the cell gap thickness. The Hele-Shaw cell
is filled with a glycerin solution (CAS# 56-81-5, PTI
Process Chemicals) mixed with water to reach the ap-
proximate concentration of 90% by weight for all exper-
iments. The surface tension of the solution is measured
to be γ =61.99±0.04 mN/m in a tensiometer (KRUSS
Force Tensiometer K11), and its dynamic viscosity is
µ = 238.01 ± 2.50 mPa·s, based on viscometer measure-
ments (Vibro Viscometer, A&D Company Ltd).

In the experiments of over 180 trials, a single air bubble
is injected into a quiescent glycerin solution from the bot-
tom of the Hele-Shaw cell by a syringe and rises under
the action of buoyancy. The vertical distance between
the fixed particle and the bottom of the Hele-Shaw cell is
large enough (∼15 cm) to ensure that the bubble reaches
the terminal velocity before interacting with the parti-
cle. A thin fluid film is observed to be always present be-
tween the air bubble and the Hele-Shaw cell walls in the
experiments. A Nikon D7000 video camera is mounted
in front of the Hele-Shaw cell to record the air bubble
dynamics with 1280×720 pixel images at 23 frames per
second. The resolution of the recorded images is given
by 0.072 mm/pixel. At each frame, the edge of an evolv-
ing air bubble is detected using the MATLAB image pro-
cessing toolbox, from which the bubble volume, centroid,
curvature, and velocity can be computed for further anal-
ysis.

In our analysis, a Cartesian coordinate system is de-
fined with the origin located at the center of the fixed
particle, as illustrated in Fig. 1(a); the fluid motion nor-
mal to the Hele-Shaw wall (or z-direction) is neglected
in the current study. In the experiments, large freely ris-
ing bubbles (R > 1.0 cm) become unstable and split into
daughter bubbles even in the absence of the particle. On
the other hand, small bubbles (R < 0.30 cm) are stable
and exhibit only minimal deformations against the par-
ticle without splitting. Therefore, the air bubble radius
is chosen to be between 0.50 and 0.75 cm to ensure that
the bubble rises stably and exhibits the transition from
sliding to splitting under various flow conditions. Since

the bubble diameter is consistently larger than the par-
ticle diameter (1.2 mm), the effects of the finite particle
size on the deforming bubble shape will not be consid-
ered in our model presented in Sec. III B. The transverse
distance between the particle and bubble centroid posi-
tions along the x-direction is measured and denoted as d
(Fig. 1(a)). The value of d (ranging from 0 to 2.5 mm)
is adjusted by shifting the position of the particle in-
crementally between experimental runs. The capillary
number (Ca = µU/γ, where U is the free-rising velocity
of the bubble) is in the range of 0.043 to 0.054, while
the Bond number, Bo = ρgR2/γ, varies between 4.7 and

11.0, where ρ = ρfluid − ρair ≈ 1.20 g/cm
3

is the density
difference, and g is the gravitational acceleration.

III. RESULTS

A. Experimental Results

Three representative bubble behaviors are observed for
varying values of the transverse distance, d, as shown in
Fig. 1(b) [24]. For small d values (d < 0.2 mm), upon
coming into contact with the particle, the air bubble
deforms and splits into two daughter bubbles on both
sides of the particle (Fig. 1(b-i, ii)); for large d values
(d > 1.0 mm), the bubble deforms and slides around the
particle (Fig. 1(b-iii)). Equal and unequal daughter bub-
bles are observed in the former case. Corresponding to
the low Ca limit, air bubble shapes are stable upstream
of the particle, and the sliding bubbles always tend to
restore their original shapes downstream. The extracted
bubble shapes and centroid positions corresponding to
cases (i)-(iii) are shown in Fig. 2(a). In addition, we
compute the curvature of the boundary on the x-y plane
as

κexp =
x′y′′ − y′x′′

(x′2 + y′2)3/2
, (1)

where x(s) and y(s) denote the position of the bubble
boundary in the horizional and vertical directions, re-
spectively, while s is the coordinate defined along the
boundary. The derivatives in Eq. (1) are computed by
a central difference scheme. A B-form spline function is
used to smooth the x and y coordinates of the boundary
before the derivatives are calculated [25]. An example of
the in-plane boundary curvature is shown in Fig. 2(b).

In our analysis, we track the bubble volume from each
frame, which is equivalent to the projected bubble area
(A) on the x-y plane. Specifically, we consider the bub-
ble area on the left and right sides of the particle, i.e.,
Al and Ar, respectively, which yields the area difference,
∆A(t) = Ar(t) − Al(t). The normalized area difference
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FIG. 1. (a) Schematic of the experimental setup with key parameters and the coordinate system. (b) The image sequence
from three representative experiments demonstrating the interaction of the bubble and a fixed particle: (i) equal splitting, (ii)
unequal splitting, and (iii) sliding bubbles. The bubble diameter (2R) in (i)-(iii) corresponds to 1.187, 1.183 and 1.184 cm,
while the values of the transverse distance between the particle and bubble centroids, d, are 0.03, 0.16 and 0.51 mm, respectively. 
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FIG. 2. (Color online) (a) The evolving boundaries and cen-
troid positions of the bubbles corresponding to cases (i)-(iii)
shown in Fig. 1(b). (b) The in-plane boundary curvature
(Rκexp) of case (iii) at three different frames. Here s denotes
the coordinate defined along the bubble boundary.

curves |∆A/A| are plotted as a function of time in Fig. 3,
which represents the bubble volume shift from one side
of the particle to the other. The |∆A/A| curves clearly
exhibit a transition between splitting and sliding bub-
bles. For sliding bubbles, the volume on one side of the
particle completely migrates to the other, so that the
value of |∆A/A| must reach one before some final time.
For splitting bubbles, on the other hand, the two sides
of the bubble do not completely merge; hence, the value
of |∆A/A| remains strictly less than one for all times.
Notably, we observe that the overall behavior of |∆A/A|
strongly depends on its initial value at t ∼ 0, i.e. the ini-
tial transverse distance, d. Based on this key observation,
we develop a reduced theoretical model that computes
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FIG. 3. (Color online) The normalized area difference, |(Ar−
Al)/A|, is plotted as a function of the dimensionless time,
t/(R/U) for all different values of d. The dark blue lines
correspond to the sliding bubbles, while the light gray lines
are the splitting bubbles.

the evolution of |∆A/A|. This model allows us to pre-
dict the critical transverse distance dc that separates the
splitting and sliding behaviors in the following section.

B. Theoretical Model

In this section, we propose a theoretical model to pre-
dict the bubble volume shift between the two sides of the
bubble separated by the fixed particle. We focus on the
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FIG. 4. (Color online) (a) Deformed bubble shapes at two dif-
ferent instants during the bubble-particle interaction process.
(b) Modeled bubble area shift with a range of initial ∆A/A
values, compared with experiment data shown in Fig. 3. Pa-
rameters ᾱ = 0.8 and β̄ = 0.75 are used in the model (Eq. (4)).
The critical time t∗c = 0.75 is assumed in this figure. Corre-
sponding to the final time t∗N = 2 and 2.5, the predicted
transition curves that separate the sliding and splitting cases
are shown as dashed curves.

fluid motion around the bubble with a highly deformed
shape as shown in Fig. 4(a) that contain snapshots of two
successive bubble shapes of case (iii). The fluid motion
on the boundary of the left side of the bubble is denoted
by arrows. Based on our observations, the fluid motion
can push the air from the left to the right side of the
particle, and thus shrink the volume of the left side of
the bubble (Appendix A). The shrinking rate of the air
volume can be estimated by the fluid velocity (u) and
the length of the left-hand side of the bubble (Sl) as

d(Alh)

dt
∼ −|u|Slh . (2)

Instead of computing the exact value of u everywhere
on the boundary, we estimate the order of magnitude
of u based on the fluid pressure. According to Darcy’s
law [11], the fluid velocity in a Hele-Shaw cell is related
to the fluid pressure gradient as

∇p′ = ∇(p+ ρgy) = −1

c
u , (3)

where constant c = h2/12µ, and the modified pressure is
p′ = p+ ρgy. The pressure gradient ∇p′ is estimated by
the boundary curvature of a deformed bubble; then the
rate of change in the left-bubble volume is computed by
Eq. (2).

Without loss of generality, let us assume Al ≤ Ar

in the following discussions. If we non-dimensionalize
all variables by the free-rising velocity of the bubble
U = ρgh2/12µ [11, 26], the bubble radius R before defor-
mation, the characteristic time T = R/U and the total
projected area A = πR2, the shrinking rate of the bubble
projected area of the left side can be expressed as

dA∗l
dt∗

= −β̄

(
ᾱ

Bo
√
A∗lA

∗
r

+ π

) √
A∗l (

√
A∗r −

√
A∗l )√

A∗r +
√
A∗l

,

(4)

with dimensionless variables denoted as (·)∗, A∗r = 1−A∗l
and A∗l ≤ 0.5. Parameter ᾱ is determined by the geome-
try of the bubble and β̄ is a free parameter. Experimen-
tally, we find ᾱ ≈ 0.8. The detailed derivation of Eq. (4)
and the physical meaning of ᾱ and β̄ are provided in
Appendix B.

When we calculate the flow velocity in Eq. (3), the
estimated pressure gradient ∇p′ is valid only for bubbles
that have undergone large deformations. In other words,
Eq. (4) does not hold prior to or in the initial stage of
the interaction between the bubble and particle. Thus,
we define a critical time, t∗c , at which the bubble volume
starts to shift from one side of the particle to the other,
and assume that Eq. (4) is valid for t ≥ t∗c . We find
that with the measured value of ᾱ = 0.8 and the free
parameter β̄ = 0.75, the volume shift predicted by our
model (Eq. (4)) matches the experimental data, as shown
in Fig. 4(b).

As discussed in Sec. III A, the transition between split-
ting and sliding bubbles can be predicted by the value
of |∆A(t∗)/A| at a later time, t∗N . Here, t∗N is defined
as the moment at which the bottom of the bubble rises
to the particle. For the sliding case, the bubble slides
around the particle by shifting the volume from one side
of the particle to the other before t∗N . For example, in
Fig. 4(b), the value of |∆A(t∗)/A| for sliding bubbles
becomes one before the final time, t∗N . For splitting bub-
bles, the volume transfer process is slower; therefore, the
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FIG. 5. (Color online) (a) The critical transition d∗c predicted
by our model for different t∗c and t∗N values. (b) The d-R
phase diagram that exhibits the transition between sliding
and splitting bubbles. The blue circles correspond to sliding
bubbles, while the gray upside-down triangles indicate split-
ting bubbles. The predicted minimum and maximum values
of this transition are d∗c = 0.027 & d∗c = 0.151 for R = 5
mm (solid lines) and d∗c = 0.035 & d∗c = 0.173 for R = 7.5
mm (dashed lines). The three representative cases (i)-(iii)
are labeled with red edges.

value of |∆A(t∗)/A| remains below one even at t = t∗N .
Based on this criterion, for a given transverse distance,
d∗, we can determine the bubble behavior by computing
the value of |∆A(t∗N )/A|. The final time t∗N in this prob-
lem is expected to satisfy t∗N ≥ 2, due to the fact that
the interaction with the particle slows down the rising
speed of the bubble. Therefore, in our prediction of d∗c
we choose 2 ≤ t∗N ≤ 2.5. With a range of critical time
0.5 ≤ t∗c ≤ 1, the predicted critical transverse distance
d∗c is shown in Fig. 5(a). Finally, the predicted transition

between splitting and sliding bubbles with the maximum
and minimum d∗c values are plotted as solid black lines in
Fig. 5(b), which captures the sliding-splitting transition
regime observed in the experiments.

The Bond number (Bo) in Eq. (4) is estimated based
on the smallest bubble size (R = 0.5 cm), and the min-
imum and maximum critical transverse distances (d∗c =
0.027 & 0.151) are calculated. To check the sensitivity
of the choice of R, we repeat the calculations with the
largest bubble size (R = 0.75 cm) as shown in dashed
lines in Fig. 5(a,b). We find that the minimum and max-
imum critical transverse distances are d∗c = 0.035 and
d∗c = 0.173 respectively, which corresponds to a 26% in-
crease in d∗c while R is increased by 40% and does not
affect the overall trend.

IV. CONCLUSION

In this paper, we investigate the interaction between
a single air bubble and a fixed particle in a quasi-two-
dimensional domain created by a Hele-Shaw cell. In the
limit of high Bond and low capillary numbers, the re-
sultant behavior of the bubble upon interacting with the
particle solely depends on the initial transverse distance
between the bubble and particle centroids. Experimen-
tally, the interaction between the bubble and the par-
ticle is recorded with a camera, and the time-dependent
bubble morphologies are extracted with image processing
tools. We observe that the bubble slides around the par-
ticle for small values of the transverse distance, d, while it
breaks up into daughter bubbles for large d. The critical
transverse distance, dc, at which the bubble transitions
from sliding to splitting is experimentally measured.

In order to model the transition between the splitting
and sliding bubbles, we use Darcy’s equation to estimate
the magnitude of the fluid velocity associated with a de-
forming bubble in the Hele-Shaw cell. This velocity es-
timate is used to predict the rate of bubble volume shift
from the smaller to the larger side, which agrees well with
the experimental measurements. Based on the plot of the
bubble volume shift, we observe that the overall bubble
dynamics strongly depends on the bubble configuration
at early times. By assuming that the bubble volume
transfer starts from some critical time, tc, this model
leads to the prediction of the critical transverse distance,
dc, that separates the splitting and sliding cases.

Our experiments are performed at low Ca and high Bo,
so that buoyancy and surface tension forces are dominant
over viscous effects. Thus, equation (4) describing the
bubble-area shift is derived from a balance between these
two dominant effects, determined solely by the value of
Bo and independent of Ca. As long as Ca is low, a change
in Ca (e.g. changes in the fluid viscosity and the gap
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thickness) will affect the characteristic time scale (T =
R/U ;U ' ρgh2/12µ) but have no significant impact on
the overall dynamics that follows Eq. (4). Furthermore,
if Ca becomes greater than 1, the buoyancy and viscous
forces become dominant, and bubble dynamics would be
quite different from our work presented here, which is
outside of the scope of our study.

The current work provides an integrated experimental
and theoretical framework to rationalize the air bubble
and particle interactions in a quasi-two-dimensional fluid
domain. The results can be potentially extended to sys-
tems with liquid droplets. Specifically, the model on the
bubble volume shift may prove useful for industrial pro-
cesses, in which gravity-driven bubbles past geometric
obstacles are employed to generate controllable bubble
sizes.
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Appendix A: Flow field around a deforming bubble

The flow field around a deforming air bubble can be
obtained from the pressure field using the relation in
Eq. (3). The modified pressure field (p′) of the fluid in
a Hele-Shaw cell satisfies the two-dimensional Laplace
equation

∇2p′ = 0. (A1)

The Laplace equation above can be solved numerically
by the boundary element method (BEM). The solution
to Eq. (A1) can be expressed as

p′(x0) =− c
∫
S

G(x,x0)(n · ∇p′(x)) dS(x) (A2)

+ c

∫
S

p′(x)(n · ∇G(x,x0)) dS(x),

where S denotes the boundary of the bubble in the x-y
plane. Here, the constant c = 1 when x0 is located in the
fluid and c = 2 when x0 is on the boundary. The Green’s
function (G) is defined as G(x,x0) = − ln |x−x0|/(2π).
Experimentally, the normal velocity of the bubble bound-
ary, un = n · ∇p′(x) (refer to Eq. (3)), can be measured
from bubble boundary shapes on successive frames as
shown in Fig. 4(a). Using this measured velocity as the

boundary condition, the modified pressure on the bound-
ary of the bubble and in the fluid can then be solved
numerically based on Eq. (A2).

The pressure (p′ and p) and velocity (u) field distri-
butions around the bubble are computed from Eq. (A2)
and Eq. (3). The computed pressure field and velocity
field are shown in Fig. 6 and Fig. 7, respectively. The
velocity distribution verifies our assumption that the air
volume shifts from the large to the small side as the bub-
ble deforms.
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FIG. 6. (Color online) The BEM simulation results for (a)
p′/(σ/R) and (b) p/(σ/R) distribution around a deforming
bubble.

Appendix B: Derivation of the theoretical model

In order to model the velocity in Eq. (3), we need to
obtain the expression for the pressure difference, ∆p, and
the relative vertical position, ∆y, between the left and
right sides of the deformed bubble. First, we assume the
pressure inside the bubble is constant as p = p0, while
the pressure outside the bubble boundary can be derived



7

−2 0 2
−2

−1

0

1

2

x / R

y
 /

 R

FIG. 7. (Color online) The velocity field derived from the
numerically computed pressure field using Eq. (3).

from the Young-Laplace equation: p = p0 − σκ [11, 27].
Here, the curvature (κ) is the sum of the in-plane (κxy)
and out-of-plane (κz = 2/h) curvatures, i.e., κ = κxy +
κz. We postulate that the curvature of the deformed
bubble on either side of the particle is related to its area
(A) by

κxy =
α1√
A
, (B1)

where α1 is a parameter for the curvature estimates.
Note that the curvature in Eq. (B1) represents an esti-
mate of an average curvature of either side of the bubble,
rather than a local curvature along the boundary.

In the following calculation, we still retain the assump-
tion that Al ≤ Ar. From Eq. (B1), the curvature differ-
ence between the two sides is given by

∆κ = κxyr − κ
xy
l = α1(A−1/2

r −A−1/2
l ). (B2)

To validate the above equation, we experimentally mea-
sure the relation between the curvature and the projected
bubble area; here, the curvature of the evolving bubble is
calculated using Eq. (1). To estimate the average curva-
ture in Eq. (B1), we take the arc-length averaged value
of the curvature, such that

κxy ≈ κ̄xy =

∫
s
κexp ds∫
s
ds

. (B3)

Figure 8(a) shows the relation between the measured di-
mensionless curvature difference R∆κ ≈ R(κ̄xyr − κ̄xyl )

and R(1/
√
Ar − 1/

√
Al) values, which indicates a lin-

ear relation with the slope α1 ≈ 1.2. In the case of a
semi-circular bubble (as a rough approximation of the
bubbles in experiments), the in-plane curvature is given
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FIG. 8. (Color online) (a) The curvature difference |∆κ| as
a function of |1/

√
Al − 1/

√
Ar| based on measurement (blue

dots). The black line has a slope of 1.2. (b) The measured
vertical distance |∆y| as a function of |

√
Ar−

√
Al| (blue dots).

The black line has a slope of 1.5. In both plots, x- and y-axes
are normalized by the length scale R.

as κxy =
√
π/(2A) corresponding to α1 ≈ 1.3, which is

close to the measured value.
The relative vertical position (∆y = yr − yl) between

the right and left bubble sides is assumed to be propor-
tional to the square-root of their area

∆y = yr − yl = α2(
√
Ar −

√
Al), (B4)

where α2 is another parameter introduced to correlate
the area difference to the height difference. From our
experiments, ∆y is estimated from the vertical distance
between the apexes of both sides (i.e., points “A” and
“B” in Fig. 4), ∆y ≈ yB − yA, and the relation between
∆y and (

√
Ar −

√
Al) is shown in Fig. 8(b). The linear

relation assumed in Eq. (B4) is supported with α2 ≈ 1.5.
Again, in the case of two semi-circular bubbles attached,



8

the height difference becomes ∆y =
√

2/π (
√
Ar −

√
Al)

corresponding to α2 ≈ 0.8, which is on the same order
of magnitude as the measured value. The difference in
the values is primarily due to a very rough approxima-
tion of assuming two semi-circular shapes for a deformed
bubble.

Finally, the pressure difference between the two sides
is expressed as

∆p′ = (p+ ρgy)r − (p+ ρgy)l = (B5)

− σα1(A−1/2
r −A−1/2

l ) + α2ρg(
√
Ar −

√
Al).

In order to compute the pressure gradient that drives
the fluid flow from the right to the left side of the par-
ticle, we define a length scale associated with the flow
between the two sides, L, as shown in Fig. 4(a). With
the introduction of another geometric parameter α3, we
estimate L as L = α3(

√
Ar +

√
Al). The magnitude of

fluid velocity (u) can now be approximated as

u ≈ −c∆p′

L
= − c

α3

(
2α1σ√
AlAr

+ α2ρg

) √
Ar −

√
Al√

Ar +
√
Al

.

(B6)
The bubble shrinking rate Eq. (2) can then be expressed
more precisely as

dAl

dt
= −β|u|Sl, (B7)

where β is a modification parameter for the flow rate.
Note that Eqs. (B6, B7) are not valid if the fixed particle
is large enough to block the liquid flow between the left
and right bubble sides. The size effect of the solid particle
is neglected here because the particle is small compared
to the size of the air bubbles. If we model the left side
boundary length Sl as Sl = α4

√
Al, where α4 is another

geometric parameter, Eq. (B7) becomes

dAl

dt
= −

(
β
α4

α3

)
h2

12µ

(
α1σ√
AlAr

+ α2ρg

)
(B8)

×
√
Al(
√
Ar −

√
Al)√

Ar +
√
Al

.

In the above analyses, the parameters α1, α2, ..., α4 and
β are introduced as parameters for the order of magni-
tude estimate of length scales and flow rate. By redefin-
ing the parameters as ᾱ = α1/α2 and β̄ = βα2α4/π

3/2α3,
Eq. (4) is obtained. The experimental measurements of
α1 and α2 yield ᾱ ≈ 0.8.
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