
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Drag force and transport property of a small cylinder in free
molecule flow: A gas-kinetic theory analysis

Changran Liu, Zhigang Li, and Hai Wang
Phys. Rev. E 94, 023102 — Published 10 August 2016

DOI: 10.1103/PhysRevE.94.023102

http://dx.doi.org/10.1103/PhysRevE.94.023102


 

 1

Drag Force and Transport Property of Small Cylinder in Free Molecule Flow:  
A Gas-Kinetic Theory Analysis 

 

 

Changran Liu,1 Zhigang Li,2 and Hai Wang1 
1Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA 

2Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and 
Technology, Clear Water Bay, Kowloon, Hong Kong 

 

Analytical expressions are derived for aerodynamic drag force on small cylinders in the free 

molecule flow using the gas kinetic theory. The derivation considers the effect of intermolecular 

interactions between the cylinder and gas media. Two limiting collision models, specular and 

diffuse scattering, are investigated in two limiting cylinder orientations with respect to the drift 

velocity. The earlier solution of Dahneke (B. E. Dahneke, Journal of Aerosol Science 4, 147, 

1973) is shown to be a special case of the current expressions in the rigid-body limit of collision.  

Drag force expressions are obtained for cylinders that undergo Brownian rotation and for those 

that align with the drift velocity. The validity of the theoretical expressions is tested against 

experimental mobility data available for carbon nanotubes. 
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I. INTRODUCTION 

Theory of aerodynamic drag force, diffusivity and electric mobility of nanosized slender 

bodies (NSBs) in a fluid medium is of interest to a wide range of problems.  NSBs may include 

long-chain molecules, nanorods and nanotubes.  Applications range from drag on cylinders or 

chains of spheres [1], size classification of fiberous aerosols [2-6], ion mobility of long-chain 

molecules and biomolecules [7-9], gas-phase synthesis, separation and characterization of 

nanotubes and nanorods [10-20], to transport properties of long-chain hydrocarbons in reacting 

flows [21-23].   

Earlier, Batchelor [24] and Cox [25] treated the drag force on a slender body in the Stokes 

flow region and the low-Reynolds number limit.   For a slender body of radius R and length  (

) undergoing relative motion with a fluid at a drift velocity V, they showed that the drag 

force takes the forms of 
 

   (1) 

and 
 

  , (2) 

for cylinder aligned parallel ( ) and perpendicular ( ⊥ ) to the drift velocity, respectively.  In eqs 

1 and 2, μ  is the fluid viscosity.  The proportionality between the drag force and velocity may be 

expressed in terms of the drag coefficient c, i.e., F = cV .  Equations 1 and 2 are applicable in the 

small Knudsen number limit, i.e., , where λ  is the mean free path of the fluid. 

For an NSB or a slender body in the free molecule regime ( ), expressions for 

aerodynamic drag were also available. Notably, Dahneke [26] carried out a gas-kinetic theory 

analysis and extended Epstein’s theory for spheres [27] to bodies of arbitrary shapes.  In his 

analysis, Dahneke considered rigid-body collision only and treated two types of momentum 
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transfer, i.e., the diffuse and specular scattering models as discussed in Millikan [28, 29]. In 

absence of dynamic rotational effects, Dahneke’s drag force expression takes the form of 
 

  , (3) 

where mg is the molecular mass of the gas, k is the Boltzmann constant, T is the temperature, N is 

the gas number density, and ϕ  is the momentum accommodation factor ( 0 ≤ ϕ ≤ 1).  Here the 

two limiting ϕ  values are 0 for specular scattering and 1 for diffuse scattering. In eq 3, α  

specifies the orientation of the NSB with respect to the drift velocity V (α = 0 for the cylinder 

collinear with V and α = π 2 for the cylinder perpendicular to V).  Equation 3 differs from eqs 

1 and 2 because of the fundamental difference in the mechanism of momentum transfer.  While 

in Stokes flow viscous dissipation of the fluid surrounding the slender body governs the drag, in 

free molecule regime the drag arises from momentum transfer of direct collisions between the 

fluid molecules and the cylinder surface. FIG 1 illustrates the dependency of the drag coefficient 

on the radius of cylinders of a constant aspect ratio .  In the Stokes flow regime (

), we expect the drag coefficient C to be independent of R or the drag force F ∝ R , whereas in 

the free molecule regime ( ), C is proportional to R or F ∝ R2 in the rigid-body limit of 

collision.  

Equation 3 has been the foundation in recent studies of the transport properties of NSBs. For 

example, Kim et al. [14] obtained an orientation-averaged electrical mobility expression and 

used it to determine the length of nanowires from electric mobility measurement.  They showed 

that the mobility is a strong function of the wire orientation, which in turn, are dependent on the 

electric field strength and wire aspect ratio. Li et al. [30] considered the effect of cylinder 

rotation and obtained an expression for the orientation averaged drag force from Dahneke’s 

expressions.  TABLE 1 presents several drag force formulations relevant to the current discussion. 

As discussed before, Dahneke’s theory considers rigid-body collision only, yet the dynamics 

of collision and the resulting momentum transfer can be impacted by potential energy of 
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interactions between an NSB and the fluid molecules.  In general the potential energy of 

interactions increases the collision cross section and hence the drag.  The shaded areas of FIG 1 

depict this effect. Previous studies have shown the effect of potential interactions to be 

significant for particles smaller than 10 nm in diameter [31-33].  For that size range, further 

complication many stem from changes in the dominant mode of molecular scattering. As the 

particle size is decreased to a few nanometers the collision evolves from diffuse to specular 

scattering [34, 35]. In general, diffuse scattering yields a drag larger than specular scattering (cf, 

FIG 1).  These peculiarities ought to be applicable for matters of arbitrary shapes.  For these 

reasons, Dahneke’s expression can be inadequate when applied to NSBs as they approach the 

molecular size in at least one of its size dimensions. 

Gas-phase transport properties have been treated with the Chapman-Enskog theory with 

spherical, isotropic potential functions [36]. For both near-spherical and non-spherical molecules 

the potential function of interactions has been historically described by an isotropic Lennard-

Jones (LJ) 12-6 function [37-42]. The validity of this assumption was never examined in detail 

for non-spherical molecules. Considering that the LJ potential parameters used to model the 

binary diffusion coefficient are estimated customarily from measured viscosity [38-41], there is 

no theoretical reason to believe that the use of the LJ potential would lead to adequate 

predictions for gas diffusivity.  Recent molecular dynamics evidence indeed suggests that the 

spherical potential assumption can be inaccurate [43, 44].  

Recognizing the aforementioned problems, Wong et al. [45] treated the drag coefficient using 

axisymmetric potential and a gas-kinetic theory.  Although the treatment was shown to predict a 

range of relevant data, it does not converge to Dahneke’s rigid-body expressions. Specifically, a 

more precise treatment of the trajectory of a gas molecule undergoing specular scattering with 

the cylinder, as will be adopted here, should lead to zero momentum transfer along the axial 

direction of the cylinder and thus reproduce Dahneke’s expression. 

In this paper we carried out a comprehensive gas-kinetic theory analysis for drag force on 

NSBs in the perfect cylinder limit with the aspect ratio .  The potential force of 
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interactions between the fluid molecules and the cylinder is described by a potential function. 

We are interested in free molecule flows with the effective Knudsen number . 

Following Epstein [27], we considered specular and diffuse scattering separately. It has been 

identified earlier that the origin of diffuse scattering is molecular adsorption/desorption on 

particle surface [34, 35], which is applicable to NSBs also. Drag force expressions are obtained 

for cylinders that undergo Brownian rotation and for those that align with the drift velocity. The 

validity of the theoretical expressions is examined against experimental mobility data available 

for carbon nanotubes. 

 

II. GAS KINETIC THEORY ANALYSIS 

In principle, the gas-kinetic theory analysis of drag on a cylinder is similar to that of 

spherical particles [31].  FIG 2 shows the coordinate system.  A cylinder of radius R and length 

 ( ) undergoes motion in a fluid with an instantaneous velocity V. The axis of the 

cylinder lies along the y-axis, and V is on the y-z plane at the attack angle α . Fluid molecules of 

random velocity v collide with a differential cylinder section of length dl  at the relative velocity 

 g = v − V  with the differential collision cross section equal to dl ⋅ db , where b is the impact 

parameter. The velocity vector g may be defined by the polar angle φ  and azimuthal angle θ . 

Furthermore, β  is the angle between g and the z-axis, and ζ  is the angle between g and the y-

axis. 

Gas is assumed to be in local equilibrium and its mass-center velocity is equal to zero. In this 

reference frame, the velocity distribution of the gas molecules is  
  

 fv = N
mg

2πkT

⎛

⎝
⎜

⎞

⎠
⎟

3 2

exp −
mgv2

2kT

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 , (4a) 

where v is the velocity of gas molecules. There are several important assumptions worthy to be 

mentioned before we start our derivation. When the cylinder is moving in a gas, the drag force is 

essentially the result of the momentum exchange between gas molecules and the cylinder upon 
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collisions. The drift velocity  V  is the time average of V, which is expected to be substantially 

smaller than v or g.  The relative velocity g has the distribution 
  

 

   

fg = N
mr

2πkT
⎛

⎝⎜
⎞

⎠⎟

3 2

exp −
mr g + V( )2

2kT

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
 , (4b) 

where mr = mgmc mg + mc( ) is the reduced mass with mc being the mass of the cylinder.  

 

III. SPECULAR SCATTERING 

We shall consider first the case in which the collision between the gas molecule and cylinder 

is elastic. We neglect the cylinder-end effect for now and treat only momentum transfer on the 

side of the cylinder body. The end effect shall be discussed later. For a gas molecule moving 

toward the cylinder with a relative, incident velocity g and impact parameter b, as shown in FIG 

2(a), the x-z plane projection of its trajectory is depicted in FIG 2(b). Let ′g  be the molecular 

velocity after the collision, and e is a unit vector of ′g − g . In this plane, we construct a frame in 

which axis e3 is parallel to the incident velocity g, and the axis e2 is normal to both e3 and the 

axis of the cylinder. 

We treat cylinders with lengths much longer than the range in which the gas-cylinder 

interaction takes place.  Thus, a key assumption we make here is that the cylinder is infinitely 

long (with respect to the local gas-cylinder interaction potential). This assumption also implies 

that momentum transfer along the cylinder axis is negligible, and that ′g − g  is equal to the 

difference of velocity components in the x-z plane. The above assumption is consistent with 

Dahneke’s treatment in the rigid-body limit, which produces zero drag when V is collinear with 

the cylinder axis. The assumption is different from that of Wong et al. [45] who assumed the 

momentum exchange to be always zero in the direction perpendicular to the O’AC plane as 

shown in FIG 2. Such an assumption would lead to non-zero drag on the cylinder (or a fluid 

mechanical shear) when the drift velocity is collinear to the cylinder in the specular limit, which 

is not physical. 
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The scattering angle χ = χ g( ) is given by 

 χ = π − 2b r−2

rm

∞

∫ 1− b2

r2
−

2Φ r( )
mr gx

2 + gz
2( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−1 2

dr  , (5) 

where rm is the closest distance of encounter between the approaching molecule and the axis of 

the cylinder.  We shall retain the use of mr here for generality.  In eq 5, Φ r( )  is the potential 

function between the molecule and particle, which we assume to be a function of the normal 

distance r only as discussed earlier. 

In specular elastic collision, the magnitude of gas molecule velocity is equal before and after 

collision, i.e., g = ′g . The relative velocity ′g  may be given as 
 

 
   

′g = g y + gx + gz cos χe3 − sin χe2( )  . (6) 

For a given impact parameter b the differential momentum transferred to the cylinder from the 

gas is 
 

    
p − ′p = mrn g − ′g( ) = mrn gx + gz 1− cos χ( )e3 + sin χe2⎡⎣ ⎤⎦ , (7) 

in the cross section dl ⋅ db (FIG 2) over time dt.  Here, l  is the shortest distance from the origin 

of the coordinate system to the O’AC plane (FIG 2). We note that the above equation shows that 

momentum transfer occurs only in the x-z plane as expected, and along the y-axis, the 

momentum transfer and force is zero.  In eq 7, n is the number of molecules crossing dl ⋅ db 

over dt, i.e., 
 

 n = g ⋅ fg ⋅ dl ⋅ db ⋅ dt  . (8) 

Note that upon integration, the term in the e2 direction vanishes.  The total drag is the integral of 

the force in the e3 direction only over relative velocity dg and collision cross section dl ⋅ db, i.e.,  
 

  . (9) 
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Define a collision integral Qs,⊥ = Qs,⊥ g( ) to be 
  

  . (10) 

Here, the subscript “ ⊥ ” indicates that the drift velocity vector is perpendicular to the cylinder 

axis.  The force expresion becomes 
 

 
Fs = mr gfg gx + gz e3Qs,⊥ dg

g∫
= mr gfg gxi + gzk( )Qs,⊥ dg

g∫
, (11) 

where i and k are the unit vectors along the x and z axes. In eq 10,  is the maximum distance 

beyond which potential force of gas-cylinder interaction becomes negligible. It is reasonable to 

argue that  is proportional to the projection of the cylinder length on the plane perpendicular 

to g. Thus we can write 
 

  , (12) 

where ζ  is the angle between g and the y axis (FIG. 2), and w g,b( ) is some function of g and b 

which is expected to be slightly larger than unity.  Here we approximate w g,b( ) ≅ 1. 

Since , the distribution function of g can be written as 
 

 

fgdg = N
mr

2πkT
⎛

⎝⎜
⎞

⎠⎟

3 2

exp − g2 +V 2 + 2gV cosβ
2kT mr

⎛

⎝
⎜

⎞

⎠
⎟ dgxdg ydgz

≅ N
mr

2πkT
⎛

⎝⎜
⎞

⎠⎟

3 2

exp −
mr g2

2kT

⎛

⎝
⎜

⎞

⎠
⎟ 1−

mr gV cosβ
kT

⎛

⎝⎜
⎞

⎠⎟
dgxdg ydgz

 . (13) 

Putting eq 13 into eq 11, we obtain 
 

 

   

Fs = Nmr
mr

2πkT
⎛

⎝⎜
⎞

⎠⎟

3 2

g gxi + gzk( )
−∞

∞

∫−∞

∞

∫−∞

∞

∫ Qs,⊥ exp −
mr g2

2kT

⎛

⎝
⎜

⎞

⎠
⎟

      1−
mr gV cosβ

kT
⎛

⎝⎜
⎞

⎠⎟
dgxdg ydgz

 . (14) 
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The first term in 1− mr gV cosβ kT  vanishes upon integration, and thus  
 

 

Fs = −
mr NV

2π( )3 2
mr
kT

⎛

⎝⎜
⎞

⎠⎟

5 2

g2 gxi + gzk( )
−∞

∞

∫−∞

∞

∫−∞

∞

∫ Qs,⊥

     cosβ exp −
mr g2

2kT

⎛

⎝
⎜

⎞

⎠
⎟ dgxdg ydgz

 . (15) 

It may be shown that the integral of the i-component is zero, and the net force is non-zero for the 

k-component or in the z direction. The coordinate system used has the z-component of the drift 

velocity ( V⊥ ) perpendicular to the cylinder axis. The corresponding force equation is 
 

 Fs = −
mr NV⊥

2π( )3 2
mr
kT

⎛

⎝⎜
⎞

⎠⎟

5 2

ggz
2

−∞

∞

∫−∞

∞

∫−∞

∞

∫ Qs,⊥ exp −
mr g2

2kT

⎛

⎝
⎜

⎞

⎠
⎟ dgxdgydgz  . (16) 

Note that V⊥ = V sinα .  The above equation may be expressed in the spherical coordinate as 
 

 Fs = −
mr NV⊥

2π( )3 2
mr
kT

⎛

⎝⎜
⎞

⎠⎟

5 2

g5

0

π

∫0

2π

∫0

∞

∫ Qs,⊥ exp −
mr g2

2kT

⎛

⎝
⎜

⎞

⎠
⎟ cos2 φ sinφdφdθdg  . (17) 

Let γ = g 2kT mr , we find the generalized expression for drag force on a cylinder 

undergoing drift as 
 

 Fs = −
2NV⊥

π
2mrkT

π
γ 5

0

π

∫0

2π

∫0

∞

∫ Qs,⊥ exp −γ 2( )cos2 φ sinφdφdθdγ  . (18) 

We define here a reduced collision integral as 
 

  . (19) 

The total force is then  
 

  . (20) 

 
Based on eq 20, the drag coefficient is thus 
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  . (21) 

It may be shown that for rigid-body collision, Ωs
1,1( )* = π 2 2 . Noting that mg ≅ mr , the 

corresponding drag coefficient is 
 
   (22) 

which is identical to the solution of Dahneke [26].  Hence, Dahneke’s expression is a special 

case of the present result. 

 

IV. DIFFUSE SCATTERING 

We now consider the case of diffuse scattering where the molecule “reflects” randomly over 

the hemisphere above the plane tangent to the point of contact on the cylinder surface. The 

velocity distribution of the reflected molecules is Maxwellian, i.e., 
 

 
  

′fg = 2 ′N
mr

2πkT
⎛

⎝⎜
⎞

⎠⎟

3 2

exp −
mr ′g 2

2kT

⎛

⎝
⎜

⎞

⎠
⎟  , (23)  

where ′g  is the velocity of the “reflected” gas molecule. In the e direction (normal to the side 

surface of the cylinder), ′g  must be positive (FIG 2). ′N  represents the number density of the 

“reflected” molecules, and its value may be determined from mass conservation. By assuming 

that the temperature of the scattered molecules is equal to that of the incidence, the rate of 

incident molecules crossing from the differential cross section dl ⋅ db onto a surface element dA  

on the side of the cylinder body can be written as 
 
 gfg ⋅ d l ⋅ db = ′g ⋅ dA( ) ′fg′g∫ d ′g  . (24)  

Combining eqs 23 and 24, we obtain 
 

 ′N =
πmr
2kT

d l ⋅ db
dA

gfg  . (25)  

The momentum of the reflected molecules is 
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′p = mr ′g ′g ⋅ dA( ) ′f  dt d ′g
′g∫  . (26)  

Putting eqs 23 through 25 into the above equation, we obtain 
 

 
    

′p = 1
2π

mr
kT

⎛

⎝⎜
⎞

⎠⎟

2

fg g  d l  dbdt ′g ′g ⋅ dA( ) 1
dA

exp −
mr ′g 2

2kT

⎛

⎝
⎜

⎞

⎠
⎟  d ′g

′g∫ . (27) 

It can be shown that the integral portion of the above equation is 2 kT( )5 2 π mr( )3 2 e. Hence 
 

 ′p = πkT
2mr

mr gfg  d l  db  dt  e , (28) 

where e is the unit vector normal to dA .  Noting that the force component in the e2 direction 

vanishes upon integration, we write the equation as  
 

  . (29) 

Putting eq 4 into eq 29 and simplifying, we obtain the total force to be 
 

 . (30) 

As shown in Fig 2, the cylinder axis and drift velocity define the y-z plane. Momentum exchange 

normal to this plane is, on average, zero due to symmetry. Equation 30 may be rewritten as 
 

 , (31) 
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where  is the drift velocity component parallel to the cylinder axis, and the collision cross 

sections are given by 
 

  , (32) 

. (33) 

 

In the above equations we define the critical impact factor b0 to be a value below which the 

molecule undergoes contact collision where diffuse scattering dynamics prevail; and when b  > 

b0 the colliding molecule undergoes fly-by collision without physical contact with the cylinder 

surface [31].  Furthermore, eq 31 may be written as  
 

 , (34) 

where the reduced collision integrals are defined as: 
 

 , (35) 

 

 . (36) 

Alternatively the above equation can be written as  
 

 , (37) 

where the drag coefficients are 
 

 , (38) 

 , (39) 
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We note that the current result differ from the earlier analysis of Wong et al. [45] again because 

of their assumption of zero momentum transfer in the direction perpendicular to the O’AC plane. 

 

V. SCATTERING MODEL 

We have discussed the two limiting models of molecular scattering upon impact with a 

slender body. Physically the scattering process falls between the two limits. In an earlier MD 

study [34], we explained the origin of inelastic diffuse scattering to be the result of transient 

molecular adsorption/desorption on the particle surface. The random walk following adsorption 

and the fact that desorption is the result of fluctuation cause the gas molecule to have little to no 

memory to its incident angle. This phenomenon occurs when a particle becomes large enough 

(typically a few nanometers in radius) and has enough internal degrees of freedom to 

accommodate the incident kinetic energy of the gas molecule. Another factor that contributes to 

an increased tendency of molecular adsorption is a reduced surface curvature as the particle 

becomes larger, leading to an increased probability of subsequent bounces and capture of the gas 

molecule following the initial impact. The MD simulation basically explained why molecular 

collisions are close to elastic specular (as exemplified by the success of the Chapman-Enskog 

theory in explaining molecular transport properties [36, 37]), and Millikan’s observation [28, 29] 

that the drag measured for his oil droplets (> 0.03 μm) is more consistent with Epstein’s theory 

of diffuse scattering [27]. In fact, Millikan proposed that his data was better explained by a 90% 

diffuse and 10% specular scattering mix, leading to a net force equal to F = 0.9Fd + 0.1Fs .  Here, 

the coefficient 0.9 is commonly known as the momentum accommodation factor [28].  

Recognizing that the specular, elastic scattering must transit into diffuse scattering as a 

“particle” crosses over a certain size boundary, the momentum accommodation factor is, in fact, 

not a constant. For this reason, we introduced a momentum accommodation function ϕ  [34, 35] 

( 0 ≤ ϕ ≤ 1) and demonstrated the variation of ϕ  with respect to particle size for several particle 

materials [35].  Following the earlier approach [32], we write the drag-force expression for a 

cylinder in a similar manner:  
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F = ϕFd + 1−ϕ( )Fs  . (40) 

As in the case of drag on spherical particles, the momentum accommodation function bears the 

greatest uncertainty. In section IX, we shall shed some light on this function using carbon 

nanotube as an example.  

Combining eq 40 with eqs 20, 21 and 37, we obtain  
 

 , (41) 

where cs,⊥ , cd ,⊥ ,  are given by eqs 21, 38 and 39, respectively, in which the collision 

integrals are reduced to 
 

 Ωs
1,1( )* = π 2 2 

 Ωd ,⊥
1,1( )* = π 2 6 + π( ) 16 

  

for rigid-body collision.  Substituting the above integral values into eqs 22, 38, and 39, 

expressing the drag force in terms of viscosity μ = Nmgλ 2kT π  and letting mg ≅ mr  the force 

in the rigid-body limit is 
 

  , (42) 

a result identical to that given by Dahneke [26].  

 

VI. ROTATION AND CYLINDER ORIENTATION EFFECT 

For cylinders with length substantially smaller than the mean free path of the gas, i.e., 

 and in absence of a strong external force field that causes alignment of the 

cylinder axis with the drift velocity in any direction, the cylinder is expected to undergo 

unhindered rotation.  Under this condition the cylinder orientation may be treated by a uniformly 

random distribution. As we persistently indicated in the derivation, the force expressions given 

thus far are the instantaneous force. This force does not always align with the drift velocity.  It is 



 

 15

clear, however, that the force components perpendicular to the draft velocity must all vanish after 

orientation averaging.  From eq 40, we may write the drag force as 
 

 . (43) 

Averaging over all solid angles (0 ≤ α ≤ π  and 0 ≤ ξ ≤ 2π ), we find the average drag force on a 

freely rotating cylinder with  to be 
  

  (44) 

The above equation can be written equivalently following Li et al. [30, 46] as  
 

   (45) 

where cx , cy  and cz  are the drag-coefficient components in along the x, y and z-axes, 

respectively, 
 
 cx = cz = ϕcd ,⊥ + 1−ϕ( )cs,⊥   (46) 

  .  (47) 

In other words, the total drag force is the sum of contributions along each major axis when the 

cylinder can undergo free rotation. 

 

VII. CYLINDER WITH SPHERICAL END CAPS 

Almost all nano-cylinders have end caps that can be approximated as half spheres of 

diameter 2R .  Again in the limit of , the drag force may be written as 
  

  (48) 

where the first term represents the drag force on the end cap, which is equal to that of a sphere. 

The expressions for Ωsph,s/d
(1,1)*  have been given in Li and Wang [31, 32].  Suffice it to note that if 
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the end cap effect is considered the overall length of the cylinder is  and the calculation 

of cd ,⊥ , cs,⊥  and  should use the length of the cylindrical section of the cylinder ( ), and 

not .  

 

VIII. FICKIAN DIFFUSIVITY OF CHAIN-LIKE MOLECULES 

Orientation-averaged aerodynamic drag in the form of eq 44 may be re-cast into Fickian 

diffusivity in dilute gases via the Einstein-Smoluchowski relation [47], D = kT c . Typical long-

chain molecules have lengths substantially shorter than the mean free path of the gas and can 

undergo free rotation in dilute gases. As an example, normal hexadecane has a length of 

approximately 2 nm.  In comparison the mean free path of ambient air is around 70 nm.   

The diffusion coefficient of a long-chain molecule l in a dilute bath gas g may be 

approximated from eq 44: 
  

 . (49) 

Following the Chapman-Enskog treatment, we assume specular collision (ϕ = 0) and obtain 
 

 . (50) 

The validity of the above equation will be examined in a separate study [48], but the equation is 

shown to differs from the Chapman-Enskog (C-E) expression, as expected, since the C-E 

equation is applicable for spherical potential only.   

If the end-cap effect is considered, the diffusion coefficient takes an expanded form 
 

 . (51) 
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IX. REDUCED COLLISION INTEGRALS AND ELECTRIC MOBILITY OF CNTS 

In the limiting collision models we have three relevant, reduced collision integrals as given 

by eqs 19, 35 and 36.  They are dependent on the potential energy of gas-cylinder interactions.  

For a given cylinder material and bath molecule, the reduced collision integrals are a function of 

the cylinder radius, as expected.  In principle, the integrals approach the respective values of the 

rigid-body limit as the cylinder radius is increased. Conversely, the deviation from the rigid-body 

limit increases as the cylinder radius is decreased due to an enhanced effect of van der Waals 

interactions on the cross section relative to the cylinder diameter. This effect is identified as the 

non-rigid body effect towards small cylinder radius as shown in FIG 1.  

Consider the transport of a carbon nanotube (CNT) in air. The potential function of 

interaction has been given by Wong et al. [45] as 
 

 Φ r *( ) = a0Rm+1σ 1−mncε a1r *−n1 −a2r *−n2( )  , (52) 

where σ  and ε  are the Lennard-Jones (LJ) 12-6 collision diameter and well depth between 

carbon and the bath molecule, respectively, nc  is the surface density of carbon ( nc  = 0.381 Å–2), 

r * is the normalized, shortest distance of the gas molecule to the CNT surface, 
 

 r* = r − R( ) σ  . (53) 

In eq 52 the constants are given as a0 = 5.81, m = −0.86 , a1 = 0.635, a2 = 1.63, n1 = 10.1, and 

n2 = 4.1  [45].  The potential function equation was derived from a sum for the pairwise 

interactions of carbons in a CNT with a bath molecule with the LJ 12-6 potential function.  Here, 

we adopted the values of Wong et al. for the LJ parameters: σ = 3.576  Å and ε k = 58.7  K [45], 

which were based on the LJ self-collision parameters of carbon and molecular nitrogen and the 

mixing rule σ12 = σ1 +σ 2( ) 2 and ε12 = ε1ε2( )1 2
.   

FIG 3 shows the variations of the reduced collision integrals computed as a function of the 

cylinder radius using the above potential function.  For all cases the reduced collision integrals 

approach their respective, rigid-body limits at 1 2R( ) = 0  or R → ∞  (the open circles of the 

Figure).  Deviations from the rigid-body limits indicate the influence of the potential force of 
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interaction on the collision cross section. For small-diameter tubes the non-rigid body effect is 

very significant. Compared to rigid body collision the collision cross section is enhanced by as 

much as a factor of 2 due to the potential energy of interactions.  These observations indicate a 

rigid-body approximation can be grossly inaccurate. Additionally, the reduced collision integral 

appears to be roughly linear in 1 R  for a wide range of cylinder radii.  The intercept corresponds 

to the rigid-body limit.  The linear dependency is expected because the difference in the reduced 

collision integral between non rigid-body and rigid-body collisions is proportional to δ R , 

where δ  measures the increase in the collision cross section due to the potential force of 

interaction.  This potential force is local relative to the cylinder size.  This leads to the fact that 

δ  is basically independent of R, and hence, the linear dependency with respect to 1 R .  

Differential mobility analyzer (DMA) is instrumental to our ability to characterize a wide 

range of aerosols of nanomaterials of different shapes and sizes [49]. For spherical particles in 

the large Knudsen number limit the Stokes-Cunningham expression [50, 51] is traditionally used 

to interpret the mobility data, giving what is known as the mobility particle diameter, 
 

 Dm = q
3πμZ

1+Kn A+ Bexp − E Kn( )⎡⎣ ⎤⎦{ }  . (55) 

Previous studies [31, 32] have shown that the above expression with coefficients A, B and E 

fitted to Millikan’s oil droplet data [28, 52, 53] gives a reasonably good estimate for small 

particle sizes, but owing to its empirical nature, an extrapolation below the smallest size of 

Millikan’s oil droplets can lead to some errors. The problem arises from an increased effect of 

potential energy of gas-phase interaction as the particle approaches the molecular size [35].   

Mobility can also provide partial information about the size of non-spherical nanomaterials 

of a known shape.  Several studies [12, 14, 16, 20, 30, 54-57] have reported data of CNT 

mobility measured by a DMA, among them the relationship between the mobility diameter and 

CNT length is provided for a given tube diameter.  For some of the CNTs, the length and 
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diameter were determined directly by transmission electronic microscopy (TEM).  These data 

will be used here to examine the validity of the current theory.  

The mobility of a CNT is influenced by several factors.  They include the orientation of the 

nanotube with respect to the electric field and hence the drift velocity, the potential energy of 

gas-CNT interactions, and the momentum accommodation factor. During DMA measurement, 

CNTs are first charged (  q = ±1).  The aerosol is sent into an electric field with strength ranging 

from 0.4 to 5 kV/cm.  The interaction of the charge with the electric field and the polarization of 

the CNT produce a torque that tends to align it along the direction of the external electric field.  

In the DMA, the electric field is parallel to the drift velocity. Kim et al. [14] calculated the 

electrostatic force due to the net charge in the CNT by assuming that the positive charge is 

located at the end of the CNT closest to the negative electrode. The torque is proportional to the 

length of the CNT. As for interaction caused by the dielectric charge, they proposed a complex 

function of the torque with respect to the cylinder volume and aspect ratio. The theory predicts 

that long CNTs align with the electric field, while short CNTs tend to assume uniform random 

orientations.  Hence we expect to observe a transition from randomly distributed orientations to 

the collinear orientation at some CNT length. By assuming the probability of the orientation 

angle follows a Boltzmann-like distribution (i.e., eq 10 of [14]) and integrating it over all 

orientations, we may extend eq 44 and write a drag force that depends on the orientation 

probability as: 
  

 , (56) 

where Pα  is given by eq 24 of Kim et al. [58]. The corresponding orientation-averaged electric 

mobility can be obtained accordingly: 
  

  , (57) 
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where cs,⊥ ,  and cd ,⊥  are given by eqs 22, 38 and 39, respectively.  All of these coefficients 

may be determined for a tube of radius R and length , if the potential function parameters are 

known, as discussed above for CNTs (eq. 52).  Additionally, the distribution function Pα  and 

orientation-averaged electric mobility is also a function of the electric mobility and the aspect 

ratio of the cylinder.  The equivalent mobility diameter of a CNT may be calculated by replacing 

Z in eq 55 by Zeff .  

FIG 4 shows the length-versus-mobility diameter data of CNTs, all of which are 15 nm in 

diameter and taken from several sources [12, 30, 54, 55].  In this set of data, the CNT diameter 

was determined by TEM, while the length ( ) was estimated from the TEM projected area ( Ap

) as . The projected area was obtained from direct TEM measurement or an 

empirical correlation developed for Ap as a function of the mobility diameter Dm  [55].  In the 

figure, the data corresponding to directly measured projected area are marked as solid symbols, 

and those from the corelation are marked as open symbols.  

The theoretical mobility and thus mobility diameter can be calculated in two limiting 

orientations of the CNT with repsect to the direction of the drift velocity.  In the collinear and 

random orientation limits and neglecting the CNT end effect, the mobility is given by 
  

  (58) 

  , (59) 

The above mobility may be converted to the mobility diameter via eq 55.  Also, for a given R 

value, the tube length  values may be determined from eqs 57 and 58 for the collinear and 

random orientations, respectively.  As shown in FIG 4, the experimental data are bracketed 

between the theoretical values of the two limiting orientations.  Here, we used a momentum 
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accommodation factor of 1.0.  We observe here that the length of the longest CNT shown is 

outside the collinear orientation limit.  In fact, a ϕ  value of 0.85 to 0.9 can predict that particular 

data point rather well.  These values are also inline with what was observed for spherical 

particles as discussed in Millikan [29].  Here we shall not adopt a non-unity ϕ  value based on 

just one data point, except to say that for CNTs 15 nm in diameter, the data clearly show that the 

momentum accommodation factor is close to unity.  It can be seen from the figure that the 

longest tubes (  > 1000 nm) is collinear with the electric field in the DMA (and thus the drift 

velocity) and the orientation of the shortest tube (  ~ 130 nm) is random and uniformly 

distributed with respect to the electric field.   

CNT lengths between the two limits may be predicted using eq 57 from measured electric 

mobility (or mobility diameter) and CNT diameter.  The result is shown as the dotted line in FIG 

4.  Clearly, transition from uniform random orientation to collinear orientation takes place in the 

length range shown; and the current theory of nanocylinder transport combined with the 

orientation distribution function proposed by Kim et al. [14] reproduce the data satisfactorily in 

that length range.  This agreement extends to CNTs of different diameter values.  In FIG 5, we 

plot the reduced collision integrals of a series of CNTs 10, 15, and 22 nm in diameter as a 

function of their measured lengths.  The data are taken from several relevant sources [12, 30, 55].  

The measured mobility Z, the length of  and diameter 2R of each CNT may be converted to an 

experimentally determined reduced collision integral via 
 

 , (60) 

The above experimental collision integral may be compared to theoretical predictions in the 

collinear and random orientation limits (shown as the grey band in FIG 5): 
  

 , (61) 
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 . (62) 

with  ϕ = 1, as discussed before. Additionally, an effective reduced collision integral may be 

defined from eq 57 to account for CNT orientation distributions and thus the transition from 

random orientation distribution to collinear orientation. Clearly, within the range of CNT 

diameter considered, the short tubes have randomly distributed orientations with respect to the 

drift velocity, the long tubes align with the drift velocity.  Again, the current theory combined 

with Kim et al.’s orientation distribution function describes the experimental data very well. 

A previous study [35] indicates that for spherical particles below 10 nm in particle diameter 

the momentum accommodation ϕ  decreases from approximately unity to zero as the particle 

size is decreased. That is, the collision becomes specular as the particle size approaches the 

molecular size.  As discussed in Li and Wang [32], the transition from diffuse to specular 

scattering as the particle approaches the molecular size is entirely expected. Millikan’s 

experiments on oil droplets yielded  ϕ = 0.9 for >20 nm droplets; the specular elastic assumption 

of the Chapman-Enskog theory is extremely successful in predicting molecular transport.  Thus, 

between the size of 20 nm and the molecular size, ϕ  must undergo transition from unity to zero.   

It is therefore possible that small-diameter CNTs assume a substantially smaller value for 

momentum accommodation. The mobility diameter ( Dm) of small-diameter CNTs ( 2R < 5 nm) 

have been studied by Chiang et al. [54] and Unrau et al. [57]. In particular, Unrau et al. directly 

measured the length and electric mobility for several CNTs 2 nm in diameter over a CNT length 

range of ~100 to 1000 nm.  In FIG 6 we compare the predicted lengths to the experimental 

length.  Based on Kim’s expression of the orientation distribution function of CNTs in an electric 

field, the CNTs examined should mostly assume random orientations.  As shown in FIG 6 a 

momentum accommodation value of zero gives substantially better prediction of the data than 

 ϕ = 1. Therefore, in addition to the demonstration that the current theory predicts availlable 

experimental data satisfactorily, the results shown in FIGS 4 through 6 indicate that the diffuse-

to-specular transition occur also for a CNTs as its diameter is reduced from 10 to 2 nm in a 
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manner entirely consistent with conclusions reached in previous analysis of spherical particles 

[32, 35]. 

 

X. CONCLUSION 

We obtained generalized expressions of the aerodynamic drag force on a cylinder in the free-

molecule flow with a consideration of intermolecular interactions. The derivations are carried out 

using gas kinetic theory. Specular and diffuse scattering are discussed separately and the effect 

of the orientation of the cylinder is also considered in detail. The drag forces for specular and 

diffuse scattering take the same formulations although the cross sections are expressed 

separately. The effect of gas-cylinder interaction force is embedded in the collision integrals. The 

validity of the theoretical expressions is verified against the experimental mobility data of carbon 

nanotubes. It was shown that the potential energy of interactions is critical to describing the 

collision cross section and thus the drag on carbon nanotubes of diameter as large as 20 nm. 
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TABLE I. Selected drag force formulations for cylindrical body 
Author(s) Drag force expression Comments 

Cox [25] 

 

 

Circular cylinder of length  at 
rest in a uniform fluid flow of 
velocity V. The solution is obtained 
in Stokes flows neglecting the inertia 
effect. 

Dahneke 
[26] 

 

 for α = 0 (collinear). 

 forα = π 2 (perpendicular) 

Drag force on a cylinder in the free 
molecule regime with rigid body 
collision. Mixed scattering is 
expressed by the momentum 
accommodation factor 0 ≤ ϕ ≤ 1 , 
where the two limits are specular 
scattering and diffuse scattering, 
respectively.  

Kim et al. 
[14]  

 

An extension of Dahneke’s solution 
by treating cylinder rotation; 

sin2 α  is the mean of sin2 α
which may be determined from the 
distribution function of attack angle. 

Li et al. 
[30]  for slow Brownian rotation  

relative to translational relaxation; 

 for fast Brownian rotation  

relative to translational relaxation. 

and cd ,⊥  are drag coefficients 
as given by Dahneke’s solutions 
[26]. 

This work 
 

 
 
where 

 

 

 

 and  are drag forces on 
cylinders in uniformly random 
orientation and parallel to drift 
velocity, respectively. The reduced 

collision integrals Ω
1,1( )*  accounts 

for the non-rigid body effect. Their 
expressions can be found in the text. 
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FIG 1. Schematic illustration of the limiting solutions of specific drag coefficient ( ) of 
cylinders of a constant aspect ratio .  The Batchelor-Cox solution is for Stokes flow 
( ) and the Dahneke solution is applicable to free molecule regime ( ). 

 

 

 

 

 

 

 

 

 



 

 29

 
 

FIG 2. (a) schematic of the coordinate system; (b) x-z plane projection of the collision trajectory 
of the molecule. gx + gz  and ′gx + ′gz  are the molecular velocity components in the x-z plane 
before and after collision, respectively, and χ  is the scattered angle.  

 



 

 30

FIG 3. Reduced collision integrals (solid lines) as a function of cylinder radius computed for 
carbon nanotube and molecular nitrogen at 298 K.  The open circles denote reduced collision 
integrals equivalent to rigid-body collision. 
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FIG 4. Length of CNTs 15 nm in diameter as a function of the mobility diameter measured in air 
at 1 bar and 298 K.  Symbols: experimental data taken from [12, 30, 55] (solid symbols: directly 
measured; open symbols: from the experimental correlation between mobility diameter and 
TEM projected area [55]); solid lines: theoretical predictions using the momentum 
accommodation factor ϕ = 1, in two limiting CNT orientations with respect to the drift velocity 
(electric field); dotted lines: theoretical predictions accounting for orientation angle distribution 
of the CNT in the electric field [14].   
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FIG 5. Reduced collision integrals derived from the CNT mobility data for 2R = 10 nm [54] 

and 2R = 15 and 22 nm [12, 30, 55] as a function of the CNT length (symbols). The error bars 
for 2R = 15 and 22 nm data are taken from the reference sources directly, while those for 2R = 
10 nm are estimated to be 10%, based on a TEM resolution of 0.5 nm for CNT diameter 
determination. The theoretical predictions are shown in the random and collinear orientations of 
CNTs with respect to the drift velocity with ϕ = 1 for the momentum accommodation factor 
(grey bands). Lines are theoretical predictions accounting for orientation angle distribution of 
the CNT in the electric field [14]. 
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FIG 6. Comparison of predicted and observed length of CNTs 2 nm in diameter. The 
experimental data are taken from Unrau et al. [57]. 
 
 
 
 


