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We present a data-driven framework to study the relationship between fluid flow at the macro-
scale and the internal pore structure, across the micro- and meso-scales, in porous, granular media.
Sphere packings with varying particle size distribution and confining pressure are generated using
the discrete element method. For each sample, a finite element analysis of the fluid flow is per-
formed to compute the permeability. We construct a pore network and a particle contact network
to quantify the connectivity of the pores and particles across the mesoscopic spatial scales. Machine
learning techniques for feature selection are employed to identify sets of microstructural properties
and multiscale complex network features that optimally characterize permeability. We find a lin-
ear correlation (in log-log scale) between permeability and the average closeness centrality of the
weighted pore network. With the pore network links weighted by the local conductance, the average
closeness centrality represents a multiscale measure of efficiency of flow through the pore network in
terms of the mean geodesic distance (or shortest path) between all pore bodies in the pore network.
Specifically, this study objectively quantifies a hypothesized link between high permeability and
efficient shortest paths that thread through relatively large pore bodies connected to each other by
high conductance pore throats, embodying connectivity and pore structure.

I. INTRODUCTION

Transport through porous, granular systems is of cen-
tral importance in a wide range of technological and en-
gineering applications, including: ceramics [1], pervious
concrete [2], hydrocarbon recovery [3], hydraulic fracking
[4], geosequestration of CO2 [5], exploitation of geother-
mal energy as a renewable energy source [6] and geologic
disposal of radioactive waste [7]. In the energy resource
sector alone, the economic cost of many processes, in-
cluding ground exploration (i.e., site investigations), con-
struction and maintenance of associated infrastructure,
to risk monitoring and mitigation, runs into billions of
dollars [8, 9]. Ultimately, the design and management
of these processes use estimations of the hydraulic, ther-
mal, and mechanical properties of porous, granular me-
dia (e.g., ground, concrete etc) at the macroscopic scale.
In turn, robust predictions of such properties rely on
fundamental knowledge of the material’s internal grain
and pore structure and of its influence on the efficiencies
of transmission pathways for interstitial fluid flow, heat
transfer, electrical flow, stress transfer, etc. [10–13].

This effort focuses on quantifying the relationship be-
tween the internal pore structure, across the micro- and
meso-scales, and permeability at the macroscopic scale.
Before proceeding, it is instructive to place this study in
the context of the state-of-the-art, especially given the
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immense research attention that has been paid to the
characterization and modeling of transport properties in
granular media. Despite significant past efforts, many
aspects that are fundamental to engineering scale trans-
port in these materials remain poorly understood. A
long standing impediment to progress has been the lim-
ited access to the internal structure of a material under
load. Recent advances in nondestructive, high resolu-
tion 3D and 4D imaging, however, have rapidly over-
come this limitation and are now able to deliver unprece-
dented detail at the scale of individual grains and pores
[14–17]. Advances in post-processing techniques, such as
data-constrained modeling, can now also infer submicron
porosity and compositional information [18]. Such devel-
opments, coupled with data generated from high perfor-
mance computing and discrete element models [19–21],
have prompted a pressing need for new data-driven con-
cepts and tools that can embrace the information embod-
ied in these rich microstructural data sets, and uncover
patterns that facilitate an understanding of how the un-
derlying physics at the microscopic and mesoscopic scales
(the cause) relate to transport phenomena at the macro-
copic scale (the effect). In particular, of crucial impor-
tance to transport phenomena are patterns in the con-
nectivity of the solid grain phase and of the interstitial
pore space across the mesoscale, since these provide vital
clues on the relative efficiencies of transmission pathways
for different granular materials [2, 13, 22–25].

Different strategies have been employed to capitalize
on the rich data sets from nondestructive, high resolu-
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tion imaging techniques. One strategy has been to ex-
tract hidden patterns in the data. For example, novel
spatio-temporal patterns uncovered in studies of force
transmission have shed light on the underlying mecha-
nisms of various phenomena at the macroscale, including:
shear jamming [26], aging [27] and strain localization [28].
Emergent linear and cyclic mesoscale structures, which
form the structural building blocks of self-organization,
have been characterized (e.g., force chains, cycles) and
introduced into continuum models that can capture the
defining dynamics inside shear bands (e.g., [29–31]). In
the engineering literature on pore fluid transport, a large
body of knowledge has been gained from use of stan-
dard statistical methods to analyze microstructural data;
this strategy has led to important insights on the rela-
tionships between macroscopic transport properties and
structural characteristics of porous media such as: poros-
ity and path tortuosity [32], grain size [33], particle shape
[34], local pore space connectivity, e.g. through coordi-
nation number, [2, 13, 25, 35], and pore geometry [36].
What is still missing, however, are robust multiscale
descriptors of pore connectivity and associated trans-
mission pathways, and their relationship to macroscopic
transport [13, 37–42]. Although techniques employing
local percolation probabilities [22], the Euler character-
istic [43] and n-point correlation functions [12, 44–46]
have helped to fill this knowledge gap, studies continue to
highlight a critical need for explicit, higher-order, three-
dimensional topology and connectivity descriptors to be
incorporated in predictions of permeability and thermal
conductivity[13, 37–42].

A perennial challenge for characterization and model-
ing of phenomena involving granular media is that the
internal connectivity of, and interactions between, the
pores and the particles exhibit hallmarks of complexity:
multiscale and nonlinear interactions that lead to pat-
terns of self-organization at the mesoscale [47, 48]. In this
study, we take the first steps in a new line of investigation
which fuses modern advances in statistics (i.e., machine
learning) and complex systems (i.e. complex networks)
to develop a data-driven framework that is particularly
suited for multiscale and nonlinear phenomena germane
to complex systems. Although this study focuses solely
on unraveling the details of permeability, our approach is
general and applicable to studies of other transport (ther-
mal, electrical) phenomena in porous, granular media.
With respect to studies of permeability, our approach
distinguishes itself from past efforts in two fronts. First,
our approach exploits emerging developments in big data
analytics, high resolution imaging and high performance
computing — by combining discrete element methods, fi-
nite element methods, complex networks, machine learn-
ing and computerized tomography in a single data-driven
platform. Second, in a first of its kind, we fuse machine
learning with complex networks to establish an objective
method for identifying metrics that parsimoniously char-
acterize the internal connectivity and concomitant effi-
ciency of transmission pathways across multiple spatial

scales.
The rest of this paper is organized as follows. Be-

cause our proposed data-driven framework combines
techniques and concepts from separate research disci-
plines, we first provide an overview of this framework
along with a brief review of relevant extant literature at
the start of section II, before discussing the implemen-
tation of the different components of this framework. In
section III, we focus on the machine learning analysis
and present a new relationship between permeability and
a complex network descriptor of pore connectivity. We
summarize our key findings and identify future research
directions in section IV.

II. METHODS

Our framework weaves together multiple techniques
into one platform. Thus, to aid understanding, we be-
gin with an overview of the main components, placing
these in the context of relevant past work and the most
pressing research needs, before providing details of the
implementation each component in subsequent subsec-
tions.

A. Proposed framework

The framework is divided into three components (Fig-
ure 1). The first component delivers the complete data
to be analyzed, i.e., the feature set, comprising the ‘input
variables’ and the ‘output variable’ (steps 1-4, Figure 1).
The input variables consist of two groups of data. The
first group consists of the raw high resolution data at the
level of individual pores and particles; the second group
consists of multiscale complex network metrics that in-
clude connectivity descriptors. Those in the second group
utilize information from the raw data in the first group.
Although the generation of high resolution imaging data
sets in the first group is still prohibitively expensive for
many real materials, there is a clear trend towards these
data sets becoming increasingly accessible and routine
[14, 15]. High resolution imaging may guide the DEM
simulations, as, for example, shown by Delaney et al.
[49], or potentially replace these altogether. In anticipa-
tion of such data capability and assets, we thus envisage
that this framework may ultimately be applied to mi-
crostructural data of real porous, granular media samples
using microstructural data gathered directly from high
resolution imaging techniques (e.g. X-ray micro com-
puted tomography). In the present study, however, in
order to perform the requisite machine learning analysis,
O(100) samples are needed. Repeated use of (high reso-
lution) imaging equipment and post-processing software
for large quantities of samples is presently costly.

Consequently, for this study, we resort to artificially
generated samples of porous, granular media to gather
data spanning micro-, meso- and macro- scales: see
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FIG. 1. (Color online) Real sample parameters, partially obtained from high resolution imaging, are used in the DEM simulation
to generate realistic artificial samples (step 1). Fluid flow is simulated with a finite element method to compute the permeability
(step 2). A pore network and contact network are constructed to compute multiscale complex network variables (step 3). Micro-
meso-macro data comprise the physical properties at the pore and grain scale, the network variables and permeability (step 4).
The resulting feature set is used for feature selection and model construction (step 5) to generate predictions (step 6) and new
insights (step 7).

steps 1-3, Figure 1. The microstructure of samples can
be generated using stochastic reconstruction methods
[45, 50, 51], (non-)ballistic procedures [52–54], process-
based reconstruction methods [36] and discrete-element
methods (DEM) [55]. Each technique has its own
strengths and limitations. For example, a proper stochas-
tic reconstruction requires high computational effort (for
the simulated annealing) [56] and does not capture the
dynamic processes that precede the creation of porous,
granular media [39]. For this work, we choose DEM for
its simplicity, reproducibility, broad acceptance and ex-
tensibility (step 1, Figure 1). In its simplest form, spher-
ical particles may represent old alluvial deposits (porous,
granular systems of typically high sphericity and low
angularity). Assemblies of different grain shapes and
degrees of (interparticle) cementation may be modeled
within DEM with clusters of spheres that more realis-
tically represent non-spherical grains [19]. In addition,
DEM may be used to capture samples with evolving frac-
ture patterns (e.g., [24, 57]). As a reference case for our
DEM samples, we include a single monodisperse sphere
packing for which the centroids and radii have been de-
termined using X-ray computed tomography [49, 58–60].

To capture pore connectivity, i.e. higher-order, three-
dimensional topology and geometry [13, 39], we opt for
a new class of multiscale connectivity descriptors from
complex networks [61]. These will generate meso-scale
data (step 3, Figure 1) – in addition to the aforemen-
tioned physical properties of the constituent grains and
pores that form our initial input data. Complex net-
work theory opens a new avenue for multiscale char-
acterization of fluid flow phenomena in porous, granu-
lar media. Using a shortest paths analysis of the pore
network, for example, a region of efficient transport in

the shear bands of deforming, dense granular media was
identified [57]. More recently, Russell et al. [24] uncov-
ered optimized flow pathways that are driven by complex
jamming-unjamming dynamics unique to shear bands,
giving explicit structural insights into causes of enhanced
flow and permeability in fractured media. They also pro-
vide a template for the abstract representation of the
pore space in a three-dimensional granular assembly us-
ing concepts from dual graphs. In this work, however,
we construct a pore network that more closely repre-
sents the physical pore domains in a manner similar to
those adopted in past network models of porous, granu-
lar media [23, 62–64]. Finally, at the macroscopic level,
we compute the permeability of each of our samples by
performing a finite element simulation of the fluid flow
through the pore space, using a model that has been val-
idated against physical experiments [11, 65–67] (step 2,
Figure 1).

Having collated all the data on material properties
spanning micro-, meso- and macro- scales (step 4, Fig-
ure 1), we next employ machine learning techniques to
establish objectively a parsimonious relationship between
permeability (i.e., the output variable) and the internal
structure of our granular samples (i.e., the input vari-
ables): see step 5, Figure 1. Distinct from traditional
curve fitting of data (e.g. Hazen formula, Archie’s law)
which seeks to establish unknown parameters based on
a known model function derived from theory and/or ex-
periments, here we use machine learning to establish the
model function itself from the data. Machine learning
provides a rigorous statistical framework for analysis of
complex data sets, such as noisy, high dimensional data,
through: feature selection (i.e., finding a subset of rel-
evant and non-redundant input variables that can best
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predict a given output variable), model construction and
error and uncertainty quantification [68, 69]. The use of
machine learning techniques has precedence in studies of
materials and transport phenomena. Ma et al. [70] pre-
sented a machine learning framework to classify and pre-
dict fluid flow properties of stochastically reconstructed
rocks, studying the relationships with geometry, topol-
ogy and statistical correlation functions. Xu et al. [71]
predict the damping parameters of polymer nanocom-
posites, using correlation functions, particle shape de-
scriptors and pore size descriptors. Feature selection for
materials science has been explored by Ghiringhelli et al.
[72]. Khandelwal [73] used machine learning to predict
the thermal conductivity of rocks, based on the uniaxial
compressive strength, density, porosity and P-wave veloc-
ity. Machine learning has also been used extensively with
(macro-scale) soil survey data for pedo-transfer functions
[74, 75] and in geotechnical applications such as slope sta-
bility and liquefaction [76].

In our proposed framework, we use machine learning to
establish a model of, and new insights on internal struc-
tural features that define, permeability (steps 6 and 7,
Figure 1). Although we predict the permeability at the
end, our main objective is to characterize permeability
through feature selection. We proceed in two phases.
In the first phase, we choose feature selection methods
that are appropriate for the dataset at hand, to identify
a non-redundant subset of the most relevant properties,
including novel descriptors of connectivity, to character-
ize permeability. Using more than one feature selection
algorithm allows us to investigate feature ‘importance’
from various angles: that is, we can rule out, and thus
ensure our conclusions are robust to, algorithmic arti-
facts and assumptions. In addition, we assess our re-
sults against well established microstructural properties
known to influence permeability (e.g. void ratio). In the
second phase, we use the selected features in a predictive
model and employ techniques, such as cross-validation, to
quantify the uncertainty in our predictions. We discuss
the methods from Figure 1 in detail in the upcoming sub-
sections, in the order illustrated in Figure 1. The terms
‘variable’ and ‘feature’ are used interchangeably.

B. Discrete Element Modeling

We develop a model for Ottawa sand and sandstone,
comprising rounded quartz particles [10], for which DEM
can provide an reasonable approximation of real geome-
chanical behavior [20, 67]. The simulation is imple-
mented in Yade [77]. A total of 536 packings are gen-
erated using the simulation parameters summarized in
Table I. The friction angle is drawn from a uniform dis-
tribution in an expanded range similar to the range used
by Garcia et al. [78] (between approximately 5.7◦ and
24.2◦), encapsulating the commonly used quartz friction
angles reported by Procter and Barton [79]. For simplic-
ity, a uniform grain size distribution with mean radius

TABLE I. Simulation parameters used in DEM.

Number of grains 4000
Grain shape spherical
Density [kg/m3] 2650
Young’s modulus [Pa] 108

Poisson’s ratio 0.2
Friction angle [deg] θ ∈ U(5.7◦, 31◦)
Grain radius [mm] U(0.5− α, 0.5 + α), α ∈ U(0.0, 0.3)
Confining pressure [Pa] 10n, n ∈ U(5, 7)

0.5 mm is used, varying the extrema of the distribution
between the mono-dispersed packing U(0.5, 0.5) mm and
the poly-dispersed packing U(0.2, 0.8) mm. The Young’s
modulus is set to an artificially low value to generate a
wide void ratio distribution. Samples under low confin-
ing pressure (small particle overlap) approximate Ottawa
sand, while samples under higher (e.g. > 106) confining
pressure (larger particle overlap) act as a simple proxy
for sandstone.

In each DEM simulation, a rectangular box with base
dimensions 15 by 15 mm is created. Periodic bound-
ary conditions are imposed on the four vertical plane
boundaries. After drawing the friction angle, grain size
range and confining pressure from their respective distri-
butions shown in Table I, the DEM simulation proceeds
in two stages. In the first stage, shown in Figure 2(a),
400 grains (10%) are placed randomly, without overlap,
slightly above the box floor. After placement, the grains
fall and settle under gravity. When the unbalanced force
(ratio of the average contact force and average per-body
force) reaches a small threshold value, a new batch of
400 particles is introduced. Care is taken to introduce
each batch at equal height from the top of the settled
packing. This process is repeated ten times, until all
4000 particles are settled. Repeatedly settling batches
of grains effectively simulates the air pluviation method
that is used in the preparation of laboratory soil samples
[80]. Grains are not frozen during the simulation. In the
second stage, shown in Figure 2(b), the packing from the
first stage is subjected to an isotropic, confining pressure,
effectively reducing the porosity. Yade approximates a
quasi-static equilibrium condition of the packing by re-
ducing the loading velocity while approaching the goal
confining pressure. The simulation is terminated when
the unbalanced force reaches a small threshold value.

In addition to the 536 packings generated with our
DEM simulation, we include a reference case of a real
sphere packing. Using X-ray computed tomography, Aste
et al. [58, 59] developed a technique to extract sphere
centroids and raddii from real packings of glass beads.
We use one of the stationary samples (FB18) described
in [49, 60]. In a settlement process somewhat similar to
our gravity deposition, approximately 1.5×105 monodis-
perse particles in a fluidized column are subjected to a
flow pulse from the bottom, after which the particles sett-
tle in a mechanically stable configuration. We scale the
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(a)

(b)

FIG. 2. (Color online) (a) Gravity deposition. Batches of
grains are sequentially added to a rectangular box and settle
under gravity. (b) Triaxial compression. A confining pressure
is applied along the x, y and z axes.

packing to have the same mean particle radius as our
DEM samples (0.5 mm) and extract a small cubic REV
(with length 13% of the original x length) from the center
of the packing.

C. Finite Element Modeling

The permeability computation consists of three stages,
summarized in Table II. Firstly, to control computa-

TABLE II. Preprocessing, meshing and simulation settings.

Preprocessing REV % 45%
ScanIP Mesh algorithm +FE Grid

Mesh type Smoothed
Elements Linear
Minimum quality 0.1

COMSOL Side BC Symmetric
Top pressure 10 Pa
Top BC Inlet
Bottom pressure 9 Pa
Bottom BC Outlet
Fluid dynamic viscosity 0.001002 Pa s
Fluid unit weight 9.789× 103 N m−3

Linear solver Direct (LU)

tional costs, a representative element volume (REV) is
subsampled from the center of each DEM sample. Be-
cause the sample limits vary, depending on the amount

of confining pressure applied in the triaxial compres-
sion, the REV length, height and width are taken pro-
portionally to the original sample limits. The fraction
(45%) is determined from a mesh-convergence study, in
which we increased the REV size until the permeabil-
ity and porosity converged. Secondly, we mesh the 536
subsamples using finite elements in Simpleware ScanIP
[81]. Lastly, the fluid flow simulation is performed in
COMSOL Multiphysics [82]. The simulation solves the
governing Navier-Stokes equations, assuming the flow is
incompressible and isotropic, assuming the fluid (water)
is Newtonian, and assuming a no-slip boundary condi-
tion on the solid surfaces. The permeability is obtained
by modifying Darcy’s law to [66]

k =
η

γ

v̄

ī
=

ηn
AV

∫
AV

vz dAV

(∆p/L)
(1)

where k [m2] is the numerically computed permeability
and n is the porosity of the sample. The fluid properties
are the dynamic viscosity η [Pa s−1] and the unit weight
γ [N/m3]. A pressure difference ∆p [Pa] is imposed over
the sample length L [m] along the z-axis and the ver-
tical velocity vz [m/s−1] is averaged over an x-y plane
with void area AV [m2]. The variables v̄ and ī are the
averaged Darcy velocity and hydraulic gradient, respec-
tively. The value of k is computed for both the inlet- and
outlet-plane, and subsequently averaged, similar to work
by Narsilio et al. [66]. Because our permeability data
spans three orders of magnitude and we wish to predict
each magnitude equally well, we consider the natural log-
arithm of the permeability in the upcoming analysis.

An example of the resulting mesh is shown in Figure
3, along with several fluid flow streamlines and a verti-
cal slice of the velocity field. Red colors indicate higher
velocities.

D. Complex networks

For each sample, a weighted contact network and
weighted pore network are constructed. In order to
relate complex network features to the permeability,
it is crucial that the network weighting is physically
representative. Ideally, the weighting is, by itself,
strongly related to the permeability. Our choices for
the representation and weighting are summarized in
Table III. The conductance weighting is outlined in
Appendix A. In the next two sections, the network
construction and derived variables are discussed in detail.

Network construction
The contact network is constructed by assigning a node
to each grain and an edge if the corresponding grains
touch. The edges in the contact network are weighted
with the contact area. To construct the pore network,
nodes are assigned to pores, connected by an edge if the
corresponding pores share a throat.
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FIG. 3. (Color online) The finite element mesh, an illustration of the fluid flow paths from top (high pressure) to bottom (low
pressure) and a cross-section of the velocity field.

TABLE III. Network construction. Edges in the pore network
are weighted by local conductance, while edges in the contact
network are weighted by contact area.

Pore network Contact network
Node representation Pores Particles
Node features Pore void ratio Grain size

Surface area Surface area
Edge representation Throats Particle contacts
Edge features Conductance Contact area

Throat void ratio

What constitutes a ‘pore’ and ‘throat’ remains am-
biguous [83]. We opt to use the modified Delaunay tes-
sellation approach by Al-Raoush and Willson [64], with
several adaptations [84]. Similar to their approach, we
assume pore bodies are encapsulated by (merged collec-
tions of) tetrahedra. Each tetrahedron consists of four
triangular faces. Pore throats are found on shared faces
of tetrahedra. Our approach to constructing the pore
network proceeds as follows:

1. A Delaunay tessellation is constructed first, using
the centroids of the grains.

2. Rather than using a non-linear optimization proce-
dure with inscribed spheres, a conceptually simpler
approach is introduced. A pair of tetrahedra in the
Delaunay tessellation is merged if the areal porosity
of the shared face is higher than a certain threshold.
The merging procedure is illustrated in Figure 4 for
a simple setup of six spheres and three tetrahedra.

3. Nodes are assigned to (merged collections of) tetra-
hedra, representing the pore bodies. Next, each
pair of tetrahedra (collections) is connected with an
edge if they share a face, representing pore throats.

4. The boundaries of the pore volume are the surface
of the grains and the throats. Rather than defining
pore volume by an inscribed sphere, we record the

pore void ratio as the fraction of void and solid vol-
ume in the (merged collection of) tetrahedra. The
pore surface area is computed as the area of grains
exposed to void space inside the (merged collection
of) tetrahedra. In addition, we compute the throat
void ratio on the faces of the (merged collections of)
tetrahedra (see n in Figure 4). Lastly, to construct
a network weighting related to the permeability, we
compute the local conductance in a tube model of
adjacent pores and throats. For more details on the
conductance computation, we refer to Appendix A.

FIG. 4. (Color online) Depiction of the construction of the
pore network. Two faces are isolated and the void area and
solid area (in 2D) on the faces is determined. Then, the areal
porosity of each face is compared to the threshold ε. In this
example, only the adjacent tetrahedra for the red (right) face
are merged.

The only hyperparameter in the pore network con-
struction, the porosity threshold ε, is set to 0.4. Based
on our experience, this choice results in an reasonable
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distinction between pores and pore throats. Our imple-
mentation (using the computational geometry library
CGAL [85]) avoids voxelation in most cases, except for
the pore volume calculations. An example of the contact
network and pore network is shown in Figure 5. By

FIG. 5. (Color online) Example of the contact network and
pore network. Nodes in the pore network are visualized as
spheres with (scaled) equivalent volume to the corresponding
pore void volume. The pore network construction correctly
identified both the particle connections on the bottom left
and the large pore body in the center of the excerpt on the
bottom right.

avoiding inscribed spheres or medial axes and adopting
the aforementioned merging criterion, we gain a useful,
physically representative distinction between pores and
throats based on simple surface areas (throats) and
volumes (pores).

Network features
Having established the network construction procedure,
we discuss the complex network features next. Denote
(V,E) as the set of vertices and edges in the network,
respectively. The length of a weighted shortest path be-
tween nodes i, j ∈ V , denoted d(i, j), is the path from i
to j that minimizes the summed weights of the traversed
edges. Because higher conductance generally corresponds
to more flow, but shortest paths are computed through
minimization of the edge weighting, edges in the pore
network are assigned the reciprocal of the conductance
as a weighting. Similarly, in preparation for future ap-
plications to heat flow, edges in the contact network are
assigned the reciprocal of the contact area as a weighting.
A total of eight network properties are computed, both
for the contact network and the pore network.

For a full review of complex network theory, devel-
opments and applications, refer to the work by New-
man [61]. We compute both the degree, i.e. the num-
ber of edges adjacent to a node, and the weighted de-

gree, which is the sum of the edge weights adjacent to
a node. In the granular media research community, the
degree is often referred to as the coordination number.
In the pore network, degree represents the number of
throats for a particular pore, while in the contact net-
work, degree is the number of particle contacts for a
particular particle. We also compute the network den-
sity, not to be confused with the packing density, as the
ratio 2|E|/(|V |(|V | − 1)) of potential edges over actual
edges in the network. The network diameter is calcu-
lated as maxi,j∈V d(i, j)/(|V | − 1), finding the length of
the ‘longest’ shortest path between all pairs of nodes in
the network. The betweenness centrality quantifies the
fraction of shortest paths passing through a particular
node i ∈ V [86],

CBnode(i) = β
∑
j,k∈V

σ(j, k|i)
σ(j, k)

,

where σ(j, k) is the total number of shortest paths be-
tween node j and k, σ(j, k|i) is the number of short-
est paths between j and k that pass through i and
β = 1/((|V |−1)(|V |−2)/2) is a normalization term equal
to the number of pairs of nodes excluding i. The edge be-
tweenness centrality CBedge(e) for edge e ∈ E is computed

by computing σ(j, k|e) as the number of shortest paths
passing through edge e and setting β = 2/(|V |(|V | − 1)).
For the pore network, high values should indicate that
the corresponding pore (node betweenness) or pore throat
(edge betweenness) is ‘important’ for the fluid flow. Fi-
nally, we compute the closeness centrality for each node
i ∈ V as the reciprocal of the summed shortest path dis-
tances to all other nodes j ∈ V [87],

CC(i) = β

|V |−1∑
j=1

d(i, j)

−1

,

where β = |V | − 1 is the normalization term. High close-
ness centrality indicates a ‘central’ pore and, again, hints
towards a strong contribution to the fluid flow. The de-
gree, weighted degree, betweenness centrality and close-
ness centrality can be averaged over all nodes/edges to
obtain a global network feature. For example, high av-
erage closeness centrality may indicate relatively ‘short’
shortest paths throughout the network, hinting towards
a more permeable sample with many large throats.

E. Feature Set

Referring back to step 4 in the overview Figure 1, the
next step is to extract relevant physical features from the
DEM packing and connectivity features from the network
representations. The physical features include the global
void ratio, local (pore, throat) void ratio, pore surface
area, specific surface area and the coefficients of unifor-
mity and curvature. We also compute the throat to pore
volume ratio, where the throat volume is equal to the
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volume of a sphere with radius equal to the radius of the
throat area represented as a circle, and record the con-
fining pressure, friction angle and the grain radius distri-
bution range α (see Table I) for each sample. In terms of
network descriptors, we compute all fatures listed in the
previous section.

The full feature set is presented in Table IV as our
educated, physically-inspired ‘initial guess’ of features
that could be relevant in characterizing and predicting
the permeability. The physical features (#1-13) include
pore, throat and grain geometry, as well as several pack-
ing features and DEM input features. None of these fea-
tures, however, address the connectivity in the packing,
which is highly-relevant aspect for the permeability [13].
To this end, we include the complex network features
(#14-27) in our feature set, which are inherently mul-
tiscale and are able to succinctly describe connectivity
of pores (pore network) and grains (contact network).
Note that, in Section III, quantities are made dimen-

TABLE IV. Feature notation. Note that we use [X]a to de-
note a distribution of parameter a of an entity X to emphasize
the difference between scalars (no brackets) and distributions.

# Notation Entity Attribute Units
1 e packing void ratio

2 p packing confining pressure [Pa]

3 ssa packing specific surface area [m−1]

4 [T ]V /[P ]V throat/pore throat/pore volume ratio

5 [T ]K throat conductance [m3Pa−1s−1]

6 [T ]e throat void ratio

7 [P ]e pore void ratio

8 [P ]As pore surface area [m2]

9 [B]Ac particle contact area [m2]

10 α particle grain size range [m]

11 cu particle coefficient of uniformity

12 cc particle coefficient of curvature

13 θ particle friction angle [deg]

14 Gpρ pore net. network density

15 GpD pore net. network diameter [m−3Pa s]

16 [Gp]κ pore net. degree

17 [Gp]κw pore net. weighted degree [m−3Pa s]

18 [Gp]
CB
edge

pore net. edge betwnness centrality

19 [Gp]
CB
node

pore net. node betwnness centrality

20 [Gp]CC pore net. closeness centrality [m3Pa−1s−1]

21 Gcρ contact net. network density

22 GcD contact net. network diameter [m−2]

23 [Gc]κ contact net. degree

24 [Gc]κw contact net. weighted degree [m−2]

25 [Gc]
CB
edge

contact net. edge betwnness centrality

26 [Gc]
CB
node

contact net. node betwnness centrality

27 [Gc]CC contact net. closeness centrality [m2]

sionless in the plots, using (depending on the units) the
mean particle diameter (d50) and the dynamic viscosity
η (d50 = 0.001 m, refer to Table I, and η = 0.001002
Pa s, refer to Table II). We experimented with vari-

ous distribution indicators, such as the mean, variance,
skewness, kurtosis and percentiles. For simplicity, we
include only the mean µ for each distribution, averag-
ing over the corresponding entity (throats, pores, par-
ticles, nodes or edges). We found that, although the
other distribution indicators do reveal some interesting
relationships, the main conclusions of this work hold
when only the mean is used. Given the small length-
scale under consideration, and the homogeneity of our
samples, averaging is a valid and straightforward method
to reduce each distribution to a single parameter. The
features p, µ[T ]K , µ[B]Ac , µ[Gc]κw , µ[Gc]CC , µ[Gp]κw and
µ[Gp]CC are found to span multiple orders of magnitude.
In order to weigh different magnitudes within these fea-
tures equally, we compute the natural logarithm. Finally,
in order to weigh different magnitudes between different
features equally, we standardize each feature by subtract-
ing the mean and dividing by the standard deviation, as
is standard practice in machine learning:

x̃i =
xi − µ(X)

σ(X)

where X = (x1, . . . , xN ) is a feature vector with N values
(for N packings) and µ and σ are the mean and standard
deviation, respectively. Figure axis used in Section III are
shown in original scales, however, for a more physically
meaningful discussion.

F. Feature Selection

In the presence of a large feature set, such as the one
presented in the previous section, we aim to uncover
the most ‘important’ features for the permeability in an
objective manner using feature selection. Formally, given
N instances of M features F = {Xi; i = 1, . . . ,M},
the objective of feature selection is to find a subset
S ⊆ F with m features that ‘optimally’ characterizes
a target variable Y [88]. Each instance corresponds to
a packing, and the target variable is, in our case, the
natural logarithm of the permeability. We present four
feature selection algorithms of increasing complexity.
The first three (Kendall correlation, mutual information
and mRMR) are myopic, i.e. conditional dependencies
between features are ignored. The fourth algorithm
(RReliefF) is non-myopic.

Kendall rank correlation
In contrast with the Pearson correlation coefficient, the
Kendall rank correlation coefficient (Kendall’s τ) can
measure non-linear dependence between variables [89].
Let X = (x1, . . . , xN ) ∈ F be the values of a certain fea-
ture X and Y = (y1, . . . , yN ) the target variable values,
and define Nc as the number of concordant pairs (xi > xj
and yi > yj or xi < xj and yi < yj) and Nd as the num-
ber of discordant pairs (xi > xj and yi < yj or xi < xj
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and yi > yj). Then, −1 ≤ τ ≤ 1 is defined as

τ =
Nc −Nd

1
2N(N − 1)

Values close to 1 or −1 indicate a good agreement
between rankings, generally indicating a strong rela-
tionship between the feature X and target variable
Y . We employ Kendall rank correlation because of its
initial simplicity and its ability to identify non-linear
relationships.

Mutual information
Let X and Y be two random variables with joint proba-
bility p(X,Y ) and marginal probabilities p(X) and p(Y ),
then the mutual information I(X;Y ) is defined as

I(X;Y ) =

∫
Y

∫
X

p(x, y) ln
p(x, y)

p(x)p(y)
dxdy

Computing the integrals is often difficult with a limited
number of instances [88]. As a solution, continuous vari-
ables can be discretized and the mutual information is
computed as

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) ln
p(x, y)

p(x)p(y)

Mutual information measures the degree of mutual
dependence between X and Y . For the discretization,
we experiment with a range of different techniques,
including equal-sized bins, percentile bins and mean-
based splittings using µ ± aσ, where µ is the mean of a
feature, σ is the standard deviation and a is a tuning
parameter. We find that k equal-sized bins between
the minimum and maximum of each feature deliver
robust results, particularly when the results from this
discretization are averaged for k = 5, 6, . . . , 150. The
permeability is discretized using 50 equal-sized bins
between the minimum and maximum. Although some
information is lost by discretizing continuous variables,
mutual information is included in our study because it
can identify non-linear, non-monotonic relationships.

minimum-Redundancy, Maximum Relevance
The mRMR method [88] is essentially an optimization
procedure with two objectives:

1. To maximize dependency, that is, find features that
are strongly correlated with the target variable,

maxD(S, Y ), D =
1

|S|
∑

Xi∈S
I(Xi;Y )

2. To minimize redundancy, that is, avoid features in
S that are highly correlated among themselves,

minR(S), R =
1

|S|2
∑

Xi,Xj∈S
I(Xi;Xj)

An exhaustive search of all possible subsets S ⊆ F is
often computationally unfeasible. Hence, in practice, an
incremental search method is used. First, set S0 = {Xi0}
where Xi0 = arg maxXi∈F I(Xi;Y ). We then incremen-
tally add a feature to the current subset Sk−1, k ≥ 1 with
the criterion

max
Xi∈F \Sk−1

[
I(Xi;Y )− 1

m− 1

∑
Xj∈Sk−1

I(Xi;Xj)

]
(2)

Note that the mRMR ranking should be interpreted
collectively. That is, for a ranking of three features,
the combination of ranked features 1 and 2 may be
better than feature 3, with respect to characterizing
the permeability, but this does not mean that feature
3 is less relevant (individually) than feature 1 or 2.
Instead, the feature score in the incremental opti-
mization procedure is based on the relevance to the
permeability and the degree of redundancy with the
already selected features in Sk−1. We discretize all
features and the permeability using 50 equal-sized bins
between the minimum and maximum. We use mRMR
because the method combines the strengths of mutual
information (non-linear, non-monotonic relationships)
with the ability to maximize dependency and minimize
redundancy.

RReliefF
The last feature selection algorithm under investigation
is the RReliefF method [90–92]. The family of Relief
methods estimate a feature’s importance W [X] based on
its ability to separate values of the target variable, ap-
proximating the following difference of probabilities [91]

W [X] = P (dissimilarX | dissimilarY )

− P (dissimilarX | similarY )

In words, a feature X is rewarded for separating dissimi-
lar values of Y and penalized for separating similar values
of Y . Given two instances I1 and I2, ‘similar’ and ‘dis-
similar’ for either the feature X or target Y is defined
using the distance function

diff(Z, I1, I2) =
|value(Z, I1)− value(Z, I2)|

max(Z)−min(Z)

for continuous features, where value(Z, I) is the value of
Z ∈ {X,Y } in instance I. For a detailed discussion of
the implementation of RReliefF, which involves the use of
an exponential correction to the distance function and k-
nearest neighbors to improve robustness, we refer to the
overview by Robnik-Šikonja and Kononenko [93]. In our
implementation, we use the parameters k = 70 nearest
neighbors and σ = 20 in the exponential distance func-
tion, as recommended by the authors. We select RRe-
liefF because it can detect conditional dependencies be-
tween features given the target variable values, a highly
desirable property in feature sets with strong dependen-
cies, because two features that appear useless individ-
ually may be useful together [94]. A drawback is that
RReliefF, in contrast with mRMR, does not detect fea-
ture redundancy.
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G. Prediction

Characterizing the permeability through feature selec-
tion is the main objective of this work. The final stage
of prediction, though, is included for completeness and
as an experiment to quantify the predictive capability of
the chosen features. Traditionally, in supervised machine
learning, we train (or fit) a predictive model using
both the input (values for selected features) and output
(permeability values) of the model, and subsequently
ask the model to predict (or test) the permeability
given a collection of unseen instances. In this context,
machine learning mitigates limited understanding of the
fundamental, underlying governing equations of a system
by performing data-driven predictions [76]. Even though
we deliberately made no assumptions regarding the
linearity of the relationships between features and the
permeability, we restrict our use of predictive methods
to linear regression for simplicity. As will become clear
in the results section, many high-scoring features have,
in fact, a linear relationship with the permeability, for
which linear regression suffices. For linear regression
theory, we refer to [68, 69]. In this section, we discuss
the validation methods used to quantify the error and
uncertainty in our predictions of the permeability.

Cross-validation
A common problem of machine learning in scarce data
settings is that the test set might not be sufficiently
large to provide a robust estimate of the generalization
performance. The most widely used method to remedy
this issue is K-fold cross-validation, for which the data is
split into K parts of equal size [69]. We run an iterative
procedure for k = 1, . . . ,K, where, in iteration k, the
model is trained using k − 1 parts and tested on the
single, remaining part. By averaging the resulting K
test set scores, we obtain a more robust estimate of the
generalization performance. Feature selection may be
combined with cross-validation by running the feature
selection algorithm on the k−1 parts before training the
model [69, Sec. 7.10.2]. Note that because the feature
selection is repeated K times, rankings may differ for
different folds. We expect the differences to be minimal,
however, if the feature selection method is robust and
sufficient data is available. Cross-validation should be
understood as a method to evaluate the process of fit-
ting a model, rather than evaluating the model itself [95].

Assessment
To study the generalization performance of a model, we
use two commonly-used performance indicators. The
root-mean-squared error (RMSE) is defined as

RMSE =

√
1

N

∑N

i=1
(ŷi − yi)2 (3)

where ŷi is the predicted value and yi is the measured
value for each of the N test set instances. We also report

the coefficient of determination R2, defined as,

R2 = 1− u

v
, u =

N∑
i=1

(yi − ŷi)2, v =

N∑
i=1

(yi − ȳ)2 (4)

where ȳ is the mean of the measured values.

III. RESULTS AND DISCUSSION

Feature selection
Before we highlight the key insights from our analysis,
we present the broad results first. The feature selection
scores for Kendall rank correlation, mutual information
and RReliefF, applied to the feature set from Section
II E and permeability values from Section II C, are sum-
marized in Table V. Key parameters, discussed in the
subsequent analysis, are highlighted. We make a num-
ber of observations. Firstly, we observe a similar top ten
for Kendall correlation and mutual information, and a
slightly different top ten for RReliefF. We attribute this
distinction to the ability of RReliefF to detect conditional
dependencies, whereas Kendall correlations and mutual
information are purely myopic methods. The best scor-
ing feature in RReliefF (throat conductance [T ]K) can
be thought of as having both a strong individual depen-
dency and conditional dependency (combined with other
features) on the permeability. A difference between RRe-
liefF and the other two rankings is the confining pressure
p. Further inspection of this feature reveals that p is
heavily penalized for not having a clear relationship with
the permeability for low confining pressures (p < 106

Pa). For the mutual information scores, we observe that
the standard deviation over various binnings is relatively
small compared to the mean scores, indicating a robust
ranking.

Secondly, in terms of network parameters, the pore
network closeness centrality [Gp]CC receives high scores
in all three methods, indicating the importance of this
feature for the permeability. Not surprisingly, the edge
weighting for the pore network, [T ]K , scores high in all
three methods as well. Other important network features
appear to be the degree [Gc]κ in the contact network and
the weighted degree [Gp]κw in the pore network. We ob-
serve that the betweenness centrality receives medium
scores and the network diameter and network density
receive relatively low scores in all three feature selec-
tion methods. Based on these observations, the closeness
centrality in the pore network appears to be the most
promising network feature to predict the permeability.

Thirdly, in terms of physical features, the local pore
void ratio [P ]e, global void ratio e and local throat void
ratio [T ]e are given relatively high scores in all three
methods, confirming the well-known importance of the
void ratio. The friction angle θ and parameters related
to the grain size distribution (cu, cc and α) receive low
scores in all three algorithms. We attribute this result to
the fact that these parameters are only suitable to pre-
dict the permeability if all other parameters of the porous
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TABLE V. Ranked scores assigned to each feature for three feature selection algorithms. For the notation, refer to Table IV.

Kendall Correlation Mutual Informationa RReliefF
1 ln µ [Gp]CC .878 ln µ [Gp]CC .412± .017 ln µ [T ]K .313
2 µ [P ]e .848 ln µ [T ]K .374± .013 ln µ [Gp]CC .290
3 µ [Gc]κ −.848 µ [P ]e .365± .017 e .237
4 ln µ [T ]K .847 e .361± .014 µ [T ]e .233
5 e .842 µ [Gc]κ .358± .016 ln µ [Gp]κw .223
6 µ [Gc]

CB
edge

.828 µ [T ]e .347± .017 µ [P ]e .175

7 µ [T ]e .816 ln µ [Gp]κw .336± .023 µ [Gc]κ .160
8 ln µ [Gp]κw −.787 ln p .323± .033 ssa .140
9 ln p −.775 µ [Gc]

CB
edge

.318± .024 Gcρ .123

10 Gcρ −.732 ln µ [B]Ac .296± .041 µ [Gp]
CB
edge

.096

11 ln µ [B]Ac −.723 Gcρ .291± .034 µ [Gp]
CB
node

.093

12 µ [Gc]
CB
node

.723 ln µ [Gc]CC .280± .036 µ [T ]V /[P ]V .081

13 ln µ [Gc]CC −.704 ssa .271± .046 µ [P ]As .052
14 GcD .623 µ [Gc]

CB
node

.270± .039 Gpρ .049

15 ln µ [Gc]κw .607 µ [Gp]
CB
node

.252± .048 θ .045

16 ssa .594 µ [Gp]
CB
edge

.246± .049 µ [Gc]
CB
edge

.036

17 µ [T ]V /[P ]V .572 ln µ [Gc]κw .243± .049 µ [Gc]
CB
node

.027

18 µ [Gp]
CB
node

−.547 µ [P ]As .232± .059 cu .024

19 µ [Gp]
CB
edge

−.513 GcD .227± .045 µ [Gp]κ .004

20 µ [P ]As .467 Gpρ .219± .066 α .002
21 µ [Gp]κ −.465 µ [T ]V /[P ]V .213± .033 cc −.001
22 Gpρ .265 µ [Gp]κ .211± .055 GpD −.010
23 θ .192 GpD .201± .065 ln µ [Gc]κw −.028
24 GpD −.106 α .200± .051 GcD −.052
25 cu .087 θ .186± .032 ln p −.064
26 α .087 cu .148± .025 ln µ [Gc]CC −.094
27 cc −.000 cc .133± .023 ln µ [B]Ac −.115

a mean ± standard deviation of scores for a set of different binnings, as explained in Section II F.

medium are held constant, or, equivalently, if the condi-
tional dependencies between the friction angle or grain
size distribution with other features are utilized. Kendall
correlation and mutual information, being myopic, do not
account for such feature interactions. In the case of RRe-
liefF, we believe that the conditional dependencies of θ,
cu, cc and α are relatively weak, resulting in low scores.
These observations are consistent with geotechnical liter-
ature and are revealed even in the absence of disciplinary
knowledge.

Having performed a quantitative analysis of the fea-
ture set, we further investigate a number of features, in-
spired by the ranking in Table V. We hypothesized a
strong relationship between the permeability and the av-
erage closeness centrality of the pore network. Indeed,
the pore network closeness centrality consistently ranks
high (1st for Kendall correlation, 1st for Mutual Infor-
mation and 2nd for RReliefF) in our feature selection
algorithms. Figure 6 depicts this key result in the form
of a scatter plot of the data, along with the two pore
networks corresponding to the permeability extrema and
the Aste et al. reference packing. Recall that the pore
network is weighted using the conductance, as outlined
in Appendix A. We observe an approximately linear rela-
tionship between the logarithm of the average closeness
centrality and the logarithm of the permeability. The
variance in closeness centrality decreases slightly, as the
permeability increases. The reference case shows good
resemblence with the observed trend in the DEM data,

exhibiting a high permeability due to the fact that Aste
et al. [60] did not subject the sample to compression.
As may be expected, the maximum dimensionless per-
meability (1.8 × 10−3) is found in a sample subjected
to a low confining pressure (1.7 × 105 Pa) resulting in a
high overall void ratio (0.68). The minimum permeability
(1.3× 10−5) corresponds to a low void ratio (0.17) stem-
ming, in turn, from a high confining pressure (9.9 × 106

Pa). The shortest paths distributions on the right of
Figure 6 show that a high permeability and high average
closeness centrality corresponds to a pore network with
relatively fewer, shorter shortest paths. In contrast, a low
permeability and low average closeness centrality corre-
sponds to relatively many, longer shortest paths. We
can explain the difference using the geometry and con-
nectivity in the corresponding pore networks: the highly
permeable sample at the top contains large pores and
throats, whereas the pores and throats in the bottom net-
work are much smaller. In summary, the average close-
ness centrality is able to capture the interplay between
fluid flow, shortest paths, pore sizes and throat sizes in a
single scalar.

Figure 7 contains a selection of other relationships be-
tween features and the permeability. In Figure 7(a), a
power-law-like dependency is observed between the per-
meability and the various void ratio parameters, consis-
tent with past results [25, 96–99]. The global void ra-
tio and averaged pore void ratio data closely resembles
k ∝ e3 while, interestingly, the averaged throat void ratio
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FIG. 6. (Color online) Scatter plot of the average closeness centrality in the pore network and the permeability, along with the
pore networks at the extrema and the corresponding distributions of the shortest path lengths. The edge widths in the pore
network are scaled by the conductance.

fits better with k ∝ e4. Moreover, while the volumetric
void ratio parameters (e and µ[P ]e) vary between 0.17
and 0.74, the averaged throat (areal) void ratio is much
smaller, varying between 0.10 and 0.30. Showing similar
variance compared to the void ratio, the average con-
tact network degree (i.e. coordination number) in Figure
7(b) also has a defined relationship with the permeabil-
ity. For higher confining pressures, the average degree
in the contact network increases and the void ratio de-
creases. Consequently, the pore connectivity decreases,
and, similar to Figure 7(a), the permeability reduction
accelerates for larger values of the average contact net-
work degree. Similar, accelerated permeability reduction
is observed by Fredrich and co-authors [13, 25]. With
an average contact network degree of 1.95, the Aste et
al. reference case is showing a similar trend but much
lower value compared to our DEM data. We attribute
this result to (1) the fact that the reference case is not
subjected to triaxial compression, and (2) the imaging
resolution, which, as noted in [49], may not always be
sufficient to identify particle contacts.

We investigate two lower-scoring features in Figure
7(c). It can be observed that taken together, the specific
surface area ssa and coefficient of uniformity cu are
able to explain a reasonable fraction of the variance in
the permeability. This relationship is expected to be
even stronger when considering finer grained porous
media than the Ottawa sand-like medium studied in
this work. The conditional dependency explains why
ssa ranks higher in the RReliefF scores, compared to
the Kendall and mutual information scores. In Figure
7(c), we also compare least-square fits to the simulation
data and the Kozeny-Carman (KC) estimate (data itself
not shown). We use the KC equation as presented by

Carrier III [100], setting the empirical coefficient at 5.
Although the KC estimate slightly underpredicts the
permeability compared to our simulation values, we
observe a reasonable agreement between the two lines
and the Aste et al. reference packing. Lastly, we include
the pore network diameter in Figure 7(d) as an example
of a feature with little predictive value, showing no
clear relationship with the permeability. The lack of
predictive value is confirmed by the low feature selection
scores in Table V.

Redundancy reduction
None of the methods from Table V take a critical as-
pect of the feature set into account: redundancy. To
quantify this phenomenon, we compute the inter -feature
correlation values using the (absolute) Kendall correla-
tion score between each pair of features. The average
inter-correlation values between features 1-9 and 17-27
(see Table IV) is relatively high (0.64), while the remain-
ing features (10-16) exhibit low inter-feature correlations
(0.30). We conclude that the pore network features and
contact network features are correlated with the packing
features, throat features and pore features, highlighting
the overlap between the traditional physical features and
the network-based features.

Having observed redundancy in the feature set, we can
employ the minimum-Redundancy, Maximum Relevance
(mRMR) method. The result of applying the mRMR
method to the full feature set is shown in Table VI for
the top-10 features. We reiterate that for a particular
feature, the mRMR score should be interpreted as the
sum of a bonus for the relevance to the permeability and
a penalty for redundancy with higher-ranked features.
Hence, [Gp]CC (ranked first) has the highest relevance,



13

FIG. 7. (Color online) (a) Global and averaged local
(pore/throat) void ratio. (b) Averaged contact network de-
gree. (c) Specific surface area, colored by coefficient of unifor-
mity. Also includes a least-squares fit of the simulation data
and the Kozeny-Carman estimate. (d) Pore network diame-
ter.

in terms of mutual information, to the permeability.
The feature ranked second, [Gp]κw , maximizes Equation
(2) by simultaneously having minimal redundancy with
[Gp]CC and maximal relevance to the permeability.
Note that the mRMR score drops significantly after the
first feature, indicating either low relevance with the
permeability or high redundancy with the first feature.
Based on the methods from Table V, for which [Gp]κw
achieves high relevancy scores, we conclude that the drop
in mRMR scores can be attributed to high redundancy.
In conclusion, the pore network closeness centrality is

TABLE VI. Top-10 feature selection scores of the mRMR
method.

1 ln µ [Gp]CC .422
2 ln µ [Gp]κw .042
3 µ [Gc]κ .042
4 e .029
5 µ [P ]e .024
6 µ [Gc]CB

edge
.022

7 µ [T ]e .020
8 µ [T ]V /[P ]V .018
9 ln µ [T ]K .015
10 ln p .015

able to capture a large fraction of the available mi-
crostructural information in the sample, resulting in any
other features being mostly redundant. Equivalently,
none of the other features are able to explain much of the
remaining variance in the permeability for a particular
value of the pore network closeness centrality.

Stability
We analyze the stability of each feature selection al-
gorithm by re-computing the feature selection scores
and corresponding ranking using an increasingly large
fraction of the 536 samples. Unless the algorithm is
unstable or none of the feature correlate with the per-
meability, we expect the scores to converge as more data
becomes available. Figure 8 depicts the result of this
analysis. Kendall correlation produces the most stable

FIG. 8. (Color online) Convergence of the feature selection
rankings as more data becomes available. When 100% of the
data is used, the ranking corresponds to Tables V and VI.
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results, consistently ranking the pore network closeness
centrality as the best feature. The features that do
change in ranking correspond, in fact, to scores that are
relatively close. Mutual information and RReliefF show
less stable rankings, compared to Kendall correlation,
although the top ten only shows minor changes when
at least 50% of the data is used. The mRMR method
is clearly the least stable, showing large variations in
the ranking for all but the highest-ranked feature. We
attribute this result to the optimization procedure in
mRMR, which struggles to identify the most relevant
and least redundant features after the first feature (pore
network closeness centrality) has been chosen. We con-
clude that the top ten ranking for Kendall correlation,
mutual information and RReliefF are reasonably reliable
in terms of stability. The mRMR ranking, beyond the
highest-ranking feature, is less reliable.

Prediction
Having discussed the characterization of permeability us-
ing feature selection, the remaining step in our frame-
work (Figure 1) is the prediction of the permeability. We
randomly split the data in 80% (428 packings) and 20%
(108 packings) for training and testing purposes, respec-
tively, and run Kendall correlation feature selection on
the training set. Assuming that the top features in the
resulting ranking are strongly correlated with the per-
meability, we pick the top two features (lnµ[Gp]CC and
µ[P ]e) as the independent variables in the linear regres-
sion model. We take the natural logarithm of the aver-
age pore void ratio µ[P ]e because the permeability k and
µ[P ]e approximately follow a power-law relation (see Fig-
ure 7(a)) for which a log-log plot is linear. Note that tak-
ing the logarithm of a feature does not change its rank-
ing, because Kendall correlation is invariant to monotone
transformations. Figure 9 shows the prediction plane and
Table VII lists the root-mean-square error (RMSE) and
R2. For the single 80/20 split, the RMSE over the train-

TABLE VII. (Color online) RMSE and R2 values are com-
puted using equations (3) and (4), respectively. For cross-
validation, we report the mean and variance over the different
folds.

80/20 split 10-fold Cross-validation
Data RMSE R2 RMSE (µ± σ) R2 (µ± σ)
Train 0.14 0.98 0.14± 0.002 0.98± 0.001
Test 0.17 0.98 0.14± 0.023 0.98± 0.013

ing set is lower than the RMSE over the test set, which we
attribute to the inclusion of some of the outliers (shown
in Figure 6) in the test data. Indeed, when run with 10-
fold cross-validation, which should average out the effect
of outliers, the RMSE of the test set and training set are
approximately equal at 0.14. The R2 scores in Table VII
suggest that 98% of the variance in the permeability (or,
equivalently 86% of the standard deviation) is explained

FIG. 9. Linear regression using the logarithm of the average
pore void ratio and the logarithm of the average pore network
closeness centrality. Only the 108 test set instances are shown.
Terms used to make the permeability and closeness centrality
dimensionless have been moved to the intercept term of the
regression formula to indicate scale-dependence.

by the pore void ratio and pore network closeness central-
ity. Not shown here are the cross-validation scores when
only a single feature is used, i.e. either µ[Gp]CC or µ[P ]e,
which are worse than the result above (test set RMSE of
0.19± 0.04 and 0.17± 0.02, respectively). Hence, despite
the fact that the mRMR method (see Table VI) identifies
most features as redundant, combining the closeness cen-
trality with a geometry feature does (slightly) improve
the prediction. Observe that the regression coefficients
of µ[Gp]CC (0.48) and µ[P ]e (1.77) deviate from the ob-
served coefficients of approximately 1 (see Figure 6) and 3
(see Figure 7(a)), respectively. The discrepancy appears
due to a trade-off in fitting two independent variables
simulateneously.

We experimented with more advanced, non-linear re-
gression method (e.g. support-vector regression, random
forest regression) but encountered only a small reduction
in RMSE and, more importantly, a larger degree of over-
fitting. We attribute this result to two factors: (1) the
relationship between either of our chosen features and
the permeability is linear in a log-log scale, as shown in
Figures 6 and 7(a), for which a linear model is most ap-
propriate, and (2) the combination of the pore network
closeness centrality and pore void ratio already captures
most of the variance in the permeability, so adding an-
other feature (or using a higher-order model) is not going
to significantly reduce the prediction error. Essentially,
we find that the combination of a connectivity feature
(closeness centrality) and a geometry feature (pore void
ratio) performs well in characterizing (e.g. explaining the
variance in) permeability.
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IV. CONCLUSION

We developed a general data-driven framework for
modeling transport in porous, granular media from high
resolution microstructural data. We quantitatively ana-
lyzed a large feature set, spanning micro- to meso-scales,
to optimally ‘characterize’ permeability. By employing
multiple feature selection algorithms, we gather objec-
tive evidence that certain features are important in pre-
dicting permeability and others are not. In particular,
the weighted pore network closeness centrality consis-
tently outperforms all other features across all the meth-
ods used. The weighted pore network closeness central-
ity parsimoniously characterizes the internal connectiv-
ity and concomitant efficiency of transmission pathways
across multiple spatial scales. Specifically, a sample with
a high permeability has an internal pore structure encom-
passing many efficient shortest paths that run through
relatively large pore bodies connected to each other by
high conductance pore throats. This closeness centrality
metric renders most other features redundant in explain-
ing variance in the permeability. Analysis of the corre-
sponding shortest paths and pore network data reveals
the interplay between shortest paths, pore- and throat-
geometry and fluid flow captured by the closeness cen-
trality. As an example of utilizing the feature selection
results, we fit a linear model to the pore void ratio and
pore network closeness centrality, which is able to explain
approximately 86% of the standard deviation in the per-
meability.

The framework presented here can be applied to in-
vestigate the relationship between permeability (or any
other transport property at the macroscopic, engineering
scale) and a given feature set, where the latter contains
any number of measurable internal properties that span
the micro- to meso-scales, for a porous granular mate-
rial. We demonstrate that feature selection methods are
a useful, quantitative approach to extract key parame-
ters from a large dataset. Caution must be exercised
however, since the methods are subject to algorithmic
subtleties (e.g. myopic versus non-myopic) that influ-
ence the results. Therefore, the feature selection score
of a variable, a measure of the extent to which it char-
acterizes the permeability, should always be interpreted
in light of the assumptions of the particular algorithm
used. The use of multiple feature selection methods and
the stability test shown in Figure 8, which we adopt here
to rule out algorithmic artifacts, are useful checks for the
robustness of the results.

In applying the framework to relatively simple sphere
packings, we take the first step in applying complex net-
work theory to pore networks. Ongoing work is focused
on (1) developing, implementing and validating stable
feature selection methods to ensure robustness of features
to variations in the training data for accurate character-
ization and prediction of permeability, (2) characterizing
other transport properties (e.g. thermal conductivity)
within the proposed framework, and (3) predicting local

pore phenomena (e.g. clogging, filtration) with macro-
scale implications, using complex networks.
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Appendix A: Conductance computation

In this appendix, we briefly detail our approach to com-
puting the local conductance, used as the edge weighting
in the pore network. Define (p1, p2) as the pair of pores,
connected by pore throats ti, i = 1, . . . , Nt. Assume
the pores can be represented as cylinders with lengths
(Lp1 , Lp2), radii (rp1 , rp2) and volumes (Vp1 , Vp2) equal
to the original pore volumes. Furthermore, assume the
throats can be represented by cylinders with lengths Lti ,
radii rti and top/bottom areas Ati equal to the original
pore throat areas. We then compute the conductance
weighting C [m3 Pa−1 s−1] as the harmonic mean

C =
Lp1 + Lteqv + Lp2
Lp1
Cp1

+
Lteqv
Cteqv

+
Lp2
Cp2

(A1)

where Lteqv and Cteqv are the arithmetic means

Lteqv =

∑Nt
i=1 LtiAti∑Nt
i=1Ati

, Cteqv =

∑Nt
i=1 CtiAti∑Nt
i=1Ati

Equation (A1) is also illustrated in Figure 10. The

FIG. 10. Illustration of Equation (A1) for Nt = 2 throats
connecting a pair of pore bodies (p1, p2)

conductances Cp1 , Cp2 and Cti are computed from the
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Hagen-Poiseuille equation

Q = Cpk∆p=
πr4
pk

8ηLpk
∆p, k = 1, 2

Q = Cti∆p=
πr4
ti

8ηLti
∆p, i = 1, . . . , Nt

where Q is the fluid discharge [m3s−1], η is the dynamic
viscosity [Pa s] and ∆p is the pressure drop [Pa]. Note

that in our case, ‘pores’ are (merged collections of) tetra-
hedra and ‘throats’ are shared faces, but the theory ap-
plies to any pore network construction algorithm (e.g.
inscribed spheres) as long as the pores and throat repre-
sentations can be translated to equivalent cylinders.
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