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The concept of symmetry breaking has been a propelling force in understanding phases of matter.
While rotational symmetry breaking is one of the most prevalent examples, the rich landscape of
orientational orders breaking the rotational symmetries of isotropic space, i.e. O(3), to a three-
dimensional point group remain largely unexplored, apart from simple examples such as ferromag-
netic or uniaxial nematic ordering. Here we provide an explicit construction, utilizing a recently
introduced gauge theoretical framework, to address the three-dimensional point-group-symmetric
orientational orders on a general footing. This unified approach allows us to enlist order parame-
ter tensors for all three dimensional point groups. By construction, these tensor order parameters
are the minimal set of simplest tensors allowed by the symmetries that uniquely characterize the
orientational order. We explicitly give these for the point groups {Cn, Dn, T,O, I} ⊂ SO(3) and
{Cnv, S2n, Cnh, Dnh, Dnd, Th, Td, Oh, Ih} ⊂ O(3) for n, 2n ∈ {1, 2, 3, 4, 6,∞}. This central result
may be perceived as a roadmap for identifying exotic orientational orders that may become more
and more in reach in view of rapid experimental progress in e.g. nano-colloidal systems and novel
magnets.

I. INTRODUCTION

Rotational symmetry breaking of the three dimen-
sional (3D) orthogonal group O(3) plays an important
role in many condensed matters systems, from classical
and quantum spins to molecular and strongly correlated
electronic nematic liquids [1–5]. In familiar instances, like
the Heisenberg ferromagnet and the uniaxial nematic, the
full rotational group O(3) is broken to O(2) and D∞h,
respectively. However these are in fact only two special
cases of the rich landscape of O(3) symmetry breaking.
Indeed, as a matter of principle, matter can break the
rotational symmetries of isotropic space O(3) to any of
its subgroups, leading to long range orientational order
characterized by complicated tensors order parameters.
The subgroups of O(3) have been mathematically iden-
tified for a long time and entail the well-known three-
dimensional point groups. In Fig. 1, we show a represen-
tative selection of these symmetry groups and moreover
their characterizing symmetry hierarchy.

Perhaps surprisingly, it appears that the zoo of point-
group orientational orders has never been explored in
full generality. Needless to say, the classification of rota-
tional order parameters for some non-broken symmetries
has been gradually accumulating since the past century
due to various motives. Firstly, in the soft matter lit-
erature the unixial (D∞h) and biaxial (D2h) order pa-
rameter have been shown to be characterized by second-
rank tensors [2], which have been intensively studied in
various theories [6–14]. In addition, higher rank order-
ing tensors for the Td-tetrahedral [15–18], Oh-cubic [19–
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21] and Ih-icosahedral [15, 20, 22–25] orders have been
discussed by many authors e.g. in the context of Lan-
dau theories and nematic lattice models. Nonetheless,
these cover still only a small subset of all 3D point group
symmetries and, to the best of our knowledge, the order
parameters for most instances are not known explicitly
nor have appeared within a single unified classification
scheme. These general order parameters, however, are
becoming of more practical interest. New exotic orienta-
tional orders may be realized in ensembles of anisotropic
constituents, especially nano- and colloidal particles of
different shapes [26, 27]. In particular, the increasing
experimental ability to control such degrees of freedom
[28–31] is especially promising in this regard. Secondly,
many unconventional orientational orders have also been
proposed for quantum magnets [32–34] and spinor con-
densates [35, 36]. In all these cases, the order parame-
ters associated with each symmetry are indispensable to
eventually verify the symmetry of these phases and the
associated physics.

In this paper we bridge this divide and set out to clas-
sify the order parameters associated with arbitrary point
groups within a single systematic framework. In par-
ticular, we adopt a gauge theoretical formulation, which
we recently proposed in the study of generalized nemat-
ics [37]. Here we derive the full table of order param-
eters for physically most relevant 3D point groups. In
detail, we highlight the order parameters for physically
interesting symmetries including all the crystallographic
point groups, the icosahedral groups arising in the con-
text of quasi-crystalline ordering, and the five infinite ax-
ial groups {C∞ ' SO(2), C∞v ' O(2), C∞h, D∞, D∞h}
exhibiting a continuous rotational SO(2)-axis. We show
that in order to uniquely characterize a point-group-
symmetric orientational order of a phase, at most two
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FIG. 1. A selection of finite subgroups of O(3) or 3D point
groups and their subgroup relations (not unique). They com-
prise continuous subgroups with a C∞ ' SO(2) axis and fi-
nite point groups. Ascending the hierarchy of symmetries,
the order parameter tensor describing the phases associated
with the point group symmetries becomes increasingly com-
plicated.

order parameter tensors and a pseudoscalar are needed:
the second ordering tensor is required by the finite axial
groups {Cn, Cnv, S2n, Cnh, Dn, Dnh, Dnd}, whereas the
pseudoscalar chiral order parameter is a requisite associ-
ated with the handedness or chirality of the proper point
groups {Cn, Dn, T,O, I} that are subgroups of the group
of proper three-dimensional rotations SO(3).

This paper is organized as follows. In Section II, we
discuss the general framework and present our main re-
sult the classification of the order parameter tensors for
three-dimensional point groups and discuss their relation
to the subgroup structure. In Section III, we review
the gauge theory description of generalized nematics and
show it can act as an efficient order parameter genera-
tor. The procedure of deriving the order parameters is
demonstrated in Section III C and we discuss how to mea-
sure these order parameters in simulations from a more
practical view point in Section III D. We discuss many
examples in Section IV before concluding in Section V
with an outlook.

II. ORIENTATIONAL ORDERING TENSORS

In this Section we announce our main result in Table
I. In order for the reader to able to read Table I, we first
discuss the general problem of determining order param-
eter tensor, then specify our conventions and discuss the
broad classifications of in terms of the structure of three-
dimensional point groups.

A. Three-dimensional orientational ordering
tensors

Let us begin by recalling the characterization of rota-
tional ordering in the familiar context of the Heisenberg
ferromagnet and the conventional uniaxial nematic. In
the ferromagnetic phase of a classical Heisenberg mag-
net, the rotational O(3) symmetry of the Hamiltonian
breaks down to the point group C∞v ' O(2) defined
by the axis of magnetization M. The order parameter
M = 〈ni〉 is given by the macroscopic averaging of local
spins ni and is a 3D vector with an orientational order
parameter spaceO(3)/O(2) ' S2. On the other hand, for
uniaxial liquid crystals or spin nematics, where the O(3)
symmetry is broken to the point group D∞h in the or-
dered phase, the system exhibits a macroscopic ordering
along an axis n. The uniaxial symmetry D∞h acts on the
order parameter as n→ −n and these describe the same
macroscopic ordering. Often depicted as being formed
of explicitly rod-like “molecules”, a coarse-grained order
parameter can be formulated in terms of a local vector ni
along the “long” axis of each “molecule”, with the iden-
tification of ni with −ni. To define the uniaxial orien-
tational order, one therefore needs a second rank tensor,
Q[n] = n⊗n− 1

3 which is characterized by its invariance
under n → −n and is zero in the isotropic phase by be-
ing traceless. Accordingly, the global order parameter is
defined as Q[n] = 〈Q[ni]〉 in the coarse-grained order pa-
rameter theory and formally relates to the unixial order
parameter space O(3)/D∞h ' S2/Z2 ' RP2, the real
projective plane.

The above familiar examples share the key feature of
having an O(2) symmetry in the plane perpendicular to
the ordering vector, which is why the underlying physics
is so apparent: the order parameter is defined by one axis
and the rotations in the perpendicular plane are trivial,
and the degrees of freedom effectively reduce to 1D ob-
jects (the spins and the rods in the above examples).
Nonetheless, for general 3D point-group-symmetric or-
dering, the order parameter and the coarse grained de-
grees of freedom form intrinsic 3D objects. To define the
3D orientation one therefore has to depart from a full
O(3) rotation matrix R,

R =
(
l m n

)T
. (1)

The rows {l,m,n} of R form an orthonormal triad nα =
{l,m,n}. In other words, R is a rotation that brings
the triad nα = {l,m,n} into coincidence with a fixed
“laboratory” frame ea = {e1, e2, e3} and can be defined
by three Euler angles with respect to the unit vectors ea.
The determinant of R defines the handedness or chirality
of the triad,

σ = detR = εabc(l⊗m⊗ n)abc = l · (m× n) = ±1, (2)

which is and pseudoscalar and invariant under the proper
rotations SO(3). Moreover, due to O(3) = SO(3) ×
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{1,−1}, we have the decomposition

R = σR̃ = σ(̃l m̃ ñ)T (3)

where R̃ ∈ SO(3) and its rows ñα = {̃l, m̃, ñ} are pseu-
dovectors. The O(3) constraints RTR = RRT = 1 and
detR = ±1 of course reduce the free parameters to the
three Euler angles Ω = (θ, φ, ϕ) and chirality in the frame
ea but we will find the vector notation with the O(3)-
constraints understood very useful in the following.

In the general case, the order parameter has to be in-
variant under all unbroken point-group transformations.
As a result, an orientational order parameter with a
point group symmetry G is defined by G-invariant ten-
sors constructed from the triad R or nα = {l,m,n}.
These tensors are equivalent to higher order multipoles or
(three-dimensional) spherical harmonics. We will denote
these order parameters tensors composed of the triads
generically as OG, where the additional label specifies
the symmetry group G when appropriate. Concretely,
in the above two examples, the order parameter tensor
is the magnetization vector OC∞v [n] = n and the sec-
ond rank tensor or director OD∞h [n] = Q[n], respec-
tively. Finally, we note that besides the orientational
order, the composite chiral order parameter σ defined
in Eq. (2).is needed for proper point-group symmetry
such as {Cn, Dn, T,O, I} due to the breaking of the chi-
ral symmetry of O(3). We also note that O(3)-triad order
parameters constructed from R effectively also arise e.g.
in spin-models with non-homogenous ordering associated
with sublattice structures [32].

As OG needs to be uniquely invariant under a given
symmetry G in the hierarchy in Fig. 1, it is in gen-
eral highly non-trivial to construct its explicit form, even
though the polynomial invariants of 3D points groups
have been computed a long time ago [38, 39] and the
representation theory of SO(3) is known. As a central
result, we will discuss a systematic and straightforward
framework to derive these order parameter tensors in
Sections III and III C, the result of which is shown in
Table I. We show the lowest order invariant tensors
OG for several point groups, where OG = OG[l,m,n]
for polyhedral groups; OG = {AG,BG} for axial groups,
where AG = AG[n] is the order parameter for the main
axis n and BG = BG[l,m] or BG[l,m,n] denote sec-
ondary order parameters defining the in-plane structure
for the finite axial groups. We note that amongst the
ordering tensors in Table I, the C1 order parameters
OC1 [l,m,n] = {AC∞v [n],BC1 [l,m]} = {l,m,n} simply
constitute the original O(3)-rotor order parameter R of
a phase with no unbroken symmetry (C1 is the trivial
group); OD2h = {OD∞h [n],BD2h [l,m]} compose the well
known order parameter tensors for D2h-biaxial nematics;
OC∞v [n] and OD∞h [n] are the classical Heisenberg spin n
and uniaxial director Q[n], respectively; OOh [l,m,n] has
been discussed in Ref. [19]; OTd [l,m,n] and OIh [l,m,n]
appear in a different form in Ref. [15], where an incom-
plete classification of order parameters for subgroups of

SO(3) is also discussed. In a recent paper [25], a classi-
fication of unique set of order parameters for subgroups
of SO(3) was carried out. These order parameters, how-
ever, are not the most elementary (“strongest” in the
terminology of Ref. 25) set of order parameters possible,
in the sense that for individual order parameters, when
allowed by symmetry, OG 6= 0 does not necessary imply
G order but also G′-ordering for G ⊂ G′ or have the
lowest possible rank. On the other hand, the gauge the-
oretical approach naturally provides such minimal order
parameters allowed by the symmetries, as we highlight
in Section III. In summary, many of the order parameter
tensors in Table I are new and have not been classified in
the context of a single unified framework for all rotational
symmetries of O(3).

B. Point groups and invariant tensors

In Table I, where the standard Schönflies notation
is used [39, 40], we show the invariant tensors from
which suitable order parameter tensors can be simply
constructed for all the 32 crystallographic point groups,
the 2 icosahedral groups and the 5 infinite axial groups.
These tensors can be divided into three classes in terms of
the structure of point group symmetries. Together with
the handedness field σ, they can uniquely define the order
parameter for the symmetries mentioned above.

Throughout this paper, we will refer to rotations
R ∈ SO(3) as proper and all elements R ∈ O(3) with
detR = −1 as improper and use the analogous nomen-
clature concerning the subgroups of O(3). We first note
the following well-known structure of the subgroups of
O(3) = SO(3)× {1,−1}:

(i) Proper point groups {Cn, Dn, T,O, I} that are sub-
groups of SO(3).

(ii) Subgroups of the form G = H × {1,−1} for
H ⊂ SO(3), including axial groups {Cnh, Dnh}
for even and infinite n (C∞h ' S∞, D∞d '
D∞h), {S2n, Dnd} for odd n and polyhedral groups
{Th, Oh, Ih}.

(iii) Subgroups G with improper rotations that do not
contain −1, including Cnv for all n, {Cnh, Dnh}
for odd n, {S2n, Dnd} for even n and the regular
tetrahedral group Td. These groups are of the form
G = H ∪−(G′ \H), where H is a normal subgroup
of index two for G′ ⊂ SO(3) [39, 40].

Our point groups are defined in the coordinate system
spanned by the unit triad vectors nα = {l,m,n} set up
in the following way. All point groups have the origin as
their fixed point. The rotational axis of cyclic rotation
groups Cn of is chosen to be n. The dihedral group Dn

has an additional generator in terms of a π-rotation along
the vector l (or m). The group Cnv is augmented with a
“vertical” reflection in the plane (l,n). The groups Cnh
and Dnh have an additional “horizontal” reflection plane
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TABLE I. Invariant ordering tensors for three-dimensional point groups. The first column specifies the symmetries
and the second column specifies the type {O,A,B} of the ordering tensor. The third column gives the explicit form of the
tensors. They are traceless and vanish in the isotropic phase but can have linear dependence, see Sec. IV. The infinite
axial groups {C∞, C∞v, C∞h, D∞, D∞h} require a single ordering tensor, A[n], describing the orientation of their primary
symmetry axis, chosen to be n; the finite axial groups {Cn, Cnv, Cnh, S2n, Dn, Dnh, Dnd} require two ordering tensors, A[n]
and B[l,m] or B[l,m,n], for their primary axis and perpendicular in-plane structure, respectively; the polyhedral groups
{T, Td, Th, O,Oh, I, Ih}, which treat {l,m,n} symmetrically, require only one ordering tensor O[l,m,n]. Due to the symmetry
hierarchy, many point groups share ordering tensors (see Section II C). The handedness or chirality σ = detR = ±1 arises
for proper point groups. These ordering tensors uniquely define the orientational ordering associated with the point group
symmetries. For example, the order parameters for finite proper axial groups are given by OG = {AG,BG, σ}. ⊗n denotes the
tensor power, e.g., n⊗2 = n ⊗ n and δab

⊗
µ=a,b eµ = δabea ⊗ eb. τ = (1 +

√
5)/2 is the golden ratio.

∑
cyc runs over cyclic

permutations of {l,m,n}.
∑

pairs sums over all non-equivalent pairings of the indices of the Kronecker deltas.
∑

pairs′′ in the

{C6v, D6, D6h} cases sums over all the six permutations of the indices d, e and f , and
∑

pairs′ =
∑

pairs−
∑

pairs′′ .
∑
{+,−} for

the {I, Ih} is a sum over the four combinations of the two ± signs.

Symmetry
Groups

Type Ordering Tensors Tensor
Rank

C1, C1h B[l,m] l, m 1

S2 B[l,m,n] l⊗m, m⊗ l, m⊗ n, n⊗m, n⊗ l, l⊗ n 2

C2, C2h B[l,m] l⊗m, m⊗ l 2

C2v, D2, D2h B[l,m] l⊗ l− 1
3
1, m⊗m− 1

3
1 2

S4 B[l,m,n]
(
l⊗ l−m⊗m

)
⊗ n 3

D2d B[l,m,n]
(
l⊗m + m⊗ l

)
⊗ n 3

C3, C3h B[l,m]

(
l⊗3 − l⊗m⊗2 −m⊗ l⊗m−m⊗2 ⊗ l

)
,(

m⊗3 −m⊗ l⊗2 − l⊗m⊗ l− l⊗2 ⊗m
) 3

C3v, D3, D3h B[l,m]
(
l⊗3 − l⊗m⊗2 −m⊗ l⊗m−m⊗2 ⊗ l

)
3

S6 B[l,m,n]

(
l⊗3 − l⊗m⊗2 −m⊗ l⊗m−m⊗2 ⊗ l

)
⊗ n,(

m⊗3 −m⊗ l⊗2 − l⊗m⊗ l− l⊗2 ⊗m
)
⊗ n

4

D3d B[l,m,n]
(
m⊗3 −m⊗ l⊗2 − l⊗m⊗ l− l⊗2 ⊗m

)
⊗ n 4

C4, C4h B[l,m] l⊗3 ⊗m−m⊗3 ⊗ l 4

C4v, D4, D4h B[l,m]

l⊗2 ⊗m⊗2 + m⊗2 ⊗ l⊗2 − 4
15
δabδcd

⊗
µ=a,b,c,d eµ +

1
15

(
δacδbd

⊗
µ=a,c,b,d eµ + δadδbc

⊗
µ=a,d,b,c eµ

)
,

l⊗4 + m⊗4 − 2
15

∑
pairs δabδcd

⊗
µ=a,b,c,d eµ

4

C6, C6h B[l,m]

(
l⊗3−l⊗m⊗2−m⊗l⊗m−m⊗2⊗l

)
⊗
(
m⊗3−m⊗l⊗2−l⊗m⊗l−l⊗2⊗m

)
,(

m⊗3−m⊗l⊗2−l⊗m⊗l−l⊗2⊗m
)
⊗
(
l⊗3−l⊗m⊗2−m⊗l⊗m−m⊗2⊗l

) 6

C6v, D6, D6h B[l,m]

(
l⊗3 − l⊗m⊗2 −m⊗ l⊗m−m⊗2 ⊗ l

)⊗2
+

4
105

∑
pairs′ δabδcdδef

⊗
µ=a,b,c,
d,e,f

eµ − 2
21

∑
pairs′′ δadδbeδcf

⊗
µ=a,d,b,
e,c,f

eµ,(
m⊗3 −m⊗ l⊗2 − l⊗m⊗ l− l⊗2 ⊗m

)⊗2
+

4
105

∑
pairs′ δabδcdδef

⊗
µ=a,b,c,
d,e,f

eµ − 2
21

∑
pairs′′ δadδbeδcf

⊗
µ=a,d,b,
e,c,f

eµ

6

Cn, Cnv, C∞, C∞v A[n] n 1

C∞h A[n] σn 1
S2n, Cnh, Dn,

Dnh, Dnd, D∞, D∞h
A[n] n⊗ n− 1

3
1 2

T O[l,m,n]
∑

cyc l⊗m⊗ n 3

Td O[l,m,n]
∑

cyc

(
l⊗m + m⊗ l

)
⊗ n 3

Th O[l,m,n]
m⊗2 ⊗ l⊗2 + l⊗2 ⊗ n⊗2 + n⊗2 ⊗m⊗2 − 2

5
δabδcd

⊗
µ=a,b,c,d eµ +

1
10

(
δacδbd

⊗
µ=a,c,b,d eµ + δadδbc

⊗
µ=a,d,b,c eµ

) 4

O, Oh O[l,m,n] l⊗4 + m⊗4 + n⊗4 − 1
5

∑
pairs δabδcd

⊗
µ=a,b,c,d eµ 4

I, Ih O[l,m,n]
∑

cyc

[
l⊗6 +

∑
{+,−}

(
1
2
l± τ

2
m± 1

2τ
n
)⊗6]− 1

7

∑
pairs δabδcdδef

⊗
µ=a,b,c,
d,e,f

eµ 6

(l,m). The group Dnd has vertical reflection planes in
terms of bisectors of the dihedral π-rotation axes. The
groups S2n are composed of n-fold rotoreflections in the
plane l,m. The polyhedral groups T, Td, Th and O,Oh

are defined in terms of a (tetrahedron embedded) in a
cube with face normals nα = {l,m,n}. The group Ih is
the symmetry group of an icosahedron with vertices at
cyclic permutations of the coordinates ±τ l ±m ± 0 · n
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and I its proper subgroup, following the conventions in
[41].

In Table I, we have collected the simplest invariant
tensors for those point groups in the coordinate system
discussed above. Let us now explain the broad charac-
teristics of Table I focusing on the nature of the groups
according to Fig. 1.

1. Continuous axial groups

The five infinite axial groups
{C∞, C∞v, C∞h, D∞, D∞h} require only one tensor
to define the associated orientational order. This is
because these groups contain a plane perpendicular to
the vector n with continuous SO(2) or O(2) rotations,
hence their in-plane structure is trivial and the order
parameter effectively reduces to a vector (C∞, C∞v), a
pseudovector (C∞h) or a director (D∞, D∞h), up to an
additional chiral order parameter σ for the proper point
groups.

2. Finite axial groups

Finite axial groups {Cn, Cnv, S2n, Cnh, Dn, Dnh, Dnd}
require two ordering tensors {A,B}: A = A[n] describes
the orientation of the primary axis, which is always cho-
sen as n in Table I, and tensors B = B[l,m] or B[l,m,n]
for the perpendicular in-plane order. This generalizes
well-known structure of the order parameters of biaxial
(D2h) liquid crystals. Due to symmetry relations which
will be discussed later, the primary ordering tensors A[n]
for {Cn, Cnv, } and {S2n, Cnh, Dn, Dnh, Dnd} are identi-
cal to the order parameters OC∞v [n] and OD∞h [n], re-
spectively.

3. Polyhedral groups

The finite symmetry groups {T, Td, Th, O,Oh, I, Ih} re-
lated to the regular tetrahedron, octahedron and icosa-
hedron, respectively, require only one ordering tensor in-
volving the whole triad nα. These symmetries transform
{l,m,n} “isotropically” amongst each other, so there is
no primary axis and the three axes appear symmetrically
in the order parameter tensor. Moreover, the tetrahedral
symmetries T, Td, Th give an example of the three cat-
egories (i)-(iii) of point groups and will be discussed in
Section IV C.

4. Proper point groups: chirality

Besides the orientational order parameters, the proper
point group symmetries {Cn, Dn, T,O, I} are chiral and
have an additional chiral order parameter. The simplest

chiral order parameter is just the pseudoscalar handed-
ness or chirality σ of the triad defined in Eq. (2). By
definition, proper point groups do not possess any in-
versions or reflections and therefore cannot change the
chirality or handedness of the triad.

C. Ordering tensors and the group hierarchy

As one may have already noticed from the above
discussion and Table I, although a symmetry can be
uniquely defined by the collection of order parameter
tensors OG and the handedness σ, owing to the group
structure discussed above, many orientational ordering
tensors are shared by different symmetries. We will now
clarify this by discussing their group structures.

Firstly, the primary ordering tensor AG[n] for Cn and
Cnv groups is just the order parameter tensor of the
C∞ and C∞v groups, ACn [n] = ACv [n] = OC∞ [n] =
OC∞v [n]. This is due to the simple fact that Cn and
Cnv groups do not transform n, hence they differ from
C∞ and C∞v only by their in-plane structure related to
BG[l,n]. Similarly, the groups {S2n, Cnh, Dn, Dnh, Dnd}
have the same effect on n, n→ −n. Therefore, neglecting
the l and m components, these symmetries lead to the
same primary ordering tensor A[n] = Q[n], the uniaxial
director.

Moreover, the groups {Cn, Cnh, Cnv, Dn, Dnh} are
closely related in terms of symmetries. Cn and Cnh =
Cn × {1, σh} only differ by a reflection σh : n → −n
in the horizontal mirror (l,m)-plane perpendicular to
n. Thus Cn and Cnh have the same in-plane struc-
ture leading to the same secondary order parameter
BCn [l,m]. For the point groups {Cnv, Dn, Dnh}, we have
Dnh = Dn × {1, σh} and Cnv and Dn can be repre-
sented as semi-direct products Cnv = Cn o {1, σv} and
Dn = Cno {1, c2(l)}, where σv is a reflection (l,n)-plane
and c2(l) is a two-fold rotation around the axis l,

σv = σln =

 1 0 0

0 −1 0

0 0 1

 , c2(l) =

 1 0 0

0 −1 0

0 0 −1

 .

(4)

It is immediately clear that, σv and c2(l) have the
same action on the l and m components. Therefore,
{Cnv, Dn, Dnh} also have the same in-plane order pa-
rameter B[l,m].

The common structures of the finite axial groups have
a direct implication on the associated phase transitions.
For a phase with the symmetry of a finite axial group,
it is in principle possible to disorder the primary and
secondary order separately before the transition to the
isotropic phase. If we first disorder the secondary order
in a plane, the following sequences of phase transitions
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can happen

Cn, Cnv → C∞v → O(3),

S2n, Cnh, Dn, Dnh, Dnd → D∞h → O(3), (5)

related to the restoration of the in-plane O(2) symmetry
followed by disordering of order along the principal axis
n. These axial transitions generalize the biaxial-uniaxial-
isotropic liquid transition of biaxial liquid crystals [6, 9].
We have numerically verified the transition sequences in
Eq. (5) for a large number of symmetries and will present
the detailed analysis and their phase diagrams in a sep-
arate work [42].

Finally, in the case of the poyhedral groups, Th =
T × {1,−1}, Oh = O × {1,−1} and Ih = I × {1,−1}
are generated from the proper subgroups T , O and I by
adding the inversion −1, according to item (ii) in Sec.
II B. Since the ordering tensors of I and O in Table I
are of even rank, this difference is not reflected directly
in the orientational order parameters. There exist higher
order invariant tensors that can distinguish O (I) from
Oh (Ih), nonetheless one needs to consider at least a rank-
5 (rank-7) tensors and it is therefore more convenient to
distinguish them by the chirality σ.

Improper groups possessing only reflections but not the
inversions −1 (item (iii) in Sec. II B) have non-vanishing
odd-rank order parameters in general. In these order pa-
rameters, terms related with right- and left-handed tri-
ads appear symmetrically, making the order parameter
invariant under certain improper reflections but not in-
versions. This will be reflected in the structure of the as-
sociated order parameters. For instance, as can be seen
from Table I, the order parameter for the tetrahedral-
Td group, OTd consists of a left- and right-handed copy
of that of the tetrahedral-T group (see Section IV C for
more details).

III. GAUGE THEORY DESCRIPTION OF
GENERALIZED NEMATIC PHASES

Let us now establish the relation with a recently intro-
duced gauge theoretical description of the G-point group
symmetric degrees of freedom, providing the necessary
apparatus to describe generalized three-dimensional ori-
entational order [37] and the derivation of the order pa-
rameter tensors.

The goal is to construct a coarse-grained order param-
eter theory with local point group symmetries. As in the
previous Section, the well-understood uniaxial nematic
with D∞h-symmetry may be perceived as the guiding
example, maximally simplified by the Abelian Z2 na-
ture of the underlying symmetry acting on the order pa-
rameter, which should be generalized to cope with arbi-
trary point group symmetries. In the uniaxial case, the
necessary head-to-tail symmetry that turns the coarse-
grained local order parameter vector ni into a director
can be simply accomplished in a Z2 lattice gauge the-

oretical setting [43, 44], see also [45]. That is, start-
ing from an auxiliary cubic lattice regulating the short-
distance cut-off of the theory, one can simply describe
the coarse grained order parameter theory in terms of
the O(3)-vectors ni coupled to Z2 gauge fields. This the-
ory has gauge variables σij = ±1 living on the bonds
〈ij〉 of the lattice, that interact via a plaquette term
−K

∑
l
i�

k
j
σijσjkσklσli thereby defining Wegner’s Ising

gauge theory [46, 47]. The gauge fields are minimally
coupled to the O(3) vectors ni living on the sites of the
lattice via a “Higgs” term −J

∑
〈ij〉 σijni · nj [48] favor-

ing nematic alignment. The theory has the local gauge
symmetries where ni → −ni and σij → −σij simultane-
ously. The term with only gauge fields can be understood
as encoding the π-disclinations of the uniaxial nematics.
Last but not the least, integrating over the Z2 gauge
fields leads directly to the effective biaxial Hamiltonian
H[n] ∼

∑
ij Tr Qi ·Qj in terms of the appropriate order

parameter [43].
The above Ising lattice gauge theory is enough to elu-

cidate the nature of gauge theories in general [48]. For
large J the matter and gauge fields are ordered by the
Higgs mechanism. In addition, the coupling K controls
the gauge fields and for small K,J the gauge fields are
confined, while for large K and small J the system is
in a deconfining phase with topological gauge fluxes as
excitations. Such “topological nematic phases” [44] have
been identified only in strongly interacting electron sys-
tems [33, 34, 49–54], while they appear rather unphysical
in the classical liquid crystal setting, where the regime of
interest is the strong gauge coupling K → 0 limit. Here
one finds the fully ordered “Higgs phase” and a fully dis-
ordered confining phase, which encode for the uniaxial
nematic phase and the isotropic liquid, respectively.

A. General lattice gauge theory model

As emphasized above, the D∞h-symmetry is special
due to the O(2) symmetry in the plane perpendicular to
the ordering axis. In general cases one has to revert to
coarse-grained O(3) rotors parametrized in terms of a
local orthornormal triad as

Ri =
(
li mi ni

)T
(6)

according to some fixed coordinate basis ea, instead of
a single vector ni. In the following, we denote the com-
ponents of Ri as (Ri)

α
a = (nαi )a, where greek indices are

in the local orthonormal basis nαi = {li,mi,ni}α=1,2,3

of the triad and latin indices in the fixed coordinate ba-
sis. The order parameter triad nαi defines the local ori-
entation of a G-symmetric “mesogen” and therefore is
subjected to the local identifications

Ri ' ΛiRi, nα ' Λαβi nβi , Λi ∈ G. (7)

Again, the goal is to construct a lattice model that gives
rise to a Higgs phase, which now describes generalized
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nematic order. Specifically, the Hamiltonian of the model
is defined as [37]

H = −
∑
〈ij〉

Tr [RT
i JUijRj ]−

∑
�

∑
C
KCδC(U�)Tr [U�]

(8)

on an auxiliary cubic lattice Z3. Here the first term is
a Higgs term for the matter {Ri} and gauge fields {Uij}
and in the second term

U� =

→∏
〈ij〉∈∂�

Uij (9)

is the counterclockwise product of the gauge fields around
a plaquette � of the lattice, defining a discrete gauge
field strength. Moreover, the gauge symmetries act on
the rotors Ri ∈ O(3) as

Ri → ΛiRi, Uij → ΛiUijΛ
T
j , Uij ,Λi ∈ G. (10)

Under a gauge transformation Λi, the plaquette term
transforms as as U� → ΛiU�Λ−1

i and hence the gauge
field strength U� is defined only up to conjugation and
KCδC(•) is a function on the conjugacy classes C of the
group G. In addition, the model is symmetric under
global O(3) rotations

Ri → RiΩ
T,Ω ∈ O(3) (11)

which is the global symmetry that the nematic state
breaks spontaneously.

The generalization from to the Ising gauge theory rel-
evant in the context of D∞h nematics is obvious. The
Higgs term models the orientational interaction of the
matter fields Ri, where J is now a G symmetric coupling
matrix,

ΛJΛT = J, ∀Λ ∈ G, (12)

defining the couplings between the triads, while the sec-
ond term is a defect suppression term. Accordingly, KC
describes the core energy of a defect corresponding to
deficit angle U� ∈ G defined up to the conjugacy classes
C of the group G. These gauge defects do not directly
classify topological defects in nematics, but are nonethe-
less closely related via the so-called Volterra construction
[55–57]. The nematic defects are usually classified topo-
logically in terms of the homotopy groups of the manifold
O(3)/G [58, 59] which is the order parameter space of the
G-nematic and as well the low-energy manifold of the
model Eq.(8) in the Higgs phase. Disordered configura-
tions can be suppressed by assigning a finite core-energy
to the gauge defects that proliferate at the phase transi-
tion. Thus, KC can effectively be regarded as tuning the
fugacity of the nematic defects. However, the interesting
“deconfined” regime at large KC will be left for future
work and we stress that in the present context of deriv-
ing the order parameters using the gauge symmetries, we
can focus on the gauge theory in the limit KC = 0.

In the usual way, the Hamiltonian defines the
orientational probability density as 〈O[Ri]〉 =
1
Z

∑
{Ri},{Uij}O[Ri]e

−βH , however due to the gauge

symmetries only very particular quantities O[Ri] are
non-trivial, as we next discuss.

B. Gauge theory, generalized nematics and order
parameters

With the gauge theory at hand, we need to make the
connection to generalized nematics in the ordered Higgs
phase where the O(3) symmetry spontaneously breaks.
We will first discuss how it is automatically guaranteed
that the ordering is of nematic nature and then out-
line the construction of the G-symmetric order parameter
tensor.

Higher rank order parameter tensors like those in Table
I arise in fact naturally from gauge invariant tensors of
the matter fields Ri in our gauge model Eq. (8). That
is, due to Elitzur’s theorem [60], all gauge non-invariant
tensors vanish. Therefore, on each site, instead of the
matter fields Ri we have the local tensors Oi = Ri ⊗
Ri⊗· · ·⊗Ri carrying upper and lower indices α, β, . . . , γ
and a, b, . . . , c giving rise to physical degrees of freedom.
Each choice of the triad indices α, β, . . . γ leads to a tensor

(Oαβ···γi )ab···c = (Ri)
α
a ⊗ (Ri)

β
b ⊗ · · · ⊗ (Ri)

γ
c , (13)

with components denoted by the Latin indices a, b, . . . , c
on which the global O(3) rotations act. Such “bi-tensors”
Oi are sometimes referred to as supertensors in the soft-
matter literature [2, 12, 45]. Due to the O(3) constraints,
i.e. the fact that nαi is a local orthonormal triad, not all
tensors Oλi are independent: the simplest such tensor
relations are given by l⊗ l+m⊗m+n⊗n = 1 and Eq.
(2) but we will come back to these later in Section IV.

The gauge symmetries act on the indices α, β, . . . , γ
and transform these tensors onto linear combinations un-
der the gauge transformations. Formally we can write the
gauge invariant tensors as linear combinations

Oλ
i =

∑
{λ}

cλOλi , (14)

where each multi-index λ = αβ . . . γ determines a ten-
sor in Eq. (13) with the coeffiecients cλ = cαβ···γ . The
full tensor Oλ

i is uniquely determined by λ =
∑
{λ} cλeλ

(vector of tensor components). The components trans-

form as RL(Λ) · cλ = (ΛT )α
′α(ΛT )β

′β · · · (ΛT )γγ
′
cα′β′···γ′

under the gauge transformations (local rotations of the
triad). By Elitzur’s theorem, we thus have

〈Oλ
i 〉 = 0, if 〈Oλ

i 〉 6= RL(Λi) · 〈Oλ
i 〉 := 〈ORL(Λi)·λ

i 〉
(15)

i.e. if λ is not a gauge invariant combination RL(Λ) ·λ =
λ, specifying a gauge singlet tensor. Each point group
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G ⊂ O(3) has a set of minimal linearly independent
gauge invariant tensors Oλ, see Table I with the iden-
tification nαi ' {l,m,n}. Each tensor Oλ

i has the rank
|λ| = dim λ = dim(α, β, . . . , γ) which is related to el-
ements of finite order in the point group; if there are
elements of order n, then the rank of the invariant ten-
sors is at least n. On the other hand, Ref. 25 provides
rigorous upper bounds on the rank of the order param-
eter for subgroups of SO(3). All invariant combinations
can be constructed as tensor products of the invariant
tensors, similarly as in the case of point-group invariant
polynomials (i.e. scalars) [38, 39].

Up to this point, we have determined that the gauge
model Eq. (8) gives automatically non-trivial higher
rank tensors that describe long-range order associated
with the spontaneous breaking of the O(3) symmetry,
while the “usual” orientational order 〈Ri〉 6= 0 is for-
bidden. Therefore, the physical orientational correla-
tions are in the tensors Oλ[Ri] and the orientational
probability density is given terms of the Hamiltonian as
ρ({Ri}) ∼ 1

Z

∑
{Uij} e

−βH[{Ri},{Uij}].
We still have to determine the orientational order car-

ried by the higher rank tensors 〈Oλ
i 〉 (see Section III D

for more details) that results from the Hamiltonian. The
global symmetry of the nematic phase is given by a point
group G′ in the basis ea = {e1, e2, e3} in the sense that
for Ω ∈ G′ ⊂ O(3), the rotations Ω act on the tensors
〈Oλ

i 〉 ∼ O[l,m,n] in the basis ea ⊗ eb · · · ⊗ ec as

(RR(Ω) · 〈Oλ〉)ab···c = Ωaa
′
Ωbb

′
· · ·Ωcc

′
(〈Oλ〉)a′b′···c′ ,

(16)

as expected. We emphasize this difference with the labels
RL,R (for left- and right actions) on the rotations acting
on the two distinct indices of the “supertensors” O. The
essence is that the problem of classifying the order pa-
rameters and gauge invariant tensors is the equivalent
problem of classifying point group invariant tensors in
the global and local bases ea and nαi , respectively. Each
tensor Oλ[l,m,n] is classified by the tensor rank |λ|, the
tensor symmetries of the indices a, b, . . . , c, and can be de-
composed in to the irreducible representations of SO(3)
under rotations in the usual way.

C. Order parameters and the high-temperature
expansion of the gauge theory

As we discussed, the principle underlying the deriva-
tion of the order parameters is the fundamental gauge
theoretical result: all physical observables have to be
gauge invariant, since gauge symmetries cannot break
spontaneously [60]. By construction, the model Eq. (8)
embodies the symmetry of the order parameter tensors
by the gauge symmetry. Therefore, if we integrate out
the gauge fields in the Hamiltonian, the terms that sur-
vive are gauge invariant local combinations of the mat-
ter fields, corresponding to the order parameter tensors.

This can be most easily accomplished in the strong cou-
pling limit of the gauge theory KC = 0, where the gauge
fields have no independent dynamics. The result is es-
sentially the effective Hamiltonian of the orientational
probability density ρ({Ri}) ∼ 1

Z

∑
{Uij} e

−βH[{Ri},{Uij}]

but in order to find the order parameter tensors we do
not need the effective Hamiltonian in closed form and
utilize the high-temperature expansion for small β. The
couplings J do not affect the general form of the expan-
sion and we set them to be isotropic J = J1 for simplicity
and measure the temperature in the units βJ ≡ β.

The partition function of the model Eq.(8) is defined
in the usual way

Z =
∑
{Ri}

∑
{Uij}

e−βH[Ri,Uij ]

=
∑
{R̃i}

∑
{σi}

∑
{Uij}

e−βH[R̃i,σi,Uij ], (17)

where the summations are naturally discrete over the
lattice and discrete or continuos over the groups G and
O(3). In the second line we made the handedness field

explicit by using Eq. (2), Ri = σiR̃i. In order to in-
tegrate over the gauge fields, the partition function is
Taylor expanded in the high temperature limit β � 1,

Z =
∑
{R̃i}

∑
{σi}

∑
{Uij}

∏
〈ij〉

∞∑
n=0

1

n!
(−βHij)

n. (18)

The integration over the gauge fields can be explicitly
performed on the lattice order by order in the expansion.
By construction, the terms appearing must be local terms
that are composed of contractions of gauge invariant ten-
sors. The result is therefore an expression starting with
contractions ∼ Tr [OGi · OGj ] coming from the lowest or-

der non-zero terms nmin ∼ rank OG in the expansions. In
other words, the lowest order non-trivial terms are com-
posed of the lowest order invariant tensors that can be
found from Table I. We emphasize that by construction
these tensors are the minimal and simplest possible set
of invariant tensors allowed by the symmetries.

D. Determining the symmetry of a phase with a
high-rank order parameter

Finally, we come back to the issue of determining the
symmetry of a nematic phase. The ordering tensors we
shown in Table I generalize the local director tensor Qab
for uniaxial nematics. The macroscopic order parameters
are defined as coarse grained averages over the system

〈OG〉 =
1

V

∑
i

〈OGi 〉, (19)

where V denotes the spatial averaging volume. To verify
the symmetry of a phase, one need in principle consider
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all independent entries of the order parameter tensor.
This is in general quite involved since the number of the
entries grows exponentially with the rank of the tensor.

However, for interactions favoring homogenous a ne-
matic order, such as the interaction in the gauge model
Eq. (8), the symmetry of the phase can be revealed by
the scalar two point functions in the limit of large separa-
tion. Since 〈OGi 〉 will develop a finite value in the ordered
phase, at long distances the scalar two point function of
the order parameter tensor behaves as

lim
|i−j|→∞

〈(OGi )abc...(OGj )abc...〉

=

{
Tr 〈OGi 〉2 > 0 nematic

0 otherwise.
(20)

The contractions in Tr (•) are determined up to the ten-
sor symmetries of the order parameter. This allows us to
define a strength for the ordering tensors,

q =
√
〈(OGi )abc...〉2, (21)

and the symmetry of the phase can be defined by the
lowest order tensor and “smallest” group G with q 6=
0. Accordingly, the phase transition(s) associated with
〈OGi 〉 can be identified from the susceptibility χ(q) of the
ordering strength,

χ(q) = βV
(
〈q2〉 − 〈q〉2

)
. (22)

We have previously numerically computed q and χ(q)
in the model Eq. (8) for large number of point group
symmetries [37]. Our simulations showed that χ(q) will
exhibit a clear peak at the temperature where the heat
capacity peaks, indicating that q in combination of sim-
ple symmetry arguments is indeed sufficient to determine
the symmetry of a nematic phase with homogeneous dis-
tribution of order parameters.

Lastly, we note that, when non-homogeneous distribu-
tions of order parameters are preferred, the symmetry of
a state can be compatible but not identical to G, as also
discussed e.g. in Ref. [45]. In these cases, a non-zero q is
not sufficient to identify the symmetry of the state, and
one in principle need consider all components of 〈OGi 〉.
However, the symmetry of a phase may be also deter-
mined by the “eigenvalues” and the distribution of non-
zero entries of 〈OGi 〉 [61]. Studies with this regard so far
mostly concentrate on the rank-2 D∞h and D2h ordering
tensors [12, 62–64], it would be interesting to consider
the ordering of the tensors in Table I in full generality
without assumptions on microscopic configurations of a
particular model.

IV. EXAMPLES AND DISCUSSION

Let us finally present how we arrived to Table I. For
all finite and discrete point groups, we can integrate over

the gauge fields in the expansion (18). For the continuous
axial groups, we can do the integrations in closed form.
The results are by construction composed of local con-
tractions of the simplest gauge invariant tensors allowed
by the symmetries, i.e. the tensors in Table I.

A. Continuous axial groups: unixial nematics

The integration over the gauge groups
{C∞, C∞v, C∞h, D∞, D∞h} can be done leading to
the familiar results. We will use the D∞-uniaxial ne-
matic as an example of the general procedure of deriving
uniaxial nematic order parameters, the others being
similar. The key point is the elimination of the triad
vectors l,m in the plane where the SO(2)-symmetry
acts from the Hamiltonian upon integrating out the
SO(2)-gauge fields, since there can be no gauge invariant
combinations of these components.

The gauge fields Uij ∈ D∞ can be generated by the
transformations {cθ(n), c2(m)}, where

cθ(n) =

 cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 , c2(m) =

 −1 0 0

0 1 0

0 0 −1


(23)

are a rotation about n by an angle θ ∈ [0, 2π) and a π-
rotation about m, respectively. We note that the “usual”
uniaxial symmetry is given by D∞h = D∞ × {1,−1}
and follows with minimal modifications. We focus on
the terms in the (l,m)-plane and parametrize the gauge
transformation as

Uij =

 σ11 cos θij σ12 sin θij
−σ21 sin θij σ22 cos θij

σ33

 ∈ D∞, (24)

where θij ∈ [0, 2π) parametrizes the C∞ rotation and
the constrained signs σαβ = ±1 are determined by the
presence of the π-rotation in the orthogonal (l,n)-plane.
This gives from Eq. (8), with J = J1 and β ≡ βJ as
before,

βH[l,m,n, θ, σαβ ]

=
∑
〈ij〉

β

[
cos θij

(
σ11li · lj + σ22mi ·mj

)
+ sin θij

(
σ12li ·mj − σ21mi · lj

)
+ niUij,33 · nj

]
.

(25)
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Now we proceed to integrate over the SO(2) angle θij

e−βHeff[li,lj ,mi,mj ,σαβ ]

=
∏
〈ij〉

1

2π

∫ 2π

0

dθij e
−H[li,lj ,mi,mj ,θij ,σαβ ]

=
∏
〈ij〉

I0(J1

√
A2
ij +B2

ij). (26)

where I0(z) is a Bessel function of the first kind with the
argument

A2
ij +B2

ij

=
[
σ11l(i) · l(j) + σ22m(i) ·m(j)

]2
+
[
σ12l(i) ·m(j)− σ21m(i) · l(j)

]2
= (li · lj)2 + (mi ·mj)

2 + (mi · lj)2

+ (li ·mj)
2 + 2σ11σ22(mi ·mj)(li · lj)

− 2σ12σ21(li ·mj)(mi · lj).

Now, since det2×2 Uij = σ11σ22 cos2 θij+σ12σ21 sin2 θij =
±1 = detUij × U33,ij , we can simplify

A2
ij +B2

ij

= (li · lj)2 + (mi ·mj)
2 + (mi · lj)2 + (li ·mj)

2

+ 2 det
2×2

Uij
[
(mi ·mj)(li · lj)− (li ·mj)(mi · lj)

]
= 1 + (ni · nj)2 + 2 det

2×2
Uijσiσjni · nj

= (σiσjni · nj + det
2×2

Uij)
2,

where on the second-to-last line we used the O(3) relation
li×mi = σini. Using det2×2 Uij = Uij,33 gives the result

Heff[ni, Uij ] =

−
∑
〈ij〉

βni · Uij,33nj + log I0
(
β|σiσjni · nj + Uij,33|

)
,

(27)

where Uij,33 = ±1 ∈ Z2 since for Uij ∈ D∞/C∞ '
{1, c2(m)} = Z2 when acting on ni. We remind that

I0(z) =

∞∑
k=0

(z2/4)k

(k!)2
, (28)

meaning that to lowest order in β, we generate the term

δHeff [ni, Uij,33]

∼
∑
〈ij〉

β2

4

[
1 + 2σiσjni · Uij,33nj + (ni · nj)2

]
+O(β4)

∼
∑
〈ij〉

β2

2
ñiUij,33 · ñj + higher orders, (29)

in addition to the original Hamiltonian in terms of ni.
By integrating out Uij,33 ∈ Z2 one will find that all odd

powers of ni · nj vanish and the first non-trivial term is
second order with D∞-invariant scalar contractions

(ñi · ñj)2 = (ni · nj)2 = Tr[Qi ·Qj ] + const (30)

due to the fact that a pseudovector and a vector are in-
distinguishable for even powers. At the same time, this is
the minimal D∞h-invariant tensor contraction Tr[Qi ·Qj ].
Higher order terms in Eq.(18) are high order even func-
tions such as [(ni · nj)2]2, and [(ni · nj)2]3 etc. that can
be neglected as irrelevant. Note however, that the full
expansion (18) for D∞ contains odd powers of β with
terms of the form β3σiσj [(ni · nj)2 + · · · ] that feature
the chiral order parameter σi. These chiral terms van-
ish identically for the case D∞h when summing over the
gauge fields Uij = {1,−1} in D∞h = D∞ × {1,−1}.

B. Biaxial nematics

The D∞- and D∞h-uniaxial nematics we just dis-
cussed is a well-known and relatively simple case in
the generalized nematic family. Since the symmetries
{C∞, C∞v, C∞h, D∞, D∞h} all contain a SO(2) part in
the plane perpendicular to the n, the vectors l and m dis-
appear from the order parameter, as we saw above. For
the symmetries {Cn, Cnv, Cnh, S2n, Dn, Dnh, Dnd} with
finite n, however, there will be in-plane rotational sym-
metry breaking and we need a secondary “biaxial” order
parameter B[l,m] or B[l,m,n] to capture these phase
transitions.

1. Biaxial order parameters and O(3)-constraints

Let us first discuss second rank order parameter ten-
sors. All traceless second order parameter tensors can be
generated from the “supertensor” [2, 12]

Sαβ = nα ⊗ nβ − 1

3
δαβ . (31)

However, as expected, there are only 5 independent trace-
less symmetric second-rank tensors, due to the relation
Sαα = 0 following from the O(3) constraints

l⊗ l + m⊗m + n⊗ n = 1. (32)

Therefore symmetric combinations of Sαβ have in total
25 non-zero elements (i.e. “scalar” order parameters).
However, these components transform under rotations of
the laboratory and body axes nα and therefore are con-
strained by the symmetries. In general we can eliminate
three non-zero components with a rotation to a suitable
laboratory frame that diagonalizes a symmetric second
rank order parameter tensor derived from Sαβ . Similarly
it is possible to consider such relations for all higher or-
der “supertensors” Oαβ...γ and decompose them into ir-
reducible SO(3)-representations according to their rank.
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Let us now give some examples in terms of the familiar
order parameters of biaxial nematics. As can be seen
from the Table I, for some axial nematics, there exist
more than one biaxial order parameter B. A well-known
example is the biaxial D2h-nematic, where we have the
order parameters {BD2h

1 ,BD2h
2 },

BD2h
1 = Sll = l⊗ l− 1

3
, (33a)

BD2h
2 = Smm = m⊗m− 1

3
(33b)

which are both clearly invariant under D2 generated by
{c2(n), c2(l)} and as well as the inversion −1. Corre-
spondingly, when integrating over Uij ∈ D2h in the ex-
pansion Eq.(18), in the first non-trivial order one will
obtain the scalar contractions

∼ (li · lj)2 + (mi ·mj)
2 + (ni · nj)2

= Tr[Q ·Q] + Tr[BD2h
1 · BD2h

1 ] + Tr[BD2h
2 · BD2h

1 ] + const.
(34)

which cannot be written as a contraction a single local
quantity like in Eq. (30). However, due to the O(3)-
constraints Eq. (32), the commonly used D2h biaxial
order parameter tensor BD2h = l⊗ l−m⊗m is just the
linearly independent linear combination of {BD2h

1 ,BD2h
2 }

and Eq. (34) reduces to contractions of the two inde-
pendent rank-2 tensors. In summary, the biaxial D2h

gauge symmetry eliminates all non-diagonal elements of
Sαβ and the O(3) constraints give one linear relation be-
tween the order parameters.

For other two-fold symmetries with second rank order
parameter tensors, similar arguments hold. For example
for C2h symmetry, the tensors

BC2h
1 = Slm = l⊗m, (35a)

BC2h
2 = Sml = m⊗ l (35b)

are invariant in addition to the D2h order parameters and
therefore in general non-zero. In terms of the irreducible
representations of SO(3) and the O(3) constraints, their
combination lead to the following order parameters

BC2h
1 + BC2h

2 = l⊗m + m⊗ l (36)

BC2h
1 − BC2h

2 = l⊗m−m⊗ l

= ε̂ · n ' σn = AC∞h[ñ], (37)

which respectively correspond to the symmetric traceless
second rank tensor and the pseudovector ñ = σn repre-
sentations of O(3), where (ε̂ · n)ab = εabcnc. These were
precesicely the rank-2 tensor order parameters discussed
in Ref. [65] for C2h symmetry.

2. Generalized biaxial order parameters

To show how more complicated order parameters are
derived using the gauge theory, we next discuss the

derivation of the secondary in-plane order parameters BG
of higher rank using the the order parameters of D2d, D4h

and C6h symmetries as examples.

We take D2d symmetry as an example of a nematic
with third-rank order parameter. The D2d group is gen-
erated by the elements {c2(n), c2(m), σd}, where

c2(n) =

 −1 0 0

0 −1 0

0 0 1

 , σd =

 0 −1 0

−1 0 0

0 0 1

 (38)

are a 2-fold rotation about n and a reflection in the (l +
m,n) plane, respectively, and c2(m) is as that in Eq.(23).

These lead to a 4-fold symmetry in the (l,m)-plane.
To obtain the order parameter describing this symmetry
breaking, we follow the same procedure discussed in the
previous section, but now the gauge fields Uij in Eq.(18)
are elements of D2d. Integrating over Uij ∈ D2d, one will
find that the first non-trivial order is the second order
with a term (ni · nj)2, which indicates as expected that
Q[n] is as well an order parameter for D2d nematics. The
4-fold rotational symmetry combined with the reflections
starts showing up at the third order in Eq.(18), where one
finds the following contractions up to a constant factor

∼ σiσj
[
(̃li · m̃j)(m̃i · l̃j) + (̃li · l̃j)(m̃i · m̃j)

]
(ñi · ñj)

= Tr

[[
(l⊗m + m⊗ l)⊗ n

]
i
·
[
(l⊗m + m⊗ l)⊗ n

]
j

]
,

(39)

where the third-rank contraction Tr(•abc · •abc) is deter-
mined up to the symmetries of the order parameter ten-
sor (symmetric in the first two indices). By construction,
the local quantity appearing in Eq.(39) is D2d invariant,
hence can be used to define a D2d-biaxial order parame-
ter,

BD2d = (l⊗m + m⊗ l)⊗ n. (40)

The full order parameter of a D2d nematic is therefore
given by

OD2d [l,m,n] = {AD∞h [n],BD2d [l,m,n]}. (41)

Continuing to D4h symmetry, after integrating out the
gauge fields for D4h, at the fourth order one will find the
following contractions up to constant factors and terms
solely depending on the axial axis n,

∼ Tr
[
(l⊗4
i + m⊗4

i ) · (l⊗4
j + m⊗4

j ) + 3(l⊗2
i ⊗m⊗2

i

+ m⊗2
i ⊗ l⊗2

i ) · (l⊗2
j ⊗m⊗2

j + m⊗2
j ⊗ l⊗2

j )
]
. (42)

One can therefore recognize two D4h-invariant local ten-
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sors,

BD4h
1 = l⊗2 ⊗m⊗2 + m⊗2 ⊗ l⊗2 − 4

15
δabδcd

⊗
µ=a,b,c,d

eµ

+
1

15

(
δacδbd

⊗
µ=a,c,b,d

eµ + δadδbc
⊗

µ=a,d,b,c

eµ
)
,

(43)

BD4h
2 = l⊗4 + m⊗4 − 2

15

∑
pairs

δabδcd
⊗

µ=a,b,c,d

eµ, (44)

where we have subtracted the isotropic trace-part for
convenience (“pairs” denotes the summation over all
non-equivalent pairings of the indices of the Kronecker
deltas).

However, these two tensors are not independent. Due
the O(3) relations Eq. (32), they satisfy

BD4h
1 + BD4h

2 = (l⊗2 + m⊗2)⊗2 = (1− n⊗2)⊗2. (45)

This in turn means that both BD4h
1 and BD4h

2 have depen-
dence on the axial axis n. Therefore, similar to the D2h

case, it is more convenient to use the linear combination
BD4h

1 − BD4h
2 to characterize a D4h phase.

In case of C6h symmetry, the biaxial order parameters
are rank-6 tensor and defined by the local contractions

∼ Tr
[
BD6h

1,i · B
D6h
1,j + BD6h

2,i · B
D6h
2,j + BC6h

1,i · B
C6h
1,j

+ BC6h
2,i · B

C6h
2,j

]
, (46)

up to constant factors and terms depending on the ax-
ial axis n, where the explicit form of these tensors are
given in Table I. The D6h order parameters appear here
since D6h/C6h ' {1, c2(l)} is a multiplicative group of
order two acting trivially at even powers, leading to re-
dundancy at even orders of the expansion Eq. (18). The
same phenomenon of course occurs for the C6 quotients
of {C6v, D6, D6h} etc. and the sixth order expansions
coincide for the groups with identical order parameters.

Again due to the O(3) relation Eq. (32) and Eq.(2),

these order parameters are not independent. BD6h
1 +

BD6h
2 = (l⊗2 + m⊗2)⊗3 = (1 − n⊗2)⊗3 depends solely

on n, and BC6h
1 −BC6h

2 can be expressed as a function of
the pseudovector ñ. As a consequence, the linear combi-
nation BD6h

1 −BD6h
2 and BC6h

1 +BC6h
2 are the appropriate

in-plane order parameters for these symmetries.
The above procedure of deriving the biaxial order pa-

rameter is valid for all axial nematics with finite n-fold
rotational symmetries. Naturally, the rank of the biax-
ial order parameter tensor increases with n and becomes
infinite when n → ∞. This reflects the fact that a bi-
axial order parameter does not exist for phases with an
in-plane SO(2) symmetry, {C∞, C∞v, C∞h, D∞, D∞h}.

C. Polyhedral nematics

Let us end by discussing the order parameters for the
polyhedral groups.

The proper tetrahedral group T can be generated by a
two-fold rotation c2(n), as that in Eq. (38), and a three-
fold rotation acting as a cyclic permutation of {l,m,n}
given by

c3(l + m + n) =

 0 1 0

0 0 1

1 0 0

 . (47)

These result in 12 proper rotations that leave a tetrahe-
dron embedded in a cube with normals l,m,n invariant.
After summing over gauge fields Uij ∈ T in the expan-
sion Eq. (18), one finds in the third order the following
local contractions,

∼ σiσjTr
[∑

cyc

l̃i ⊗ m̃i ⊗ ñi ·
∑
cyc

l̃j ⊗ m̃j ⊗ ñj
]

(48)

where
∑

cyc runs over cyclic permutations of {l,m,n}.
Hence we can define the T -invariant local tensor,

OT = OT1 =
∑
cyc

l⊗m⊗ n. (49)

OT in Eq. (49) contains only cyclic permutations of
the three local axes and carries a chirality, as there are
no improper operations in T . By interchanging two of
these axes corresponding to a reflection, we obtain an
equivalent T -invariant tensor but with different handed-
ness,

OT2 =
∑
cyc

m⊗ l⊗ n. (50)

One realizes that a linear combination of OT1 and OT2
will give an ordering tensor that is invariant under the
symmetry group of a regular tetrahedron, Td. Indeed,
integrating out the gauge fields for the Td group, where
Td = T o {1, σd} and σd defined in Eq. (38) generates
the odd permutation, one will find in the third order of
Eq. (18)

∼ Tr

[∑
cyc

(
li ⊗mi + mi ⊗ li)⊗ ni

·
∑
cyc

(lj ⊗mj + mj ⊗ lj)⊗ nj

]
(51)

giving precisely the order parameter tensor

OTd =
∑
cyc

(l⊗m + m⊗ l)⊗ n (52)

as expected (compare to the D2d third-rank order pa-
rameter).

There is yet another point group belonging to the
tetrahedral group family, the group Th = T × {1,−1}.
Interestingly, due to Th = T × {1,−1}, all odd orders in
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the expansion Eq. (18) vanish and the first non-trivial
terms appear in the fourth order with the contractions,

∼
(
l⊗4
i + m⊗4

i + n⊗4
i

)
·
(
l⊗4
j + m⊗4

j + n⊗4
j

)
+
(
l⊗2
i ⊗m⊗2

i + m⊗2
i ⊗ n⊗2

i + n⊗2
i ⊗ l⊗2

i

)
·
(
l⊗2
j ⊗m⊗2

j +m⊗2
j ⊗ n⊗2

j + n⊗2
j ⊗ l⊗2

j

)
. (53)

The second term in the above expression gives the Th
invariant order parameter tensor

OTh1 = l⊗2 ⊗m⊗2 + m⊗2 ⊗ n⊗2 + n⊗2 ⊗ l⊗2

− 2

5
δabδcd

⊗
µ=a,b,c,d

eµ +
1

10

(
δacδbd

⊗
µ=a,c,b,d

eµ

+ δadδbc
⊗

µ=a,d,b,c

eµ
)
, (54)

where we have subtracted the trace. The first term in
Eq. (53) actually coincides with the Oh ordering tensor
OOh . Again, this is because Oh/Th ' {1, σd} is a group
of order two acting trivially on OOh that leads to some
redundancy at even orders in the expansion. Moreover,
OTh1 in Eq. (54) is not invariant under interchanging l
and m, which corresponds to the four fold rotation in Oh.
Therefore, we can define another Th-invariant tensor,

OTh2 = m⊗2 ⊗ l⊗2 + n⊗2 ⊗m⊗2 + l⊗2 ⊗ n⊗2

− 2

5
δabδcd

⊗
µ=a,b,c,d

eµ +
1

10

(
δacδbd

⊗
µ=a,c,b,d

eµ

+ δadδbc
⊗

µ=a,d,b,c

eµ
)
. (55)

Due to the O(3) constraints, however, this and the two
terms in Eq. (53) are not independent,

OOh + OTh1 + OTh2

= (l⊗ l + m⊗m + n⊗ n)⊗2 + const.

= 1⊗ 1 + const. (56)

Therefore, both OTh1 and OTh2 suffice to describe the Th
orientational order.

Proceeding to O and Oh group, non-zero terms appear
likewise in fourth order of the expansion and now one
will obviously find the same contraction as the first term
in Eq. (53) up to a constant factor, hence one can define
the Oh order parameter tensor as

OOh = l⊗4 + m⊗4 + n⊗4 − 1

5

∑
pairs

δabδcd
⊗

µ=a,b,c,d

eµ.

(57)

For the proper subgroup O, we have an additional non-
trivial third order in the expansion, which is simply ∼
σiσj giving the chiral order parameter.

The same procedure discussed above applies as well for
I and Ih group and leads to a rank-6 ordering tensor,

OIh =
∑
cyc

[
l⊗6 +

∑
{+,−}

(1

2
l± τ

2
m± 1

2τ
n
)⊗6]

− 1

7

∑
pairs

δabδcdδef
⊗

µ=a,b,c,
d,e,f

eµ. (58)

Here we express OIh in a compact form as the sixth-order
tensors product of 15 vectors that was also discussed in
Ref. [15], bearing in mind that due to the high rank and
the five-fold rotations in Ih, it contains numerous terms
that are practically very unwieldy.

To stress the advantage of our gauge theory formula-
tion [37] even more explicitly, we note that the relation
between, say, Eq. (58) and its fully expanded form is not
in principle explicitly needed in the gauge theoretical for-
mulation but the order parameter arises by construction
from the much more manageable Eq. (8).

V. SUMMARY AND OUTLOOK

The rotational symmetries of three dimensional
isotropic space O(3) can in principle break to any non-
trivial point group. According to the Landau-de Gennes
paradigm, each symmetry is accompanied by a order pa-
rameter and associated phase transitions. These order
parameters are high-rank tensors and quite involved in
general. As result, this remaining frontier of phenomeno-
logical Landau-de Gennes order parameter theory has
remained rather elusive, apart from the extensively dis-
cussed and experimentally realized cases of uniaxial and
biaxial nematics. However, also the challenge of the ex-
perimental realization of generalized nematics might be
overcome in the near future in view of the rapid exper-
imental advances in the availability and control of new
promising platforms for generalized nematic phases [26–
31].

In this paper we have completed the first step towards
bridging this theoretical gap by presenting the order
parameter tensors related to the orientational ordering
with unbroken three-dimensional point-group symme-
tries. Perhaps surprisingly, this is to the best of our
knowledge the first time these have appeared in such a
generality. In the context of a gauge theoretical lattice
model, we have developed a systematic way of classi-
fying the minimal order parameter tensos of arbitrary
3D point group symmetries and have presented the
explicit form of these order parameters for an extensive
selection of the physically most relevant symmetries.
Although we arrived to these results utilizing the
gauge theoretical lattice model we constructed earlier
for the study of generalized nematics [37], the results
are of course independent of the gauge theoretical
machinery. In addition to our lattice model, with the
order parameters it is in principle possible to study
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the nematic phases via Landau-de Gennes theories by
considering all symmetry allowed couplings of the order
parameters, for example using the approach outlined
in Ref. 17. Given the universality of the applications
of the orientational tensor order parameters our work
is of general interest across many different fields, in
particular we anticipate that our results can provide for a
road map for the search of new nematic phases of matter.
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