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Colloidal particles of two types, driven in opposite directions, can segregate into lanes [Vissers et
al. Soft Matter 7, 2352 (2011)]. This phenomenon can be reproduced by two-dimensional Brownian
dynamics simulations of model particles [Dzubiella et al. Phys. Rev. E 65, 021402 (2002)]. Here
we use computer simulation to assess the generality of lane formation with respect to variation of
particle type and dynamical protocol. We find that laning results from rectification of diffusion on
the scale of a particle diameter: oppositely-driven particles must, in the time taken to encounter
each other in the direction of the drive, diffuse in the perpendicular direction by about one particle
diameter. This geometric constraint implies that the diffusion constant of a particle, in the presence
of those of the opposite type, grows approximately linearly with Péclet number, a prediction con-
firmed by our numerics over a range of model parameters. Such environment-dependent diffusion is
statistically similar to an effective interparticle attraction; consistent with this observation, we find
that oppositely-driven non-attractive colloids display features characteristic of the simplest model
system possessing both interparticle attractions and persistent motion, the driven Ising lattice gas
[Katz, Leibowitz, Spohn, J. Stat. Phys. 34, 497 (1984)]. These features include long-ranged cor-
relations in the disordered regime, and a critical regime characterized by a change in slope of the
particle current with Péclet number and by fluctuations that grow with system size. By analogy,
we suggest that lane formation in the driven colloid system is in the macroscopic limit a phase
transition, but that macroscopic phase separation would not occur in finite time upon starting from
disordered initial conditions.

I. INTRODUCTION

Systems driven out of equilibrium display a rich va-
riety of patterns [1, 2]. Here we study patterns formed
by a two-dimensional, two-component colloidal mixture
of overdamped particles in which one species (‘red’) pos-
sesses a bias to move persistently in one direction, and
the other species (‘blue’) possesses a bias to move per-
sistently in the opposite direction. Löwen and coworkers
have shown that for large enough bias such particles form
persistently-moving lanes, extended in the direction of
the bias, segregated by particle type [3–6]. Lane forma-
tion is seen in three-dimensional experiments of binary
colloidal mixtures driven by an electric field [7], and in
driven binary plasmas [8, 9]. Much is already known
about the microscopic origin of laning in model systems
and its macroscopic manifestation. On the microscopic
side Chakrabarti et al. used dynamic density functional
theory to argue that Langevin dynamics of oppositely-
driven particles implies laning via a dynamic instabil-
ity of the homogenous phase [4, 5]; Kohl et al. showed,
using a many-body Smoluchowski equation for interact-
ing Brownian particles, that driven systems in the homo-
geneous phase display anisotropic pair correlations that
foreshadow the onset of laning [6]. On the macroscopic
side Glanz et al. used large-scale numerical simulations
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to show that characteristic lengthscales in the model grow
(at large drive speed) exponentially or algebraically with
drive speed [10]. The authors of that work suggested that
lane formation in two dimensions is therefore not a true
phase transition.

In order to assess the generality of lane formation, i.e.
to determine if laning persists upon changing the type
of particle and the dynamical rules used, we modeled
oppositely-driven particles using three distinct numerical
protocols. The first (Protocol I) comprises soft particles
in continuous space evolved by Langevin dynamics, sim-
ilar to protocols used by other authors [3]. The second
(Protocol II) comprises hard particles in continuous space
evolved by Monte Carlo dynamics. The third (Protocol
III) comprises lattice-based particles evolved by Monte
Carlo dynamics. Isolated particles under all protocols
move diffusively and possess a positive drift velocity V
to the left or to the right of the simulation box. Left-
movers (red particles) and right-movers (blue particles)
are equally numerous.

We used Protocol I to reproduce the basic phenomenol-
ogy of laning studied by other authors: for large enough
V (or, equivalently, Péclet number), persistently-moving
red and blue lanes form. Protocol II can reproduce this
phenomenology, but only if the basic step size of the
Monte Carlo protocol is a small fraction of the parti-
cle diameter; otherwise, the protocol results in jammed
bands that point perpendicular to the direction of biased
motion. Under Protocol III, upon increase of Péclet num-
ber, only jamming occurs.

From comparison of these protocols we draw three con-
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clusions. The first relates to the microscopic origin of
laning: because it occurs for soft and hard particles, and
under distinct dynamic protocols, laning can be consid-
ered to be a statistical effect that results from the fol-
lowing simple geometric constraint. In order not to over-
lap, oppositely-driven particles must, in the time taken
to meet each other in the direction of the drive, diffuse
laterally (perpendicular to the drive) by about a parti-
cle diameter. In other words, diffusion on the scale of a
particle diameter is rectified or ratcheted in the manner
demonstrated in Fig. 1. Particles then possess a lateral
diffusion constant that scales linearly with drift speed
V (or, equivalently, Péclet number) at large V , and ap-
proximately as the square root of the local density of
particles of the opposite type. This diffusion constant
can exceed that of a particle surrounded by particles of
the same type, implying a tendency to form lanes. En-
hanced diffusion of particles in the presence of oppositely-
moving particles was identified to be the origin of laning
in the simulations and experiments of Ref. [7], and similar
mechanisms have been described for pattern formation
in systems of agitated particles [11]. Our first conclu-
sion complements this work by identifying the geometric
origin of the phenomenon and revealing the scaling of
diffusion enhancement with Péclet number.

Our second conclusion relates to the macroscopic con-
sequences of laning, and follows from the first conclusion
via a connection between environment-dependent diffu-
sion rates and effective interparticle attractions. Lane
formation results from the fact that particles possess
environment-dependent diffusion rates. One can show
that a set of hard particles that possess environment-
dependent diffusion rates is equivalent to a set of at-
tractive particles (see e.g. Ref. [12]) whose interaction
energies scale logarithmically with diffusion rates. One
can therefore consider the driven model to possess both
persistent motion and effective interparticle attractions.
The simplest model system possessing both features is
the driven Ising lattice gas (DLG), also known as the
Katz-Lebowitz-Spohn model [13, 14]. We show here that
the two models have strong qualitative similarities. The
DLG displays long-ranged correlations in the disordered
phase; we show numerically that the same is true of the
off-lattice model. The DLG also displays a continuous
order-disorder phase transition (in a non-Ising universal-
ity class) between a disordered phase and a phase char-
acterized by lane-like structures [15–18]. This transition
is characterized by a break in the slope of particle cur-
rent with model parameters, and system-spanning fluc-
tuations. We show that the same is true of the off-lattice
model.

Continuing this analogy to its conclusion, we expect
lane formation in a macroscopic version of the off-lattice
driven system to be a true phase transition. Although
this conjecture appears to contradict the conclusion of
Ref. [10], that laning should emerge only as a smooth
crossover in the thermodynamic limit, we believe that
the two statements are consistent. The simulations of
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FIG. 1: Rectification of diffusion on the scale of a particle
diameter underpins the laning transition. Red and blue par-
ticles moving persistently in opposite directions (left-right)
must diffuse laterally (up-down) by about a particle diameter
in the time taken to encounter each other. Driven rightward
diffusion of the blue particle in the rest frame of the red parti-
cle (at center) shows the rectification of lateral diffusion that
occurs if red and blue particles exclude volume (blue line);
the large gray circle indicates the position of closest possible
approach of the centers of red and blue particles. The green
trajectory shows similar driven diffusive motion in the ab-
sence of volume exclusion. Both trajectories were generated
using the dynamics described in Section S1.1.

Ref. [10] used disordered initial conditions, and it has
been shown that the time taken for the DLG to relax to
its steady state diverges with system size upon starting
from disordered initial conditions [16]. The analogy we
have drawn therefore suggests that macroscopic domains
in the off-lattice model would persist if built ‘by hand’
(provided that the aspect ratio of the system is chosen
‘correctly’, see e.g. Ref. [19]), but would indeed not be
seen in finite time upon starting from disordered initial
conditions, consistent with the conclusion of Ref. [10].
We present numerical evidence to support this conjec-
ture. Considering that the off-lattice model [3] can re-
produce the basic phenomenology of lane formation seen
in experiments [7], the comparison we have drawn be-
tween the off-lattice system and the DLG suggests that
the latter may have application to experiment (indeed,
previous studies of related models were done with ionic
conductors in mind [20]).

Our third conclusion relates to numerical modeling of
driven systems: the qualitative outcome of our driven
simulations appears to be more sensitive to protocol than
is the simulation of undriven systems. It is well known
that Monte Carlo dynamics of undriven particles, in the
limit of zero step size, is formally equivalent to a Langevin
dynamics [21, 22]. As suggested by this equivalence,
undriven systems evolved under Monte Carlo dynamics
with finite step size often behave qualitatively like their
Langevin-evolved counterparts [21, 23], even if not iden-
tical in all aspects of their dynamics [24]. In the present
study the same is true only if the basic step size of the
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Monte Carlo procedure (Protocol II) is extremely small.
As step size increases, the tendency to lane is less strong
– laning results from enhancement of diffusion on scales
less than a particle diameter, and such motion is less ac-
curately represented as step size increases – and the ten-
dency to jam is stronger. Monte Carlo protocols carried
out with step size above a certain value therefore show
no laning at all, in contrast to Langevin simulations. For
the lattice-based Protocol III, the tendency to lane is en-
tirely absent, because the basic step size is equal to that
of the particle diameter. Our results therefore highlight
the subtleties of modeling driven systems using different
protocols.

In our model, the rectified flow of colloids results in
pattern formation. Similar flow effects result in effective
attractions in other driven models [25, 26] and can lead
to the onset of lane-like patterns [27].

In Section II we introduce the numerical protocols that
we have studied. In Section III we compare their behav-
ior, and there and in Section IV we describe how this
comparison implies the conclusions stated above. We
summarize our results in Section V.

II. NUMERICAL MODELS OF
OPPOSITELY-DRIVEN PARTICLES

We considered three numerical protocols, two off-
lattice (Protocols I and II) and one on-lattice (Protocol
III). In Protocol I particles were evolved using Langevin
dynamics, while in Protocols II and III particles were
evolved using Monte Carlo dynamics. In all protocols we
considered two types of particle, labeled red and blue,
which are confined to two spatial dimensions and which
interact repulsively. Particles undergo diffusion biased
such that red particles possess a drift to the left, and
blue particles possess an equal drift to the right. Our
simulation boxes (generally) were periodic in both di-
rections, and we focused on patterns generated using
equal numbers of red and blue particles. We consid-
ered systems over a range of densities and Péclet num-
bers (Pe). Density is defined off-lattice as ρ = N

A , where
N is the total number of particles and A is the system
area, and on-lattice as the fraction of occupied lattice
sites. Péclet number is defined for Protocol I as the
ratio of the magnitude of biasing force to the thermal
energy, Fexσ/(kBT ), where σ is the particle diameter.
Péclet number is defined for Protocols II and III as the
combination vxσ/D0 of the (bare) particle drift velocity,
diffusion constant, and particle diameter. All distances
are given in units of σ. Our protocols do not take into
account hydrodynamic interactions [28] which may have
important effects in experimental realizations of this sys-
tem.

Protocol I: Langevin dynamics. The state of the sys-
tem is represented by the positions of all the particles
{ri}. Particles are disks with diameter σ. Each particle

undergoes overdamped Langevin dynamics governed by

ṙi = Dβ [Frep ({ri}) + Fex] +
√

2Dηi(t). (1)

Here Frep is an excluded-volume repulsive force derived
from the WCA potential, which reads

V (rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6

+
1

4

]
(2)

if rij < 21/6σ, and zero otherwise. We take ε as our unit
of energy. Fex is a constant force acting only in the x
direction. For red particles this force is βFex = −Pe

σ êx
and for blue particles βFex = Pe

σ êx where Pe denotes
the Péclet number. D in Eq. (1) is the bare translational
diffusion constant (which we refer to as the bare diffusion
constant in the text), β ≡ 1

kBT
, and the ηi = (ηxi , η

y
i ) are

white noise variables with 〈ηi(t)〉 = 0 and 〈ηµi (t)ηνj (t′)〉 =
δijδµνδ(t− t′). Simulations had a maximum timestep of
10−5∆t where ∆t ≡ σ2/D was our unit of time. We used
LAMMPS [29] to integrate the equations of motion.

Protocol II: Monte Carlo dynamics (off-lattice). Monte
Carlo (MC) simulations off-lattice employed single-
particle Metropolis moves with particle displacements
chosen to effect a drift of red and blue particles in op-
posite directions. We determined the connection be-
tween displacement parameters and an isolated particle’s
Péclet number and diffusion constant as described in Sec-
tion S1 1. The resulting mapping depends on the basic
displacement scale (step size). We ran simulations for
hard disks and for WCA pair particles, for a range of
step sizes.

Protocol III: Monte Carlo (on-lattice). We considered
volume-excluding particles present at a range of densi-
ties on a square lattice. The dynamics, which conserve
particle number, consisted of choosing a particle at ran-
dom and moving it to one of the four neighboring sites
with biased probability in the driven direction and equal
probability in the lateral directions (see section S1 for
more details). Moves that take particles to already occu-
pied sites were rejected. This lattice model was originally
studied in [30].

Order parameters. We characterized the dynamics and
structures within simulations using the averaged particle
activity

A(τ) ≡
〈

1

τNtot

Ntot∑

i=1

|xi(t+ τ)− xi(t)|
〉
, (3)

where Ntot is the total number of particles. We also used
the structural order parameter

φ ≡
〈

1

Nred

Nred∑

i=1

Nblue∏

j=1

θ

(
|yi − yj | −

ρ−1/2

2

)〉
(4)

used by other authors to characterize laning [3, 10]. φ
in effect counts the percentage of particles in a lane-like



4

laned

no 
persistent 

order

D

A

C

B

0

40

80

120

Pe (1)

�/� (2)

��0 (3)

 (4)

� 0 (5)

f (n�) (6)

f (n+) (7)

nR nB nA (8)

E

Brownian
dynamics 

lattice
model

0.01 0.02 0.03 0.04 0.05 1.00

160
driven

direction

D E

 time 0 

 time 0 

 time 0 

B

jammed

 time 0 

A

 time 0 

C

�x
FIG. 2: Steady-state dynamic regimes observed using our three numerical protocols for systems with 2500 particles, starting
from disordered initial conditions at density ρ = 0.5. The vertical axis is Péclet number. The horizontal axis interpolates
between the Langevin simulations of Protocol I (at ‘zero step size’, i.e. ∆x = 0) and the lattice-based simulations of Protocol
III (∆x = 1), with the results of off-lattice hard-disk Monte Carlo simulations (Protocol II) shown for a range of intermediate
step sizes ∆x. Snapshots A, C, and D were obtained using Protocol II; B was obtained using Protocol I; and E was obtained
using Protocol III. In the snapshots, the driven direction is left-right. The lines show the approximate boundaries between
different steady state behaviors: the black dashed line shows the boundary between the jammed and flowing states and the solid
red line shows the boundary between disordered and laned states (see section S1 for more details). Monte Carlo simulations
reproduce the results of Langevin simulations if the basic step size of the former is small enough; otherwise, Monte Carlo and
Langevin results differ qualitatively. Lattice-based Monte Carlo simulations jam for Péclet number of order unity.

environment. The brackets for both order parameters
indicate a time average.

Systems were considered to be ‘jammed’ if the average
activity at steady state dropped below half that of an
isolated particle. Systems were considered to be laned if
(a) the average activity was greater than half that of an
isolated particle and (b) φ was greater than a particular
value, usually 0.5 (see Fig. 10 for plots of these order
parameters as a function of time).

III. COMPARISON OF NUMERICAL
PROTOCOLS

Numerical protocols show a range of qualita-
tive behavior. In Fig. 2 we identify the steady-state
dynamic regimes obtained using our three dynamic
protocols in the space of Péclet number versus protocol
type. The limit of zero step size, ∆x = 0 on the horizon-
tal axis, corresponds to Langevin dynamics simulations,
whose results are similar to those published by other
authors [3–7]: we observe a transition from a disordered
mixture to persistently-moving lanes of like-colored par-
ticles parallel to the driven direction at a Péclet number
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FIG. 3: The lateral diffusion constant (perpendicular to the
driven direction) as a function of Pe for a test particle in the
presence of particles of the other type. We have normalized
diffusion constant by the bare value. The longitudinal com-
ponent of diffusion behaves similarly; see Fig. 11. In these
simulations one blue particle is placed in a box of red par-
ticles, and the blue particle’s diffusion constant is measured.
This enhancement of diffusion with Pe of one particle in the
presence of particles of the other type underpins the laning
transition, seen for Langevin simulations and off-lattice Monte
Carlo simulations with sufficiently small basic step size. Off-
lattice Monte Carlo protocols with larger step sizes do show
diffusion enhancement with Pe, but tend to jam rather than
to exhibit laning. On-lattice Monte Carlo protocols show no
enhancement of diffusion constant with Péclet number, and
jam readily.

of about 80. We shall refer to the value of Péclet number
at the transition as the critical Péclet number. Off-lattice
Monte Carlo simulations with sufficiently small step size
show qualitatively similar behavior. For small step size
the critical Péclet number seen in these simulations is
similar to the Langevin value. As step size is increased
the Monte Carlo critical Péclet number increases, and
the laning transition eventually disappears: simulations
run using a basic step size above some threshold show
qualitatively different behavior to Langevin simulations,
forming ‘jammed’ stripes perpendicular to the direction
of the external field [43]. This threshold corresponds to
a basic displacement of 1% of a particle diameter or less
(10−3σ for hard disks and 10−2σ for WCA particles),
which is rather small for Monte Carlo simulations: for
undriven systems one can sometimes obtain approximate
dynamical realism using Monte Carlo simulations with
much larger basic step size [31]. It is notable, given
recent interest in modeling driven and active systems,
that small changes in dynamic protocol can change the
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FIG. 4: The enhancement of lateral diffusion as a function
of Péclet number for one particle in the presence of particles
of the opposite type (bottom panel) correlates approximately
with an increase in an order parameter φ for lane formation
in equimolar mixtures (top panel). Both calculations used
Langevin dynamics (Protocol I). The bottom panel comes
from the steady-state simulations of Fig. 3, in which a test
particle is placed in a simulation box containing only particles
of the other type. The top panel comes from the equimolar
red-blue mixture simulations of Fig. 2.

apparent steady state of a system of driven particles.
On-lattice Monte Carlo simulations (∆x = 1) also
formed jammed perpendicular stripes as Pe is increased,
rather than lanes parallel to the direction of driving.

Laning results from enhanced diffusion of
particles in the presence of particles of the other
type. Fig. 2 shows that Langevin simulations of soft
particles and Monte Carlo simulations of hard (and soft)
particles, for small enough step size, exhibit similar phe-
nomenology. Such similarities indicate that the origin
of laning can be understood without reference to fine
details of the system under study. A detail-insensitive
mechanism for lane formation is suggested by Ref. [7],
which showed that particles undergoing lane formation
experienced time-dependent diffusion constants that
are large when the system is disordered, and become
smaller when the system forms lanes. In order to un-
derstand how particle mobilities are affected by a driven
environment in a more controlled setting we measured
diffusion rates of particles at steady state, by measuring
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FIG. 5: (a) Trajectories of the y-coordinate of a single blue particle placed in a periodic box of red particles present at density
ρ = 0.5 (see Fig. 3), for Pe = 0 and Pe = 160. Particles are driven in the x-direction. These trajectories show visually the
enhanced diffusion in the presence of the drive. (b) Histograms of lateral diffusion constant for various Pe can be collapsed

(c) by rescaling ∆yτ by (a + bPe)−1/2, where a and b are constants, as suggested by Eq. (10). This collapse indicates that
the simple physical argument that gives rise to Eq. (10) captures, in this parameter regime, the microscopic origin of enhanced
diffusion.

the diffusion constant of a blue ‘test’ particle placed in
a periodic simulation box in which only red particles
are present. Such pseudo-single-particle simulations
allowed us to isolate the effects of the drive without the
complication of attendant pattern formation. In Fig. 3
we show the lateral component of the blue particle’s
diffusion constant for our three numerical protocols. An
enhancement of diffusion constant with Péclet number
is seen in all cases except for the on-lattice Monte Carlo
simulations. In Fig. 4 we show for Langevin simulations
that this enhancement of diffusion, measured in a
steady-state, quasi-single-particle simulation, correlates

approximately with the onset of laning measured in an
equimolar mixture of red and blue particles.

Enhanced diffusion follows from simple geomet-
ric constraints. Fig. 3 demonstrates that enhanced dif-
fusion of particles in the presence of those of the oppo-
site type occurs for different interaction potentials and
dynamic schemes. Such robustness suggests a simple ge-
ometric origin for the effect, summarized graphically in
Fig. 1, which we quantify in the following way. In order to
avoid overlapping, two oppositely-colored particles must
diffuse laterally by about one particle diameter in the
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time taken for them to encounter each other in the di-
rection of drift. Such avoidance implies an enhancement
of a particle’s diffusion constant. To see this, consider
the equation of motion of the x-coordinate of a particle
undergoing driven Brownian motion,

ẋ(t) = V +
√

2Dη(t). (5)

Here V andD are the drift velocity and diffusion constant
of the particle, and η is a Gaussian white noise with zero
mean and unit variance. For a particle initially at the
origin we have

〈x(t)2〉 = (V t)2 + 2Dt, (6)

where 〈·〉 denotes an average over noise. Let the char-
acteristic distance in the driven direction between the
center of the test particle and one of the opposite color
be ` (we expect roughly `−1 ∝

√
ρ(1− χ), where ρ is

the mean number of particles per unit area and χ is the
fraction of particles in the test particle’s neighborhood
of its own type). The characteristic encounter time τ
of the two particles can be found from (6) by setting
〈x(τ)2〉 = (`/2)2, giving

V 2τ2 + 2Dτ − (`/2)2 = 0. (7)

If in time τ we require our test particle to diffuse laterally
by a distance of order one particle radius, σ/2, so as
to avoid overlap, then it must have an effective lateral
diffusion constant of order Deff(V ) = σ2/(8τ), i.e.

Deff(V ) =
σ2

8

V 2

√
D2 + `2V 2/4−D

, (8)

upon solving (7) for τ .
For large V we have

Deff(V ) ≈ σ2

4`
V +

σ2

2`2
D. (9)

Assuming that the drift speed V of the particle is equal to
its bare drift velocity V0 (which our numerics indicates
is approximately true under conditions for which lanes
form), we have V = V0 ≡ D0Pe/σ and

Deff(Pe) ≈ σ

4`
D0Pe +

σ2

2`2
D. (10)

Thus we predict that rectification of diffusion in the
presence of particles of the opposite type results in
an effective diffusion constant that increases, at large
Péclet number, linearly with Péclet number (here we
assume that D does not vary with Pe). In Fig. 5 and
Fig. 13 we show that the linear dependence of diffusion
constant with Pe predicted by Eq. (10) is indeed seen in
our steady-state simulations across a range of model pa-
rameters. In physical terms Eq. (10) indicates that parti-
cles experience a net flux that takes them from a domain
of oppositely-colored particles to a domain of like-colored

ones. Such a flux implies a basic tendency for formation
of domains of persistently-moving like-colored particles,
i.e. lanes, although this equation does not indicate for
which Pe this will happen.

For weak driving (small V ≈ V0) we expect linear scal-
ing to break down; there, we can expand (8) to get

Deff(Pe) ≈ σ2

`2
D +

1

16
D0(Pe)2, (11)

suggesting that for small Pe the effective diffusion con-
stant of a particle in the presence of those of the opposite
type increases quadratically with Pe (we might expect
the observed diffusion constant of a particle to be the
larger of (11), and D). Such breakdown of linear scaling
at weak driving is consistent with our simulations: see
Fig. 13.

Note that this argument presumes that the nonequilib-
rium steady state is fluid, with currents V on the order of
the bare drift velocity V0. It therefore does not apply at
conditions where jamming occurs, e.g. at large ρ. There,
Deff increases less rapidly than linearly with Péclet num-
ber; see Fig. 13. To address this case one could return
to (8) and consider V and D to have a nontrivial depen-
dence upon Pe. (As an aside, we note that if in (8) we
assume D to depend linearly on Pe, which the data of
Fig. 13 suggest is true for some range of Pe, then Deff is
linear in Pe.)

Previous work has shown that a microscopic analy-
sis of the oppositely-driven particle system implies lan-
ing via a dynamic instability [4, 5] or the develop-
ment of anisotropic particle correlations in the disordered
phase [6]. Our approximate argument complements those
approaches, suggesting a general and detail-insensitive
origin for lane formation. It also motivates the analysis
of the following section, in which we discuss the macro-
scopic consequences of lane formation.

IV. A POSSIBLE LATTICE-BASED
REFERENCE SYSTEM FOR LANE FORMATION

Particle drift induces effective interparticle in-
teractions. Laning occurs because the diffusion con-
stant of a particle can be larger when surrounded by
particles of the opposite color than when surrounded by
particles of the same color. In Section III we argued that
this enhancement of diffusion results from the geomet-
ric constraint that oppositely-moving particles must, in
the time taken to drift into contact, diffuse laterally by
about a particle diameter. Supporting this argument,
the scaling of diffusion rate with Péclet number in quasi-
single-particle simulations is consistent with our numerics
across a broad range of parameters (Fig. 5 and Fig. 13).
The lattice-based model (Protocol III) shows no tendency
to lane because particle motion on scales less that a par-
ticle diameter is not represented, and so no enhancement
of particle diffusion constant can occur. However, we ar-
gue in this section that there does exist a lattice-based
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system that one could use as a reference for the off-lattice
model, so clarifying the macroscopic behavior of the lat-
ter.

The starting point for this analogy is the observation
that hard particles with environment-dependent diffusion
rates resemble interacting particles. Consider Fig. 6,
which indicates the movement of a shaded particle be-
tween two positions, labeled ‘initial’ and ‘final’. Suppose
that particles in this picture possess only hard-core repul-
sions, and that particles hop uniformly to any location
within a specified range of their starting position. Let
this rate of hopping be proportional to a function f of
the environment of the particle prior to its hop, provided
that the hop causes no hard-core overlaps. The ratio
of rates at which the shaded particle moves between its
initial (i) and final (f) positions is fi/ff . For hard parti-
cles the ratio of Boltzmann weights between initial and
final microstates is unity, i.e. hopping rates do not sat-
isfy detailed balance with respect to the energy function
of the system. However, we can consider that hopping
rates satisfy detailed balance with respect to some energy
function H, i.e. we are free to write

fi

ff
= exp (−β[Hf −Hi]) . (12)

In other words, H is the particle-particle interaction po-
tential that would – in thermal equilibrium and for par-
ticles that possess hopping rates insensitive to their en-
vironment – effect the ratio of hopping rates specified on
the left-hand side of Eq. (12). Therefore, hard particles
with environment-dependent hopping rates f are equiva-
lent to hard particles with environment-independent hop-
ping rates and interactions of strength

H = kBT ln f (13)

in thermal equilibrium.
A recent paper by Sear [12] demonstrated this equiva-

lence for a lattice model with diffusion rates f(n) = e−αn,
n being the number of nearest neighbors of a given parti-
cle. The equivalent equilibrium system is the Ising lattice
gas with coupling constant α.

The connection made by Eq. (13) has significance for
the present problem because the opposing drift of particle
types generates environment-dependent diffusion rates
(in addition to causing persistent motion): blue parti-
cles diffuse more rapidly when near red particles than
when not near red particles. One can therefore consider
the opposing drift of opposite particle types to gener-
ate an effective red-blue repulsion, because blue particles
have a tendency to spend more time in the vicinity of
blue particles then in the vicinity of red particles. This
repulsion must be strongly anisotropic, because only par-
ticles in danger of colliding head-on must diffuse unusu-
ally rapidly [44]. Given the emergence of an effective
interparticle interaction and the presence of persistent
particle motion, it is natural to consider the simplest
model that possesses both features, the driven Ising lat-

initial
position

final 
position

FIG. 6: Diagram used to demonstrate the statistical equiv-
alence between hard particles with environment-dependent
hopping rates f and hard particles with environment-
independent hopping rates and interactions of strength
kBT ln f .

tice gas (DLG) [13]. In this model Ising spins move un-
der the influence of an ‘electric field’ E that drives spin
types (or particles and holes in lattice-gas language) in
opposing directions. The half-full DLG displays a con-
tinuous order-disorder phase transition, with non-Ising
exponents, at a critical temperature that increases with
E and saturates as E →∞ at about 1.4 times the Ising
critical temperature [14, 15, 17].

It is likely that the off-lattice model resembles the DLG
most closely under incompressible conditions, i.e. when
the off-lattice model does not exhibit large density fluctu-
ations. Our simulations indicate that while the off-lattice
model does exhibit large density fluctuations in certain
parameter regime, lane formation can be seen under ap-
proximately incompressible conditions. Under such con-
ditions a red-blue repulsion is equivalent to red-red and
blue-blue attractions that are more favorable than the
red-blue interaction, similar to the ferromagnetic Ising
model interaction hierarchy. We then suggest that an
appropriate DLG representation of the off-lattice model
is one in which the electric field E ∝ Pe; the Ising mag-
netic field is zero (appropriate to red-blue equimolar con-
ditions); and the horizontal J (driven-direction) and ver-
tical J ′ (lateral) Ising couplings are unequal, and scale
approximately logarithmically with Péclet number (see
Section S3).

This analogy suggests that the emergent behavior
of the off-lattice model of lane formation should be
similar, as Péclet number is increased, to that of the
DLG as temperature is decreased and electric field
increased. Consistent with this suggestion we found the
following qualitative similarities between the two models.

The off-lattice model exhibits long-range corre-
lations in the homogeneous phase. The DLG ex-
hibits long-range correlations in the homogeneous phase:
structural two-point correlations decay as r−2 in two di-
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FIG. 7: Velocity correlation functions, Eq. (14), along (a) and against (b) the direction of the drive, measured in a simulation
box of size 336σ× 84σ at ρ = 0.5. Long-range correlations in panel (a) are evident well below the critical Péclet number of 90.
Above this value the function plotted in (b) acquires an oscillatory structure, signaling the formation of lanes parallel to the
driven direction.

mensions [32, 33]. We note that structural two-point cor-
relations in the off-lattice driven model show power-law
decay consistent with r−2 scaling [6]. To demonstrate
that dynamic quantities also show long-range behavior

in the homogeneous phase we applied to the off-lattice
driven model an order parameter designed to measure
velocity correlations between particles separated by the
vector (∆x,∆y),

CRR(∆x,∆y) ≡ 〈 1

N

NR−1∑

i=1

NR∑

j=i+1

vi(xi, yi)vj(xj , yj)δ(|xi − xj |,∆x)δ(|yi − yj |,∆y)〉 − 〈 1

NR

NR∑

i=1

vi(xi, yi)〉2. (14)

Here N is the normalization

N ≡
NR−1∑

i=1

NR∑

j=i+1

δ(|xi − xj |,∆x)δ(|yi − yj |,∆y). (15)

In Eq. (14) the subscript RR indicates correlations be-
tween red particles (by symmetry, the blue-blue correla-
tion function shows similar behavior); vi is the coarse-
grained velocity of (red) particle i over time τ (time over
which a particle at low Péclet number in vacuum will
drift on the order of σ); the sums run over red particles
(NR is the total number of red particles); δ is the Dirac
delta; and averages 〈·〉 are taken over dynamical trajecto-
ries. In Fig. 7 we show that velocity correlation functions
in driven- and non-driven directions reveal the emergence
of correlations that are of substantial range, of order that
of the simulation box, for values of Péclet number below
the critical value (note that the critical value of Pe varies
with simulation box size and shape). Velocity correla-

tions that oscillate in the non-driven direction reflect the
incipience of persistent lanes that become stable above
critical driving.

In the ordered phase we estimate that the drive-
induced effective interparticle interactions alone imply
the emergence of structures whose sizes grow alge-
braically with Péclet number (in a finite simulation
box); see Section S3. This estimate is rough, because
this scaling is presumably modified by the presence of
persistent particle motion, but in a way that is currently
not known.

The off-lattice driven model exhibits system-
spanning fluctuations and a change of slope
of particle current with Péclet number. The
half-full DLG displays a continuous phase transition
characterized by system-spanning fluctuations and a
discontinuity in the rate of change of particle current
with temperature [14, 34]. By analogy, we expect the
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FIG. 8: The off-lattice model displays (a) a change of slope of
particle current with Pe (the dashed black line shows a linear
fit to the current values for Péclet numbers 50-85 in order to
highlight the change in slope) and (b) system-spanning cur-
rent fluctuations, similar to the behavior of the driven lattice
gas at its critical point. N indicates the number of parti-
cles present in the simulation box. Fluctuations of individual
particle diffusion constants behave similarly (see Fig. 12).

off-lattice driven system to show a regime of system-
spanning fluctuations as Pe is made large, and a change
of slope of particle current with Péclet number. In
Fig. 8 we show that both features are seen. Current
is defined per-particle as ∆xi(τ) ≡ xi(t + τ) − xi(t),
where τ is a coarse-graining time over which a particle at
low Péclet number in vacuum will drift on the order of σ.

Macroscopic consequences of lane formation.
The emergence of an effective interparticle attraction
and the DLG analogy strongly suggest the potential for
macroscopic phase separation in the off-lattice driven sys-
tem. However, under conditions for which macroscopic
phase separation is viable, the time to establish phase
separation in the DLG diverges with system size [16].
By analogy we conjecture that macroscopic phase separa-
tion in the off-lattice driven model is in principle viable,
meaning that macroscopic domains would persist once
formed, but would not be seen in finite time upon start-
ing from disordered initial conditions. The latter con-
clusion is consistent with the conclusion of Ref. [10], that
lane formation begun from disordered conditions does not
look like a phase transition.

To support our conjecture we show in Fig. 9 time-
ordered snapshots of the off-lattice driven model above
the critical Péclet number. Two lanes persist if built ‘by
hand’, but do not emerge on the timescale of simulations
that are begun from disordered initial conditions. The
slow coarsening process seen in our simulations is qual-
itatively similar to that seen in the DLG [16] (see Fig.
2 of [35]), and so we expect it to proceed to completion
over a time ∼ LxL

3
y [16], where Lx is the driven direc-

tion. To see this, note that the characteristic timescale
for one stage of coarsening, two bands of width `y merg-
ing, is t ∼ `3yLx (see Ref. [16]). The coarsening time is
dominated by the last stage, when `y is on the order of
Ly, which gives a total time ∼ LxL3

y.
Other authors have noted macroscopic features held in

common between the DLG and off-lattice driven mod-
els. In particular, interfaces between phases in the DLG
can be statistically flat [14, 36] even in two dimensions,
unlike interfaces in the Ising model which are rough [37].
Similarly flat interfaces have been observed [38] in an off-
lattice model of driven particles that shares some basic
ingredients with the model studied here.

V. CONCLUSIONS

We have studied lane formation in a system of
oppositely-driven model colloidal particles using a combi-
nation of simulation methods and approximate physical
analogies. We argue that the microscopic origin of lan-
ing, several aspects of which have been determined pre-
viously [4–6], can be understood from a simple geometric
argument that implies an environment-dependent parti-
cle mobility scaling linearly with Péclet number. Given
that one can equate environment-dependent mobilities
with an effective interparticle attraction, we conjecture
that the basic features of pattern formation in the off-
lattice driven system should be similar to those of the
driven lattice gas, whose coupling constants grow approx-
imately logarithmically with Péclet number. Consistent
with this conjecture we see in simulations of the off-lattice
driven model long-rage correlations in the homogenous
phase; critical-like fluctuations and a change of slope of
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FIG. 9: The off-lattice model displays, in the two-phase region, a slow coarsening process similar to that seen in the driven
lattice gas. Panel (a) shows a coarsening process starting from disordered initial conditions (∆t is the Langevin timestep).
Panel (b) shows a snapshot obtained by choosing as the initial condition two lanes, which persisted upon simulation.

particle current with Péclet number; and phase separa-
tion at large Péclet number that persists once formed
but takes a long time to develop from disordered initial
conditions. There are likely to be important differences
between the DLG and the off-lattice driven model, par-
ticularly where the latter exhibits large density fluctua-
tions or jamming, but there also exist clear similarities
between the two models. It will be valuable to determine
the extent to which the DLG can be used as a reference
model for other driven systems. Note that lane forma-
tion is also seen in 3-dimensional systems [3] and it would
be interesting to look for evidence of DLG-like behav-
ior there. In addition, the identification that laning re-
sults from rectification of diffusion suggests an intriguing
connection between the emergent phenomena of driven
molecular systems and those of social dynamics, which
have been described in similar geometric terms [39].

Acknowledgments

We acknowledge valuable discussions with Todd
Gingrich, Dibyendu Mandal, Suriyanarayanan Vaikun-
tanathan, Robert L. Jack, C. Patrick Royall, John Edi-
son, Thomas Speck, and Grzegorz Szamel. KK acknowl-
edges support from the NSF Graduate Research Fellow-
ship. PLG was supported by the U.S. Department of En-
ergy, Office of Basic Energy Sciences, through the Chem-
ical Sciences Division (CSD) of the Lawrence Berkeley
National Laboratory (LBNL), under Contract DE-AC02-
05CH11231. This work was done as part of a User project
at the Molecular Foundry at Lawrence Berkeley National
Laboratory, supported by the Office of Science, Office of
Basic Energy Sciences, of the U.S. Department of Energy
under Contract No. DE-AC02–05CH11231.

[1] C. Domb, R. K. Zia, B. Schmittmann, and J. L. Lebowitz,
Statistical mechanics of driven diffusive systems, vol. 17
(Academic Press, 1995).

[2] S. Ramaswamy, The Mechanics and Statistics of Active
Matter 1, 323 (2010).

[3] J. Dzubiella, G. P. Hoffmann, and H. Löwen, Physical
Review E 65, 021402 (2002).

[4] J. Chakrabarti, J. Dzubiella, and H. Löwen, EPL (Euro-
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Appendix S1: Simulation Details

1. Biased Off Lattice Monte Carlo Simulations

Protocol II described in the main text is a Metropolis Monte Carlo simulation in which particle displacements are
drawn uniformly from within a square of side 2L centered at (±c, 0) (the upper and lower sign applying for blue and
red particles, respectively). For an isolated red particle we then have, for unit time,

〈x〉 =
1

2L

∫ L−c

−L−c
xdx = −c. (S1)

Thus vx = −w0c, where w0 is a basic rate. In the perpendicular direction we have 〈y〉 = 0 and vy = 0. Thus

v ≡
√
v2
x + v2

y = w0c.

The mean-squared displacement of an undriven particle (or of a driven particle in its rest frame) in either direction
in unit time is

〈x2〉0 =
1

2L

∫ L−c

−L−c
x2 dx =

L2

3
, (S2)

giving a bare diffusion constant D0 = w0L
2/6.

http://link.aps.org/doi/10.1103/PhysRevE.53.6038
http://link.aps.org/doi/10.1103/PhysRevE.53.6038
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We define Péclet number

Pe ≡ vσ

D0
=

6cσ

L2
, (S3)

where σ is the particle diameter.

2. Biased Lattice Simulations

Our lattice simulations consist of hard particles (equal in size to the lattice site) with volume exclusion. Monte Carlo
moves are local hops with probability γ in the ±y (non-driven) directions, probability γ + ∆ in the +(−)x direction
for blue (red) particles, and probability 1− (3γ + ∆) in the −(+)x direction for blue (red) particles. A hop attempt
is rejected if the chosen site is already occupied. No particle swap moves are allowed. These dynamics preserve
the number of red and blue particles in the simulation box. We constrained the bare diffusion constants in the x
and y directions to be the same. For these simulations the Péclet number is Pe =

√
1− 4γσ/γ. We confirmed that

measurements of 〈x〉σ/〈δx2〉 gave us the expected Peclet number for an isolated particle.

3. Steady State Regimes

The activity A(τ) and φ were used to characterize the steady states. Off-lattice MC simulations were run at a range
of step sizes. Structures were labeled ‘jammed’ when A(τ)/A(τ)bare < 0.5 where A(τ)bare is the activity of an isolated
particle. For Langevin simulations and Monte Carlo simulations with step sizes larger than 0.005σ, structures were
labeled ‘laned’ when φ was larger than 0.5. For step sizes smaller than this, simulations equilibrated extremely slowly
and often did not reach a stable value of φ over the course of 5 × 1010 Monte Carlo sweeps. To approximate the
boundary between laned and disordered states for these step sizes (the dashed red line in Fig. 2), we used the criterion
that φ (without time-averaging) reach a value of 0.4 or larger at some point during the trajectory.
We found that Monte Carlo simulations of WCA particles showed similar behavior to Langevin dynamics (laning
above Péclet 80 and no jamming) at step sizes ∆x/σ < 0.01. Hard disks required a smaller step size, ∆x/σ < 0.005,
to show behavior similar to Langevin dynamics. Fig. 2 shows the steady-state regimes for hard disks; the diagram
would look similar for WCA particles, but with the jammed/flowing boundary shifted to a higher step sizes.

Appendix S2: Thermodynamic Perturbation Theory, WCA particles to hard disks

In figure 2 of the main text we compare the results of Brownian dynamics simulations of soft (WCA) particles and
Monte Carlo simulations of hard disks. We chose a hard disk radius such that the thermodynamics of the two systems
are equivalent (in the sense described below). We verified that little difference is seen in MC simulations upon small
variations of disk diameter.
The free energy of a collection of interacting particles is a functional of the pair potential:

A[u(r)] = −kBT ln

∫
drNe−β

1
2

∑
i6=j u(ri,j) = −kBT ln

∫
drN

∏

i,j

f(ri,j), (S1)

where f(r) is the Meyer f-function

f(r) = e−βu(r). (S2)

Referring to the WCA pair potential with the subscript o and the hard disk pair potential with the subscript d, we
want to make their free-energy functionals as close as possible, i.e.

Ao = Ad + ∆A (S3)

with d chosen such that ∆A ≈ 0.
We can define

fλ(r) = fd(r) + λ∆f(r) (S4)
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with ∆f = fo(r)− fd(r). Then

∆A = A(λ = 1)−A(λ = 0) =

∫ 1

0

dλ

∫
d~r

δA

δfλ(r)∆f(r)
(S5)

where

δA

δfλ(r)∆f(r)
= −kBT

1

Q

∫
drN

1

2
N(N − 1)


 ∏

i,j 6=(1,2)

f(ri,j)


 δ(r − r1,2). (S6)

Choose particles i and j as 1 and 2

= −1

2
kBTN

2 1

Q

∫
drN


∏

i,j

f(ri,j)


 eβu(r1,2)δ(r − r12)

= −1

2
kBTN

2 〈δ(r − r2)δ(r1)〉
〈δ(r1)〉 . (S7)

Using

〈δ(r − r2)δ(r1)〉
〈δ(r1)〉 =

g(r)ρ̄

N
(S8)

where ρ̄ is the average density of the system leaves us with

δA

δfλ(r)∆f(r)
= −1

2
kBTNρ̄e

βu(r)g(r). (S9)

Note that eβu(r)g(r) = y(r), the cavity distribution function. This gives:

∆A =

∫ 1

0

dλ

∫
d~r

[
−1

2
kBTNρ̄

]
yλ(r)δf(r) (S10)

which we want to set to 0. If d is chosen well, yλ(r) ≈ yd(r), so we only need to worry about

∫
d~ryd(r)∆f(r) = 0. (S11)

This brings us to Perkis-Yevick Theory:

h(r) = c(r) + ρ̄

∫
dr′c(r − r′)h(r′) (S12)

where h(r) = g(r)− 1 and c(r) is the direct correlation function. As shown in [41]

y(r)− 1 ≈ ρ̄
∫
dr′c(r − r′)h(r′) = h(r)− c(r). (S13)

For r < d,h(r) = −1 so y(r) = −c(r) leaving us with

∫
d~ryd(r)∆f(r) = 0 (S14)

where ∆f(r) = e−βuo(r) − θ(r − d).
Percus-Yevick theory predicts a form for c(r) that has been solved analytically in 3 dimensions, but to the best of our
knowledge not in 2 dimensions, so we numerically calculated yd(r). It turns out that a hard disk diameter of σ is a
good approximation for WCA particles of diameter σ, at least when comparing the free energy functionals.
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Appendix S3: Off-lattice model-DLG analogy, and approximate lengthscales in the ordered phase

The analogy drawn in the main text suggests that the off-lattice model can be related to the DLG whose Ising
couplings scale roughly as

2J ∝ kBT ln(1 + Pe) (S1)

and

2J ′ ∝ kBT ln(1 + λPe), (S2)

for bonds running in driven and non-driven directions, respectively. Here λ < 1 is a geometric parameter that could
be fixed by requiring the model to be critical at a particular value of Pe. At the level of the Ising model we can
follow Onsager’s analysis [42] to show that such couplings imply in the ordered phase the emergence of structures
whose characteristic lengthscales grow algebraically with Pe. Assume that the simulation box dimensions are Lx
and Ly in driven and non-driven directions. The Ising model surface tension in driven and non-driven directions
is σ′ = 2J ′ + kBT ln tanh(βJ) and σ = 2J + kBT ln tanh(βJ ′). The free-energy cost required to create a vertical
boundary of length Ly is σLy, and so the characteristic length lx between such boundaries is the exponential of this

quantity multiplied by β, i.e. lx =
(
e2βJ tanh (βJ ′)

)Ly
(this result is Equation (124) of Ref. [42]; note that the version

of this result quoted in the abstract of that paper appears to have a spurious factor of 2 within the tanh function).
Inserting into this expression the couplings (S1) and (S2), with constants of proportionality taken to be unity, we find
the characteristic domain length in the driven direction to be

lx =

(
(1 + Pe)

λPe

λPe + 2

)Ly

. (S3)

For large Pe this length grows as a power law, lx ∼ PeLy (taking non-unit constants of proportionality in (S1) and
(S2) modifies the exponent, but does not change the fact that the lengthscale goes as a power of Péclet number).
The characteristic length of domains in the non-driven direction, i.e. the equilibrium lane width, can be found in
similar fashion; it is

ly =

(
(1 + λPe)

Pe

Pe + 2

)Lx

, (S4)

which for large Pe grows as ly ∼ (λPe)Lx .
These results are consistent in a general sense with the results of Ref. [10], whose authors measured a lengthscale
within the off-lattice driven model that for large Pe grows with Pe either exponentially or as a power law. However, the
connection is not a precise one because that lengthscale is neither of the Onsager lengths stated here. In addition, the
above analysis concerns the undriven Ising model, and the driven version (the DLG) possesses anisotropy of domains
on account of the drive, even for identical couplings J = J ′ [15]. Interfaces in the DLG are also statistically smoother
than those in the Ising model [14, 37].

Appendix S4: Additional Figures

The following figures supplement those in the main text, and are called out from there.
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FIG. 10: Activity (scaled by the average activity for an isolated particle) and the laning order parameter φ as a function of
MC sweep for WCA particles at 3 different step sizes.
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FIG. 11: The longitudinal mean-squared displacement (in the driven direction) of a test particle in the presence of particles of
the other type, normalized by the test particle’s bare mean-squared displacement, as a function of Péclet number, for different
dynamic protocols.
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FIG. 12: Lateral mean-squared displacement (here ∆yτ = y(t) − y(t+ τ)) distributions broaden near criticality in a manner
similar to distributions of particle currents; see Fig. 8.
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FIG. 13: Measured diffusion constants for a range of densities and Peclet numbers. The linear scaling of lateral diffusion
constant with Pe suggested by Eq. (10) is evident for a range of Pe and ρ (top right panel), and breaks down at large packing
fraction and small Pe.


	Introduction
	Numerical models of oppositely-driven particles
	Comparison of numerical protocols
	A possible lattice-based reference system for lane formation
	Conclusions
	Acknowledgments
	References
	Simulation Details
	Biased Off Lattice Monte Carlo Simulations
	Biased Lattice Simulations
	Steady State Regimes

	Thermodynamic Perturbation Theory, WCA particles to hard disks
	Off-lattice model-DLG analogy, and approximate lengthscales in the ordered phase
	Additional Figures

