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We outline a basic strategy of how self-propulsion can be used to improve the yield of a typical
colloidal self-assembly process. The success of this approach is predicated on the thoughtful design
of the colloidal building block as well as how self-propulsion is endowed to the particle. As long
as a set of criteria are satisfied, it is possible to significantly increase the rate of self-assembly, and
greatly expand the window in parameter space where self-assembly can occur. In addition, we show
that by tuning the relative on/off time of the self-propelling force it is possible to modulate the
effective speed of the colloids allowing for further optimization of the self-assembly process.

The colloidal self-assembly of a well defined micro-
structure is a complex process that is difficult to control
with any degree of precision. Most modern approaches
to this problem revolve around tailoring the morphology
of the individual colloids. By either altering the shape of
the colloid or introducing highly selective interactions, it
is possible to drive the mono-disperse self-assembly of a
specific colloidal cluster. This approach has been partic-
ularly fruitful and some of the more prominent examples
include: patchy particles [1–9], lock and key colloids [10–
16], and DNA decorated colloids [17–19]. Nevertheless, it
is well known that high yield self-assembly only occurs for
very specific particles shapes and interaction strengths,
making the search for the self-assembly window in pa-
rameter space rather cumbersome. This is typically due
to the presence of large kinetic and entropic barriers, and
in many cases it is only possible to obtain a meaningful
yield of the target structure after waiting a significant
amount of time.

Recent advances in colloidal chemistry have led to the
reliable synthesis of self-propelled or active colloids [20–
31]. These particles can be thought of as the colloidal
analog of swimming bacteria and are characterized by in-
herently non-equilibrium, directional forces that can pro-
pel them at velocities of tens of microns per second. Re-
cent experimental and numerical studies have considered
a myriad of objects immersed in these suspensions of self-
propelled colloids, which are often referred to as active
fluid [32–62]. It has been shown by multiple investiga-
tors that active fluids exhibit unique thermo-mechanical
properties [22, 63–75] and are a powerful medium for
mediating the effective interactions between suspended
passive colloids and polymers. In addition, active fluids
have proven to be a useful tool for powering primitive
micro-machines and controlling the transport properties
of passive tracers. In this work, we explore how self-
propulsion can be used as an extra handle for colloidal
self-assembly. By introducing a new dimension in the
parameter space, we show how it is possible to bias the
selection of a particular micro-structure and greatly im-
prove the overall yield and rate of the assembly process.
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The main idea behind this approach is to use the self-
propelling forces generated by the colloids to reinforce
the stability of the desired micro-structure while simulta-
neously destroying any malformed or competing micro-
structures. This technique not only expedites the rate
of self-assembly, but broadens the window in parameter
space where self-assembly is actually possible.

As our colloidal building blocks we functionalize equi-
lateral triangles with the aim of self-assembling capsid
like structures. The design of the colloidal building block
and the target structure are shown in Figs. 1A and 1B,
respectively. The formation of the capsid is driven by
both the shape of the colloid and an anisotropic inter-
action between colloids. Each colloid is patterned such
that two of the three faces exhibit a short range attrac-
tion. There are three reasons for choosing this particular

FIG. 1. (A) The colloidal building blocks have been function-
alize such that two of the three faces exhibit a short range
attraction. The white arrow indicates the direction of self-
propulsion. (B) The target structure to be self-assembled is
a hexagonal capsid composed of six colloidal building blocks.
(C) Typical disordered aggregate formed when the attraction
between colloids is too strong. (D) Percent yield of target
structure as a function of the strength of the attractive inter-
action ε for passive colloids (Faσ = 0 kBT ).
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shape and surface interaction. The first being that there
is a clearly defined target structure. Given the tailored
nature of the interaction between colloids, one can read-
ily expect them to self-assemble into finite-sized closed
hexagonal aggregates. The second reason is that there
exist an ensemble of structures with a larger degree of
orientational entropy (see Fig. 1C) that can directly com-
pete with the formation of the target structure. This high
level of competition generates a scenario where the suc-
cess of self-assembly is highly dependent on the strength
of attraction between colloids and is expected to only
occur for a narrow range of parameters. Lastly, we have
chosen these specific building blocks because the vectorial
sum of the colloids’ propelling axes in the target structure
is equal to zero (see Fig. 1B), and they all point towards
the center of the aggregate. This will turn out to be a
crucial requirement if self-propulsion is to improve the
self-assembly process.

The model and simulation technique implemented here
are similar to the the work of Zhang et al. [1] where
they studied the self-assembly behavior of a similarly
shaped patchy particle. The clustering behavior of a sim-
ilar shaped active particle was also recently investigated
[76]. A complete description of the simulation details is
included in Appendix A. To summarize, each colloid is
confined to move in two dimensions, has mass m, and un-
dergoes translational and rotational Langevin dynamics
at a constant temperature T . Self-propulsion is intro-
duced through a directional force of constant magnitude
Fa and is directed along a predefined orientation vector n
which passes through the center of mass of each particle
and is perpendicular to the purely repulsive face of the
colloid as illustrated in Fig. 1A. The edge length of the
colloid is fixed at 2σ, where σ is the unit length in our
simulations. Here, we define the Péclet number of an in-
dividual colloid as Pe = v0

τD
σ = Faσ

kBT
, where τD = σ2/D

is the particle self-diffusion time, D = kBT
γ is the linear

translational diffusion constant,and v0 is the swim veloc-
ity of the colloid, which is related to the propelling force
via v0 = Fa/γ where γ is the friction coefficient. The at-
traction between the faces of the colloid is quantified in
terms of the binding energy when a pair of colloids have
their attractive faces fully aligned and in contact which
we denote by ε. The attraction is quite short ranged
and decays to zero within a distance 0.5σ from the face
of the colloid. (See supplement for full details). Using
the numerical package LAMMPS [77], all simulations
were carried out in a periodic box of dimension L with
T = m = σ = τ = 1. All quantities in this investigation
are given in reduced Lennard-Jones units.

We begin our analysis by identifying the range of bind-
ing energies ε for which passive colloids successfully self-
assemble into the target structure. A series of numerical
simulations for different values of ε were carried out in
the absence of any self-propelling force (Faσ = 0 kBT ).
In each simulation, the total number of colloids is fixed
at N = 600 with an overall volume fraction of φ = 0.1.
We restrict our study to this dilute regime as it predis-

poses hexagonal assembly over the formation of disor-
dered aggregates. Each simulation is run for a mini-
mum of 108τ . In the case of perfect self-assembly, we
would expect to form 100 capsid structures. We define
the yield of the process as the average number of suc-
cessfully self-assembled structures out of the theoretical
maximum number of target structures. Figure 1D shows
the percent yield of hexagonal structures as a function of
the strength of the attractive interaction. As expected,
only a narrow range of ε returns a respectable yield, with
a maximum of 90% at around ε ≈ 16 kBT . For values
of ε smaller than this range, the colloids do no aggregate
and the system remains in the fluid phase. For larger
values of ε, the formation of large disordered aggregates
is favored (see Figure 1C).

A similar set of simulations were also carried out where
a self-propelling force Fa was applied to each colloid.
In Figure 2, we plot typical trajectories of the percent
yield as a function of time for several values of the self-
propelling force Fa. To illustrate the beneficial effects
self-propulsion can have on self-assembly, we consider the
case where the attraction between colloids (ε ≈ 11 kBT )
is too weak to drive a significant aggregation in the ab-
sence of active forces. In this instance, the yield never
rises above about 5%. By introducing a small amount
of self-propulsion to the colloids (Faσ = 2.5 kBT and
Faσ = 5.0 kBT ), it is possible to dramatically improve
self-assembly. For both of these values the yield in-
creases at a rapid rate before plateauing at around 60%.
The yield does however begin to rapidly decreases if
the activity of the colloids is increased any further (i.e.
Faσ > 7.5 kBT ). For these larger values of Fa, the forces
exerted by a single active colloid swimming in the bulk
are able to destroy a fully formed target structure. The
rate of formation of the target structure is self-regulated
by these errant colloids eventually leading to a steady
state condition where the percentage of target structures
formed fluctuates about some fixed value. This study
suggests that a) it is possible to significantly improve
the self-assembly of these colloids by introducing a judi-
cious amount of self-propulsion even in regions of param-
eter space where passive colloids wouldn’t spontaneously
self-assemble, b) the overall dependence of the yield on

FIG. 2. Percent yield of the target structure as a function of
time for binding energy ε ≈ 11 kBT and several values of the
self-propelling force Fa.
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the self-propelling force is non-monotonic (i.e. there is
a range of self-propelling forces for which the maximum
yield can be obtained, but above which a strong decline
is expected).

Figure 3 summarizes all our results into a two dimen-
sional plot where we report the equilibrium yield as a
function of the binding energy ε and the self-propelling
force Fa. Crucially, the size of the region in parame-
ter space where self-assembly takes place is now much
wider for self-propelled systems. In many instances, the
self-propelled systems can achieve yields comparable or
greater than those obtained for the optimal passive case.
We find that respectable yields of the target structure
are typically obtained when the self-propelling force is
slightly weaker than the binding energy between two col-
loids (i.e. (Faσ)/ε . 1). As a measure of the rate of
the self-assembly process, we measure τ 1

2
, defined as the

time required for the yield to reach 50% of the possi-
ble maximum yield, and then compute the relative self-
assembly rate νSA = τ∗1

2

/τ 1
2
, where τ∗1

2

corresponds to

the τ 1
2

obtained for the best performing passive system

(ε ≈ 16 kBT ). Remarkably, it is possible to significantly
increase the rate of self-assembly without compromising
the yield by using the largest possible values of Fa and
ε for which (Faσ)/ε . 1. In other words, fast and sticky
colloids give the overall best self-assembly results in terms
of speed and yield (at least within the range of parame-
ters considered in this work).

The underlying mechanism responsible for improving
self-assembly can be understood with simple geometric
arguments. As mentioned above, a critical requirement
of the target micro-structure is that the vectorial sum of
the self-propelling forces pointing in its interior is equal
to zero. This creates a focal point in the center of the
compact aggregate where each colloid can exert a force

FIG. 3. Percent yield of the target structure as a function
of the binding energy ε and the self-propelling force Fa. The
white number at the center of the circle indicate the rela-
tive increase in the rate of the assembly process, νSA, with
respect to the best performing passive case that occurs for
ε ≈ 16 kBT .

FIG. 4. (A) Anti-aligned and (B) aligned binding configura-
tions for this choice of colloidal building block. The intro-
duction of self-propulsion stabilized the aligned configuration
and destabilize the anti-aligned configuration.

Fa that strengthen their mutual attractive interactions.
Also, any aggregate for which this vectorial condition
is not satisfied, will experience large active torques and
shear forces that can break them apart. One can think of
self-propulsion in these systems as a very selective filter
that only allows for the stabilization of certain structures.
We believe that this is a general feature of this approach
and should work for all compact target structures satis-
fying the vectorial condition discussed above.

It should also be stressed that self-propulsion not only
stabilizes the final hexagonal aggregates, but it also bi-
ases the formation of specific pair interactions early on in
the self-assembly process. As illustrated in Fig. 4, there
are two ways for colloids to bind to each other. In the
first configuration, the propelling axes are anti-aligned,
whereas in the second configuration the self-propelling
axes are partially aligned. In the former case, activity
tends to destabilize and separate the pair by creating a
shear along the contact edge, in the latter case the bond
between the two particles is strengthened and they will
move as a pair at a reduced speed whose value depends
essentially on the geometry of the particles. Thus the
selection of the final structure begins already at an early
stage as the partially aligned configuration is favored and
is compatible with the target structure.

One particularly appealing aspect of active colloids is
that in many cases the self-propulsion mechanism can be
turned on and off by an external light source. [23–25, 27].
In what follows, we study how the self-assembly process
is affected when allowing the self-propelling force of the
particles to change over time. Specifically, we considered
a periodic step function where the self-propelling force
is turned on for a time τon and then turned off for a
time τoff for a total period of τ0 = τon + τoff . For this
particular form of the self-propelling force, it is possible
to compute exactly the mean square displacement and
the swim pressure of an active Brownian particle. These
calculations are included in Appendix B. In the limit for
τ0 → 0,

〈x2(t)〉 '

[
2D +

1

Dr

(
v0τon

τ0

)2
]
t (1)

ΠSwim

ρ
' γ

Dr

(
v0τon

τ0

)2

(2)

where v0 = Fa/γ is the bare swimming speed of the
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FIG. 5. Percent yield for colloids with a periodic self-
propelling force. The self-propelling force Faσ = 25 kBT
is turned on for a time τon and then turned off for a time
τoff . The interaction energy is fixed at ε ≈ 16 kBT . The
white number at the center of the circle indicate the relative
increase in speed of the assembly process νSA.

colloid,γ is the friction coefficient, and ρ is the colloid
density. Both expressions have the functional form of a
brownian active particle with a constant propelling force
of effective strength equal to

Feff =
τonFa

τon + τoff
=
τonFa
τ0

(3)

which is simply the time averaged force within a single
period. This result is significant as it shows that by tun-
ing the relative on/off time of the self-propelling force it
is possible to modulate the effective speed of the colloids.
In practical terms, this protocol can be used to modulate
the speed of the colloid which would otherwise be exclu-
sively controlled by the chemical details of the propulsion
mechanism.

As our example case, we consider a self-propelling force
Faσ = 25 kBT and interaction energy ε ≈ 16 kBT . For
this set of parameters the behavior of the system is highly
dynamic and the target structures are continually being
destroyed by errant free swimming colloids. The yield
reaches a maximum value of about 20% when the self-
propelling force is constant. When setting Faσ = 0 kBT ,
we obtain the best passive yield of about 90%. In Fig-
ure 5, we plot the percent yield for different pairings of
τon and τoff . We first discuss the effects of a symmetric
periodic step function, i.e. τon = τoff . For large values
of τon and τoff , which in our simulations corresponds to
τon = τoff = 40 τD, the system gives a yield that is com-
parable with that obtained for a constant self-propelling
force Faσ = 25 kBT . At the opposite extreme, for very
fast switching times, τon = τoff = 0.4 τD, we obtain a
yield consistent with a constant self-propelling force of
half its original value (i.e. Faσ = 12.5 kBT ). This result
is in agreement with our theoretical expectations con-
cerning the effective self-propelling force given in Eq. (3).
We find the best yields are obtained when Fa is turned

on for τon = 0.4 τD and then turned off for τoff = 2 τD,
or greater. This is in good agreement with our data in
Fig. 3, for which a constant propelling force Faσ ≈ 5 kBT
gives the best yield for ε ≈ 16 kBT . These results fur-
ther bolster our argument that the effective force of the
colloid can be modulate to its optimal value by tuning
τon and τoff for sufficiently small τ0. Since ε ≈ 16 kBT is
the optimal condition for the passive case, larger values
of τoff effectively decreases the strength of the effective
force slowly moving the system towards the passive limit
with a roughly constant yield but decreasing νSA. Fi-
nally, we observe that by moving along the diagonals of
Fig. 5 (points for which τon/τoff = const) the best yield
is obtained for the smallest values of τ0, (i.e. in the limit
where Eq. 3 becomes more accurate). In general, increas-
ing τ0, while keeping the ratio τon/τoff fixed, decrease the
overall yield, but may lead to faster rates of self-assembly.

In summary, we have discovered that a judicious use
of self-propulsion can greatly benefit the colloidal self-
assembly of a certain class of target micro-structures. In
simple terms, we show that fast and sticky colloids can
successfully self-assemble more than one order of magni-
tude faster than their passive counterparts without sacri-
ficing the overall yield. We also demonstrate how tuning
the relative on/off time of the self-propelling force (i.e.
by using quick bursts of activity rather than a constant
force) it is possible to modulate the effective speed of
the colloids allowing for further optimization of the self-
assembly process. This result also suggests that quickly
toggling the self-propelling force is a simple method to
control the microscopic speed of the colloids and it is not
always necessary to tinker with the chemical details of
the propulsion mechanism.

Although we study this problem through the lens of
a simple minimal model, we believe that the general
approach and methodology discussed here can be suc-
cessfully applied to other colloidal systems with differ-
ent building blocks as long as the necessary criteria are
satisfied. We don’t believe that the vectorial constraint
discussed above needs to be strictly satisfied, and aggre-
gates whose propelling axes sum up to a sufficiently small
value would still see an improvement in self-assembly. For
instance small clusters of Janus particles in three dimen-
sions, should be amenable to this approach. More work
in this direction is needed.

Finally, we should stress that at low densities,
hydrodynamic interactions can lead to long range
forces mediated by the surrounding fluid. In
this work, we haven’t explicitly considered this
effect, however, we expect it to lead mostly to
quantitative and not qualitative changes in the
phase behavior as long as hydrodynamic intrac-
tions do not break the stable aggregates. Recent
work [78] indicates that hydrodynamics has a cru-
cial role on the rotational dynamics of spheres
inside living crystals, however, in our case the
anisotropic nature of the direct interparticle in-
teractions and their excluded volumes forbids
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them to rotate once assembled, which negates this
effect. Additional work is needed to understand
how hydrodynamics interactions may affect the
self-assembly pathway in active systems.
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Appendix A: Additional simuation details

For computational efficiency, each colloid is discretized
into NT = 30 equidistant, partially overlapping, and
rigidly connected spherical subunits of diameter σT =
0.25σ, where σ is the unit length in our simulations. The
edge length of the colloid is fixed at 2σ. A suitably large
number of spheres was chosen to accurately reproduce
the shape of the colloid and to make the surface interac-
tion sufficiently smooth. All particle interactions in the
systems are given by a Lennard-Jones potential

V (r) = 4εij

[(σT
r

)12

−
(σT
r

)6
]

(A1)

The spherical subunits that make up the colloid come
in two different varieties: type A and type B, and the
i and j indices refer to them. Type A particles are re-
sponsible for the attractive interaction while type B only
account for volume exclusion. The distinguishing char-
acteristic between these two particle types is the poten-
tial cutoff distance. The cutoff distance between type
A particles is set to rc = 2.5σT . Type A particles are in
essence Lennard-Jones particles and exhibit a weak, short
range attraction, which is modulated by the interaction
energy εAA. The cut off distance for the remaining pair
interactions (type A-type B and type B-type B) is set
to rc = 21/6σT making these interactions purely repul-
sive in nature. The interaction energy for these volume
excluding pair interactions is fixed at εBB = εAB = 1.
In both cases the potential is shifted after truncation so
that V (rc) = 0.

Each colloid is confined to move in two dimensions, has
mass m, and undergoes Langevin dynamics at a constant
temperature T . At each time-step, both the total force
and torque on each rigid body is computed as the sum of
the forces and torques on its constituent particles. The
coordinates, velocities, and orientations of the particles in

each body are then updated so that the body moves and
rotates as a single entity. Self-propulsion is introduced
through a directional force of constant magnitude Fa and
is directed along a predefined orientation vector n which
passes through the center of mass (COM) of each particle
and is perpendicular to the purely repulsive face of the
colloid as illustrated in Fig. 1A of the main text. The
equations of motion of an individual colloid are given by
the coupled Langevin equations

mr̈i = −γṙi + Fani −∇iV (rij) +
√

2γ2D ξi (A2)

ṅi = − Dr

kBT
∇niV (rij) +

√
2Dr ξri × ni (A3)

where γ is the translational friction and V the total in-
terparticle potential acting on the particle. The transla-
tional and rotational diffusion constants are given by D
and Dr, respectively. The typical solvent induced Gaus-
sian white noise terms for both the translational and
rotational motion are characterized by 〈ξi(t)〉 = 0 and
〈ξi(t)·ξj(t′)〉 = δijδ(t−t′), 〈ξr(t)〉 = 0 and 〈ξr(t)·ξr(t′)〉 =
δ(t − t′). The translational diffusion constant D is re-
lated to the temperature T via the Stokes-Einstein re-
lation D = kBT/γ. All quantities in this investigation
are given in reduced Lennard-Jones units. The friction
coefficient γ was chosen such that the translational and
rotational motion of the colloid is overdamped.

Appendix B: Derivation of MSD and Swim Pressure
for oscillating Swimming Speed

For simplicity, we consider an active Brownian particle
in one dimension

ẋ(t) = va(t)cos[θ(t)] +
√

2D ξ(t) (B1)

θ̇(t) =
√

2Dr ξr(t) (B2)

where the ξ and ξr correspond to the gaussian dis-
tributed translational and rotational random noises with
〈ξ(t)〉 = 0, 〈ξ(t) · ξ(t′)〉 = δ(t − t′) and 〈ξr(t)〉 = 0,
〈ξr(t) · ξr(t′)〉 = δ(t − t′), respectively. The propelling
velocity va(t) has the functional form of a asymmetric
periodic step function va(t) = v0Ξ[t] with

Ξ(t) =

{
1 if n(τon + τoff) ≤ t ≤ n(τon + τoff) + τon

0 Otherwise

(B3)
with period τ0 = τon + τoff , n = 0, 1, 2, 3, ...., t/τ0, and
θ(t) is the angle between the x axis and the propelling
axis of the particle. Clearly, τon is the time the pro-
pelling velocity is active and τoff is the time off, and v0

is the bare propulsion speed of the particle. To draw
comparison with our simulations of the triangular col-
loids vo = Fa/γ. We can now directly compute the mean
square displacement of the particle
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〈x2(t)〉 = v2
0

∫ t

0

∫ t

0

Ξ(t)Ξ(t′)

× 〈cos[θ(t)] cos[θ(t′)]〉 dtdt′ + 2Dt (B4)

where 〈cos[θ(t)] cos[θ(t′)]〉t>t′ = 1
2e
−Dr(t−t′). It follows

that

〈x2(t)〉 = 2Dt+
v2

0

2

[∫ t

0

ds e−DrsΞ(s)

∫ s

0

dp eDrpΞ(p) +

∫ t

0

ds eDrsΞ(s)

∫ t

s

dp e−DrpΞ(p)

]
(B5)

We begin by evaluating the first double integral on the right hand side of the equation above. The integral over p,
which we define as G1(s) can be rewritten as a geometric series

G1(s) =

∫ s

0

dp eDrpΞ(p) =
(eDrτon − 1)

Dr

s
τ0
−1∑

n=0

enDrτ0 =
(eDrτon − 1)

Dr

(1− eDrs)
(1− eDrτ0)

(B6)

By substituting this expression for G1(s) we are able to integrate the complete double integral which we define as
Q1(t)

Q1(t) =

∫ t

0

ds e−DrsΞ(s)G1(s) =
(eDrτon − 1)

Dr(1− eDrτ0)

∫ t

0

ds (e−Drs − 1)Ξ(s) (B7)

=
(1− eDrτon)

Dr(1− eDrτ0)

τon

τ0
t+

(e−Drτon − 1)

Dr

t
τ0
−1∑

n=0

e−nDrτ0


=

(1− eDrτon)

Dr(1− eDrτ0)

[
τon

τ0
t+

(e−Drτon − 1)(1− e−Drt)
Dr(1− e−Drτ0)

]

In a similar fashion we can compute the second double integral on the right hand side of Eq. B5 which we define as
Q2(t)

Q2(t) =
(1− e−Drτon)

Dr(1− e−Drτ0)

[
τon

τ0
t+

(eDrτon − 1)

Dr(1− eDrτ0)
(1− e−Drt)

]
(B8)

The expression for the mean square displacement can
now be rewritten as

〈x2(t)〉 = 2Dt+
v2

0

2
[Q1(t) +Q2(t)] (B9)

In the diffusive limit (t → ∞) with a short total period
(τ0 → 0), we find apart from a constant

〈x2(t)〉 '

[
2D +

1

Dr

(
v0τon

τ0

)2
]
t . (B10)
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In the ballistic limit (t → 0) with a short total period
(τ0 → 0), we find

〈x2(t)〉 '
(
v0τon

τ0

)2

t2 . (B11)

In both cases, when τon = τ0 one recovers the well known
results for a constant self-propelling force. It is now pos-

sible to obtain the swim pressure from the stress Π =
−Tr σswim/3 by simply computing σswim = −〈xF swim〉.
In the diffusive limit the swim pressure is

ΠSwim

ρ
=

γ

Dr

(
v0τon

τ0

)2

(B12)

where ρ is the colloid density.
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[63] S. A. Mallory, A. Šarić, C. Valeriani, and A. Cacciuto,
Phys. Rev. E 89, 052303 (2014).

[64] A. P. Solon, J. Stenhammar, R. Wittkowski, M. Kardar,
Y. Kafri, M. E. Cates, and J. Tailleur, Phys. Rev. Lett.
114, 198301 (2015).

[65] A. Solon, Y. Fily, A. Baskaran, M. Cates, Y. Kafri,
M. Kardar, and J. Tailleur, Nat. Phys. 11, 673 (2015).

[66] F. Smallenburg and H. Löwen, Phys. Rev. E 92, 032304
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