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Cells measure concentrations of external ligands by capturing ligand molecules with cell surface
receptors. The numbers of molecules captured by different receptors co-vary because they depend on
the same extrinsic ligand fluctuations. However, these numbers also counter-vary due to the intrinsic
stochasticity of chemical processes because a single molecule randomly captured by a receptor cannot
be captured by another. Such structure of receptor correlations is generally believed to lead to an
increase in information about the external signal compared to the case of independent receptors.
We analyse a solvable model of two molecular receptors and show that, contrary to this widespread
expectation, the correlations have a small and negative effect on the information about the ligand
concentration. Further, we show that measurements that average over multiple receptors are almost
as informative as those that track the states of every individual one.
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Introduction. Information processing is a crucial func-
tion of life [1]. It typically involves representing exter-
nal signals by activities of biological elements, such as
cell receptors, genes, or neurons. A lot is known about
information processing by such individual elements [2—
10]. However, the fascinating phenomena emerging in
information processing by many interacting biological el-
ements are only beginning to be uncovered [1, 11-17].

A particularly well-developed example of multivariate
biological information processing is population coding by
neurons [11, 16, 18-25]. Here many neurons (often het-
erogeneous and interacting) are treated as conveying in-
formation about the same stimulus. A celebrated gen-
eral property of such networks is the “sign rule” [11, 16],
which suggests that if fluctuations of neural activities
due to changes in the signal have correlations opposite
to fluctuations due to intrinsic coupling among the neu-
rons, then the collective of neurons has more information
about the stimulus than a collective of noninteracting
neurons would have.

Deriving the sign rule requires making serious (though
often implicit) assumptions about the structure of fluc-
tuations in populations of sensors. Verifying these as-
sumptions is hard for networks as complex as those in
the brain. In contrast, multiple receptors on the cell sur-
face are a cellular biology equivalent of population coding
in neuroscience, with an advantage that the structure of
correlations among the sensors (receptors) does not have
to be postulated a priori, but can be derived analytically
from biophysically plausible molecular interactions. We
use this advantage to study collective information pro-
cessing in an analytically solvable model of two recep-
tors interacting via binding to the same chemical ligand
species. We show, in particular, that the sign rule is vio-
lated in this system, and the information gathered about
the stimulus by the interacting receptors is smaller than
in the noninteracting case. This suggests that studies
of population codes based on correlations are insufficient

(including in computational neuroscience, where they are
common) since effects of the correlations depend on fea-
tures of biophysical mechanisms that establish them.

In addition to its illumination of the limitations of the
general sign rule, the two receptors model addresses an
important question specific to cellular information pro-
cessing. Estimation of a chemical signal concentration
by cells has been studied since the seminal work of Berg
and Purcell [26], with notable new recent results [17, 27—
33]. However, most of these formulations consider the
combined (or averaged) response of all receptors on the
cell surface for estimating the concentration. Keeping
track of responses of individual receptors would provide
extra information about the concentration stored in the
receptor-to-receptor variability. Our model quantifies
how useful it is for the cell to keep track of such data.
We show that, for large observation times, the average
population response is almost as informative about the
stimulus as the set of activities of all individual receptors.

Background. We introduce the sign rule with the fol-
lowing simple yet instructive model [11, 16]. Imagine a
Gaussian signal s with the mean 5 and the variance o2.
It is measured by two responses, r1 and ro (firing rates
of neurons or receptor activity). For simplicity, these are
assumed linearly and equivalently dependent on s (or the
response to small fluctuations is linearized), such that

ri=as+mn, r2=as+n, (1)
where a is the gain, and 7, 2 are Gaussian noises with
(ni) = 0, and varn; = (n7) = o}

We estimate the signal from the responses as Sest =

(r1 +72)/(2a). Then the estimation error variance is

2
_ 9 o(1 +pn)

var (Sest — §) = 0oy = ”T. (2)

Here pnaf7 = cov (11, 72) stands for the covariance of

the two noises, or the noise-induced covariance [11], and



pn is the corresponding correlation coefficient. By anal-
ogy with the intrinsic noise in systems biology [34], p,
can also be called the intrinsic noise correlation. When
pn =0, Eq. (2) reduces to the usual decrease of the error
variance by a factor of two for two independent mea-
surements. However, when p, < 0, the error variance
is smaller. In particular, if p, — —1, the signal can be
estimated with no error. Generalizing this simple ob-
servation, one can define the stimulus-induced response
covariance [11] or the extrinsic noise covariance [34], as
the covariance between mean responses to stimuli, aver-
aged over all stimuli, cov (71,72) = psa®02. Then our
example illustrates the sign rule [16]: if p, and p, are
of opposite signs, then the stimulus can be inferred from
the two responses with a smaller error compared to the
(conditionally) independent responses, p, = 0. The same
result can restated using mutual information between the
two responses and the stimulus [1, 9, 35, 36] :
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For Eq. (1), ps =1 > 0, and then p,, < 0 corresponds to
increase in the information.

In the case of a chemical ligand being absorbed by two
identical receptors, the mean values of r; and ry change
in the same way with the ligand concentration, so that
ps = 1 > 0. At the same time, a molecule absorbed
at one receptor cannot be absorbed at the other, which
should give p, < 0, and hence will increase the mea-
sured information according to the sign-rule. However,
in computational neuroscience, where these ideas origi-
nated, noise (co)-variances are inferred empirically and
are, in principle, unconstrained. In contrast, in cell biol-
ogy, intrinsic noises are generated from the discreteness
and stochasticity of individual chemical reaction events
[37-39], which constrains relations among these quanti-
ties. In particular, p, may depend on o, and then it is
unclear if the sign rule would hold in Eq. (3). Indeed,
the primary contribution of this article is to show that
measuring the ligand concentration with two identical re-
ceptors does not obey the sign rule.

The Model. We consider two identical receptors that
can bind ligand molecules with a rate ki, (Fig. 1). No
more than one molecule can be bound to each receptor
at the same time (with no restrictions on the number of
bound molecules, the dynamics is linear, the receptors
are conditionally independent). The bound molecule can
be absorbed/deactivated with the rate kaps, freeing the
receptor (absorbing receptors collect more information
about the stimulus compared to binding-unbinding re-
ceptors [29]). Alternatively, it can unbind and leave the
vicinity of receptors with the rate kog. Finally, it can
leave one receptor and diffuse to the other. We model
this as a hop between the receptors with the rate kyop,
which in reality would depend on the diffusion constant
and the distance between the receptors. Note that ko,
and knop should be viewed as renormalized rates, which
include the rate of the original diffusion to the receptor,

kin
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FIG. 1: Model schematics. Receptors 1 and 2 bind ligands
with rate kin, and the bound molecules can detach and diffuse
away to infinity with the rate kog. The bound ligands also
can be absorbed with the rate kabs, or they can dissociate and
diffuse to the other receptor (hop) with the rate knop. @ is
the number of ligands absorbed at the receptor i.

binding to it, and then multiple subsequent unbindings
and rebindings [28, 29, 40]. The number of molecules ab-
sorbed on both receptors over time ¢, {Q1(¢), Q2(¢)}, car-
ries information about the binding rate ki,. Since, ki, is
proportional to the ligand concentration, such counting
of the absorbed molecules measures the concentration.
Other models often use the receptor occupancy (rather
than the number of absorbed ligands) as a read-out of
external ligand concentration. Our choice here is pre-
cipitated by the fact that such absorbing receptors have
higher accuracy [29].

We note that this model does not do justice to the
complexities of biophysics of real receptor-ligand interac-
tions. However, our goal here is different — to discuss the
sign rule and related phenomena in a tractable model.
Thus we err on the side of clarity of the model and its
tractability rather than physical realism.

Within this setup, we investigate how the ligand-
induced interaction between the two receptors affects
the information about the concentration, I[|Q1, Q2; kinl,
cf. Eq. (3). Note that binding to a receptor, as well
as hopping onto a receptor, can happen only when the
receptor is unbound, and both prohibit immediate fu-
ture binding. Thus, in particular, existence of hopping
can change the conditional distribution P(Q1, Q2|kin), so
that hopping is not “information neutral.” However, the
hopping cannot change the conditional distribution of the
total number of captured molecules Q@ = Q1 +Q>. Thus
the change in the information, if any, can come only from
the dependence between Q_ = @1 — @2 and kj,. This
expands the molecular sensing literature [26, 28, 29, 40],
where one typically estimates ki, based only on the in-
tegrated number of observed ligands, @4, and the ef-
fects of the difference and/or correlations between two
receptors on the concentration estimation have not been
considered explicitly to our knowledge. In other words,
together with our main question, we will quantify if the
set of individual responses of all receptors, {Q1,Q2} or
{Q+,Q_}, is more informative about the concentration
than the integrated response alone.



Solution. To calculate the distribution P(Q1, @2|kin),
we start with the master equation describing the dynam-
ics of the vector of probabilities of having 0 or 1 molecules
bound to each of the receptors, P = {P;;; i,j = 0,1} =
{Poo, Po1, Pro, P }7,

P(t) = —HP(t). (4)

Here the generator matrix is

2kin _koff - kabs _koff - kabs 0
H = _kin ktot _khop _kabs - koff
*kin 7khop ktot 7kabs - koff
0 _kin _kin 2koff + 2kabs

(5)
with kioy = kin + Ko + Kabs + kh0p~
To find the probability distribution of @7 and Qs,
we use the generating functional technique [36, 41-45].
Namely, we separate out the parts of H that correspond
to the absorption events

H= HO + Habs,l + Habs,27 (6)
0 —kaps O 0 T
0O 0 0 0
Habs,l = 0 0 0 —kaps |’ (7)
0 0 0 O
0 0 —kas O
00 0 —kaps
Habs72 = 00 0 Ob . (8)
100 O 0

Then we tag the terms corresponding to the absorption
reactions by counting fields eX! and eX2, forming the
tagged generator matrix,

H(x1,x2) = Ho + Haps,1€X" + Haps,2€X2. (9)

Finally we realize that the vector of moment
generating functions (or the Laplace transforms)
of P(Q1,Q2lkin,i,7), denoted as Z(x1,xe2,t) =

{Z0, Zo1, Z10, Z11}, satisfies the tagged master equation

Z(XlaXQat) = _INJ(X17X2)Z(X17X27t)' (10)

We are interested in the long-time asymptotic, where
each receptor has had many absorption events, @1, Q2 >
1. Then the solution of Eq. (10) can be approximated as

Z(x1,x2,t) = Z(0) exp[~Amin(x1, X2) t],  (11)

where S\min is the smallest real part eigenvalue of H.
From here, one can read off the cumulant generating
functions conditional on the occupancy of the receptors,
to the leading order in ¢, F; (X1, X2,t) & —Amin (X1, X2) t-
As expected, the leading order is the same for any value
of 4,j. Thus the means and the (co)variances of the
numbers of absorbed molecules, conditional on kj, all
scale linearly with time. They can be obtained by dif-
ferentiating Amin (X1, X2) With respect to x; and y2. De-
noting by (...|kin) expectations conditional on kj, and

0Q; = Q; — (Qilkin), we write:

65\rnin ) 7t
Qi) =t PobX20) gy
! X1,x2=0
82S\min(X1a X2, t)
8Qi0Q; k) = ¢ L mint X X2, 0 1
X1,X2=

In its turn, the eigenvalue ;\min can be obtained using
non-Hermitian perturbation theory considering y; as the
perturbation parameters around the eignevalue Ay, = 0
of the unperturbed Hamiltonian [36]. For compactness
of notation, we define kioa = kin + kot + kaps- This gives:

kinkaps t
(Qilkin) = =522, (14)
(6Qi0Qi|kin) = (Qilkin)
2kinkabs 2khopkinkabs )
X (1— , 15
( ki20a k?oa(kt‘)t + khOP) ( )
khopkinkabs

(6Q10Qz2|kin) = =2 (Qilkin) (16)

kizoa (ktot + khop) .

These expressions fully define the conditional distribu-
tion P(Q1,Q2|kin) to the leading, Gaussian order. No-
tice that (6Q16Q2|kin) < 0 as long as knep # 0, and thus,
according to the sign rule, we expect more information
from the two correlated receptors than the two indepen-
dent ones with kyop = 0.

In the basis of Q+ = @1 £ @2, the covariance matrix
diagonalizes, and we get

2 kinka S t
(Quelhin) = =2, (17)
<Q—|kin> = 07 (18)
k2 - 2kinka S
(6Q3 |kin) = (Q|kin) [loak?—b]v (19)
k2 — 2kinkaps + 2knopks
S 2 Ei) = ki ioa inVabs op 1oa7 20
< Q7| > <Q+| > kioa(ktot +kh0p) ( )
(6Q+6Q _|kin) = 0. (21)

Since neither (Q|kin) nor (6Q% |kin) depend on kpep,
these expressions clearly show that the total number of
molecules absorbed by the two receptors is not affected
by the interaction parameter kyop, as we alluded to pre-
viously. The coupling between the receptors only affects
the variance of the difference of the number of molecules
coming from each receptor.

We now define the absorption currents Jyx = Q4/t,
so that (Jilkim) = (Q+l|kin)/t, and (6J%|kin) =
<6Q2i|kin> /t2. Now assuming a Gaussian marginal dis-
tribution of k;,, with the mean ki, and the variance U,%m,
we write down the marginal distribution of absorption



currents averaged over the external signal concentrations

P(Jy,J-) i [— {in = Fia)” ]

= —— €X
V2O, P

Tkin
(J=( It [kin))> J2
xp [_ ;<6J€|k;n> B 2<5J2|kin>}
X . (22)
2 /(8.2 Kin) (072 [kin)

Note that (§J3 ki) o< 1/t for large t. This is the usual
manifestation of the law of large numbers, so that the
ratio of the standard deviation of the currents to their
means decreases as o< 1/t1/2.

Both (J4|kin) and <5Ji\kin> depend on kj,. We as-
sume that (7,2cin is small, so that this dependences can be
written to the first order in 8k, = kin — ki,. Then the
dependence of the mean currents on kj, preserves the
Gaussian form of Eq. (22), while the dependence of the
variance manifests itself in sub-Gaussian orders. To the
leading order in small J,%m, the marginal distribution of
the currents is still a product of two Gaussians,

1 _ Uy —agn?  I2
P(J+?J7) = W@ 20‘2* 202 y with (23)
2 Einkabs
(J4) = 7 (24)

2 2
03_ _ <5J.?_‘];in> 14 (6<J+>) Okin

Okin )5 (872 Ein>] (B
o? = (6J? kin) - (26)

The mutual information we are seeking is
IQ1, Q23 kin] = S[Q1, Q2] — (S[Q1, Q2|kinl),, , where S
are the marginal and the conditional entropies. In the
limit of small o7, entropies are given by logarithms of
the corresponding variances, so that

1+(3<J+>>2 o3

1
I[Q1,Q2i kin] = 5 In Okin ) ¢ <6Jilkm>1’ 0

2

which is independent of kyqp.

The mutual information in Eq. (27) is independent of
the interaction between the receptors, violating the sign
rule. The reason for the violation is easy to trace: al-
though the intrinsic receptor correlations are negative,
the quantity (1 4+ pn)af7 = <(5J_2~_|kin> in Eq. (3) is inde-
pendent of kpop! The biophysics of the problem conspires
to ensure that the variance of the number of the absorbed
ligands on the individual receptors increases by exactly
the amount to counteract the receptor correlations to the
Gaussian order in fluctuations. The effect of the corre-
lations can only be seen in the higher order corrections.
This answers our main question about the generality of
the sign rule. Further, we note that the information in
Eq. (27) is independent of J_. This answers the second
question: to the Gaussian order and for large t, keeping

-0.025

-0.03 : : : ;

FIG. 2: Change in the information obtained by two recep-
tors about the ligand concentration compared to the case of
two non-interacting receptors with kin = kaps = 10. Time is
measured in units 1/ki,. We use Gillespie [46] algorithm for
simulations and NSB entropy estimator [47] to evaluate infor-
mation from data. Each point is obtained from 10° samples
from the steady state of the system dynamics for 17 values of
kin. Coupled receptors (knop = 10,100) lead to reduction of
information at intermediate times. Similarly, keeping track of
just the information about the ligand available in the mean,
Q@+, for two non-interacting receptors, looses information, but
only at intermediate times.

track of differences between the individual receptors does
not change the amount of available information.

To study non-Gaussian effects of hopping we eval-
uate AI(kim Kabs, khop) = I]}in,kabs7khop [Qly Q2; kin] -
It kun..0l@1, Q25 kin], where the second term is equiva-
lent to two independent receptors. We simulate the sys-
tem using the Gillespie algorithm [46]. As illustrated in
Fig. 2, AI < 0, so that the receptor coupling through
hopping reduces the mutual information, contradicting
the very sign of the sign rule. To understand this qual-
itatively, we remind the readers that total information
about the concentration can be considered as the sum
of the information coming from the sum (Qy) and the
difference (Q_) between the number of molecules ab-
sorbed at both receptors. While the sum is independent
of the hopping, hopping affects the difference. When the
receptors are independent (knop = 0), the information
about where the molecule got bound originally is pre-
served, leading to the largest value of the information
contained in Q_. Any interaction between the receptors
(khop # 0) results in an ambiguity in where the molecule
was first bound, and hence lowers the information in @ _
compared to independent receptors. In other words, the
information in the difference appears due to fluctuations
in the number of molecules absorbed at the two recep-
tors. Hopping neutralizes such fluctuations through the
exchange of molecules between the receptors, lowering
the information. In the limit of fast hopping, knop — 00,
all information is lost, and the two receptors can be con-



sidered as a single one with twice the binding rate. How-
ever, since the entire contribution of the information in
- is asymptotically negligible compared to that in Q4
in the limit ¢ — oo, contribution of all of these effects
disappear in this limit. Note however, that AT — 0 at
large t is not a consequence of “information neutrality”,
but of the law of large numbers, which guarantees that
Q- < Q4 for t — oo, so that the information from the
difference in the absorption between the two receptors
becomes negligible with time compared to the informa-
tion from the sum. To illustrate this, in Fig. 2, we also
show the difference AT = I[Q4; kin] — I[Q1, Q2; Kkin].
Discussion. We have analyzed a simple model of two
identical receptors that are coupled through interactions
with the same ligand. Our main finding is that, in this
system, the variance and the co-variance of the recep-
tor activities both depend on the interactions between
the receptors in such a way that the interactions do not
affect the amount of information between the receptor
activities and the ligand concentration to the Gaussian
order in fluctuations. We additionally discovered that
the interactions have a negative effect on the amount of
available information in sub-Gaussian orders, though the
effect disappears at long observation time. These obser-
vations violate the well-known “sign rule” [11, 16]. In

contrast, in most previous analyses, the variances of the
individual sensors have been assumed independent of the
interactions between the sensors [11, 18, 20, 21, 48], lead-
ing to the sign rule. We show that biophysical interac-
tions do not necessarily obey such assumptions. We ex-
pect that similar concerns will be valid beyond receptors
in individual cells, in applications such as neural popu-
lation coding or multicellular molecular communication
[17, 49]. Thus such mechanistic considerations must en-
ter analyses of multivariate information processing.

In studies of cellular sensing, one often make an as-
sumption that cells are only affected by the population-
averaged activities of their receptors. In principle, ad-
ditional information about the external ligand can be
encoded in differences of activities of individual recep-
tors since these differences depend on the concentrations,
Q1 — Q2 ~ VkEin. Our analysis provides a solid basis for
this assumption by showing that, for long observation
times, the cell has as much information about the signal
when it tracks the sum of activities of its receptors as if
it were to track activities of every individual receptor.
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