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We consider a class of adaptive network models where links can only be created or deleted between
nodes in different states. These models provide an approximate description of a set of systems where
nodes represent agents moving in physical or abstract space, the state of each node represents the

agent’s heading direction, and links indicate mutual awareness.

We show analytically that the

adaptive network description captures a phase transition to collective motion in some swarming
systems, such as the Vicsek model, and that the properties of this transition are determined by the
number of states (discrete heading directions) that can be accessed by each agent.
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I. INTRODUCTION

Adaptive networks define a versatile class of models
that have been recently applied to a wide variety of sys-
tems [1, 2]. They combine processes that change the
structure of a network, such as growth or rewiring, with
dynamics taking place on the network. This results in a
feedback between topology and dynamics that can lead
to different forms of self-organization. Following the pi-
oneering work of Bornholdt and Rohlf [3] adaptive net-
works have been applied to a wide range of systems, in-
cluding neural networks [4, 5], mobile sensor networks
[6, 7], epidemics [8, 9], and the evolution of cooperation
[10, 11], among many others.

In the study of adaptive networks, a special role is
played by opinion formation models and, in particular,
by the adaptive voter model and its variants [13-20].
The adaptive voter model describes the process through
which a population of agents forms an opinion. A group
of nodes representing agents are connected by links that
describe social interactions. Each node is associated to
a variable that can take values representing all possible
opinions. At every iteration, the network is updated by
propagating these values along the links (social adjust-
ment) and by rewiring links (social segregation). One
typically considers nodes that rewire their connections
to surround themselves by like-minded agents that hold
the same opinion. This common type of social dynam-
ics is called homophily. Its opposite heterophily, where
agents seek connections to different-minded agents [16],
has received much less attention.
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Extensions of the adaptive voter model have been re-
cently proposed to describe collective motion in groups of
animals [21, 22], a basic social phenomenon that occurs
in a broad variety of species. Examples include insect
swarms, fish schools, bird flocks, herds of quadrupeds
[23-27], and even crowds of people [28]. Here, we will re-
fer to all these, generically, as swarming systems. The
process through which such systems self-organize into
coordinated collective motion is still poorly understood.
There has been much debate, for example, regarding the
nature of the swarming transition that marks the onset
of collective motion [26].

Most theoretical studies investigate swarming by either
analyzing detailed agent-based models [29] or represent-
ing the swarm as a continuous medium [30, 31]. Adaptive
network models provide an alternative route: the swarm
is represented as an adaptive network by an approxima-
tion that captures the agents’ headings and interactions
but neglects their trajectories in space. In such models,
each agent is represented by a node, its heading direction
is treated as an internal state, and mutual awareness be-
tween two agents is represented by a link. But, there is
no explicit representation of space, i.e. no variable keeps
track of each agent’s position in space.

Network swarming models are reminiscent of the adap-
tive voter model, where the subject of the opinion forma-
tion process is now the heading direction. However, a no-
table difference is that physical motion can lead both to
the formation and dissolution of links to agents of differ-
ent heading direction (Fig. 1). The adaptive swarming
models thus constitute a third class of opinion forma-
tion systems comprising aspects of both homophily and
heterophily. We refer to such systems as the swarming
systems class of adaptive network models.

This application of voter-like models in the investiga-
tion of swarming was originally proposed [21] to model



experiments on locusts marching in a ring-shaped arena
[32]. A slightly extended version of this model was later
used to predict the outcome of decision-making experi-
ments with fish [22].

We note that the swarming systems class of adaptive
network models may also be relevant for other applica-
tions that consider motion in abstract (rather than phys-
ical) space. For instance, if translated into a social con-
text, where different heading directions correspond to
different opinions, it describes system individuals that
both create or destroy social connections mainly with
those who have a different opinion. While this is not the
most common social dynamics, it may describe situations
where original opinions are strongly valued and attract
new social interactions but also create tensions within
established interactions, leading to dissolution.

The previously proposed adaptive network models for
swarming systems considered only cases where each agent
was restricted to choose between two heading directions,
corresponding to clock-wise or counter-clockwise motion
in the circular arena [21] or to swimming towards one of
two targets [22] in the collective decision-making exper-
iment. These investigations thus focused on situations
where the internal opinion state was a binary variable,
akin to the adaptive voter model. While several multi-
state extensions to the voter model have been explored
[13, 19, 33, 34], the present paper is the first to analyze a
similar extension for the swarming system class of adap-
tive network models. This extension is intuitive, as real
swarms typically move in two or three-dimensional space,
where the heading direction can be discretized into more
than two node states.

In this paper we show that the swarming system
class of adaptive network models displays a symmetry-
breaking ordering transition that can be likened to col-
lective motion. This transition can be either continuous
or discontinuous, depending on the number of accessible
states (e.g. the dimensionality of the embedding space).

The paper is organized as follows. Section II introduces
the swarming system class of adaptive network models.
Section III analyzes its mean field approximation. Sec-
tion IV computes its analytical and numerical solutions.
Section V compares our adaptive network results with
the standard swarming transition to collective motion.
Finally, Section VI presents our conclusions.

II. ADAPTIVE NETWORK SYSTEM

We consider a system of N nodes, representing agents,
and links representing mutual awareness. Each node can
be connected to any number of other nodes and has an
internal variable that encodes the agents opinion state, or
equivalently heading direction, from a set of M discrete
states. For convenience, we denote the set of all possible
opinion states by Q={1,2, ..., M} and the complement of
a given state X with respect to Q by Qv = Q\{X}. The
initial states of the agents are drawn from € with equal
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FIG. 1: Model illustration. The diagram presents nodes (cir-
cles) displaying two different opinions (black/white) out of M
possible choices. The state dynamics (left column) consists of
spontaneous flipping of individual nodes (top), and of three-
body processes (bottom), with rates wo and ws, respectively.
The link dynamics (right column) consists of the creation and
deletion of links only between nodes in different states, with
rates a and d, respectively. These dynamics take place irre-
spective of any additional links, which may be present, but
are not shown in this figure.

probability.

The network is initialized as an Erdés-Rényi random
graph with initial mean degree (k) = 3. We note, how-
ever, that this system has unique attractors and therefore
the results obtained below are independent from these
initial conditions.

The state of each node and the linking and unlinking
dynamics are functions of continuous time. At each mo-
ment, there is a probability density (associated to the
current configuration) for a transition to a different state
and to link or unlink to other nodes. Specifically, the
network then evolves in time as follows (see Fig. 1):

State dynamics — The state of each node is updated
according to one of the following three processes. (1)
Every node changes its state spontaneously at a rate wg.
In a spontaneous state change from state X the node
picks one of the M — 1 other states in Q{X} with equal
probability. Therefore, wy can be viewed as a coefficient
that controls the “flipping noise”, that is, the probability
of spontaneously changing an agents opinion state (i.e. its
heading direction). (i) In every triplet of nodes Y—X-Y,
where two nodes on the same state Y are linked to a single
node on a different state X, the central node switches its
state to Y with a probability that amounts to a net rate
of wsy transitions per triplet.

The state dynamics rules capture two intuitive pro-
cesses: random noise and conforming to a local majority
(an effect of the triplet process). It is also intuitive to
include a pairwise process in which one individual con-
vinces another individual of its opinion. However, some
previous publications [15, 18, 19] have shown that this
process does not have an impact on the deterministic dy-
namics at pair-level, i.e. in the thermodynamic limit it
averages out and in smaller systems only acts as a small



additional source of noise. For the sake of simplicity we
hence omit the pairwise interaction term in the present
model.

Link dynamics — Links are established or removed
between pairs of nodes that are in different states, with
probabilities that amount to a net creation and deletion
rates of a (per pair) and d (per link), respectively.

The numerical network simulations reported below
were carried out using an event-driven (Gillespie) algo-
rithm, which provides a statistically exact description of
the continuous-time dynamics at the link level by using
random numbers to determine not only if a state or link
transition occurs, but also the time interval before it.
Details of this implementation are provided in [35, 36].
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FIG. 2: Bifurcation diagram of the mean field approximation
of the density of agents in each state as a function of nor-
malized flipping noise wo /w2 in the M = 2 (a) and M = 3
(b) cases. The analysis reveals stable (solid) and unstable
(dashed) branches of steady state solutions. The M = 2 case
(a) undergoes a continuous transition in the form of a super-
critical pitchfork bifurcation. The M = 3 case (b), presents
two sets of stable solutions: one set (I) appears through a
discontinuous transition and corresponds to a single majority
opinion and two minority opinions with the same number of
agents, the other set (II) results from a continuous transition
and corresponds to two majority opinions with equal number
nodes and a single minority opinion.

IIT. MEAN FIELD SOLUTION

Before carrying out an adaptive network analysis, it is
instructive to gain some intuition by considering a mean
field approximation. This approximation is equivalent
to neglecting the link dynamics and assuming that the
density of links connecting nodes in given states is pro-
portional to the product of the densities of these states.
While crude, it leads to a picture that is qualitatively sim-
ilar to the adaptive network results described in Section
IV, but using a much simpler mathematical description.

For simplicity, we denote by = the density of a given
state and by y; the density of each of the other M — 1
states, as a function of continuous time, and whose evo-
lution is governed by the dynamics in Section II with
different rates. In principle one could now write the
master equation of the system and then coarse grain
this equation to derive the deterministic macro-level dy-
namics [37]. However, in the study of adaptive network
models already a variety of related models has been ex-
plored and based on this experience it is possible to also
write down the macroscopic equations in the determinis-
tic limit directly. We find

dz w M-1 M-1
0 2
= (D) X s

(1)
where (k) = Zjv:l k; is the mean degree (i.e. the mean
number of links per network node) and k; is the number
of links connected to node j.

In the equation the first two terms describe the gain
and loss of nodes in state x due to the noise-induced spon-
taneous flipping, respectively, and the last term captures
the gains and losses resulting from the triplet process.
Two-body interactions do not appear in this equation
because the corresponding terms cancel out due to the
symmetry of the associated processes. The conservation
of the total node density implies that = + >, y; = 1.

In numerical simulations of Eq. 1, we found that this
system will either converge to a disordered (mixed) solu-
tion, where all densities are equal, or to an ordered state,
where a single majority direction emerges and all other
states have the same lower density. If we consider only
solutions that follow this structure, we can thus make an-
alytical progress by assumingy; = yo = ... = yy—1 = 9.
This leads to the simplified system

dx

Ezwo(y—l')-i-’lbg(M

-1) (:1:2y — y2x) ,  (2)
where we defined Wy = wo and 1wy = wo(k)?, for simplic-
ity. We now compute the steady state solutions of the
system by setting the left hand side of this equation to
zero. Factorizing y — x, we obtain

0= (y — x)[wg — we2(M — 1)zy]. (3)

From this equation it is apparent that we get a symmetric



solution x = y and asymmetric solutions that satisfy
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Using the normalization condition (M —1)y +x =1, we
find that the symmetric solution is given by z = 1/M,
and the asymmetric pair is by

1 T
SR
=3 R (5)

which is independent of the number of states M. The
constant symmetric solution represents a disordered state
where all heading directions are equally probable. The
parabolic asymmetric solution with positive square root
in Eq. (5) corresponds to the ordered state with single
majority heading direction that we also found numeri-
cally, whereas the negative square root solution indicates
a symmetry-broken solution with a single minority state,
which we never observed in simulations.

As the flipping noise level is increased, the system un-
dergoes a transition from the ordered to the disordered
state (Fig. 2). Using elements of bifurcation theory [38],
a direct visual inspection of this bifurcation diagram re-
veals the points at which the stability of these steady
state branches must change. Bifurcations occur both at
the rightmost points of the parabolas and at the inter-
section point of the different solutions.

The rightmost points of the parabola satisfy wg/wa =
1/4, where the stable and unstable solution branches
meet through in saddle-node bifurcation. The intersec-
tion of the two solutions occurs at wy/we = (1-1/M)/M
where a degenerate transcritical bifurcation takes place.

In the context of the original agent-based stochastic
system, the bifurcation points correspond to phase tran-
sitions. For any M > 2, the destabilization of the mixed
state occurs in a subcritical bifurcation, corresponding to
a discontinuous transition. Only in the M = 2 case, the
two types bifurcation points coincide at wo/we = 1/4,
and a supercritical pitchfork bifurcation is formed, cor-
responding to a continuous transition.
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A detailed stability analysis [39] of Eq. (2) verifies the
results above and shows an additional set of stable solu-
tion branches (labeled by II in Fig. 2). In these branches
two majority opinions are represented in an equal num-
ber of nodes and while a single minority opinion is held
by a smaller number of nodes. However, in the next sec-
tion we show that the stability of branches is lost when a
more accurate approximation is used. This suggests that
the stability of the 2-majority-1-minority branches is a
spurious result of the mean field approximation, which
appears due to an excessive reduction of the dimension-
ality of the state space. In the full system these branches
are thus unstable to certain perturbations that involve a
dynamical redistribution of links, which is not captured
by the mean field.

IV. ADAPTIVE NETWORK SOLUTION WITH
PAIR-LEVEL CLOSURE

We now derive a system of equations that takes the
dynamics of link densities into account, using a moment
expansion [40]. The basic idea of this expansion is to
write differential equations that capture the density of
small subgraphs. These densities are also called network
moments. Each subgraph can be classified by its order,
which is equal to the number of links it contains. For
example, if we have three distinct states X)Y,Z € 2, the
density of nodes in the X state, denoted by [X], is a
zeroth-order moment; the per-capita density of X —Y
linked pairs [XY], a first-order moment; and the X—Y—-Z
triplet density [XY Z], a second-order moment.

Note that these motifs are also counted even when they
are found within a larger network structure, that is, re-
gardless of any other links that the nodes involved may
have or of any other motifs (of any order) that they may
be part of. This implies that, for example, in an iso-
lated chain-like network structure X —Y — X we would
count two X nodes, one Y node, two X —Y pairs, and
an X —Y — X triplet, and that each of these motifs will
follow the corresponding transition rates detailed above.
With these definitions, the dynamics of the zeroth and
first order moments are captured by

LX) = o LS - (D e Y { X)), (6)
YeQx) YeQxy
dryxy— o XY —2(M—1)[XX]}+ 3 {2[XYX}+3[XYX]—[XXY]}
a ]_M71{ 2 1XY] w22 x Vi (7)
YeQxy YeQ x)
%[XX’] - A;’El{z([XX]HX’X’]H 3 ([XY}+[X’Y})f2(M71)[XX’]}+w2{ — 2[XX'X] - 2[X'XX"] + X%
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(8)
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where X, X’ €Q (with X # X’), and [XY V] denotes the
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density of motifs with a central node in state Y connected



to three other nodes in states X, W, and Z.

In the equations above, the first right-hand side term
corresponds to noise-driven state dynamics and the sec-
ond, to three-body interactions. The remaining terms in
Eq. (8) result from the link creation and deletion pro-
cesses. These expressions summarize a larger system of
equations, with (6), (7) and (8) representing M, M, and
M (M — 1)/2 equivalent equations, respectively.

If we had included the common two-body opinion
transmission process in our model, the corresponding
terms would vanish in the zeroth-order moment dynamics
due to the symmetry of the associated processes. Higher-
order terms do include two-body interaction terms, but
their effect amounts to an additional noise source that
changes the number of linked pairs in different states.
We verified numerically that this effect is small in our
model when compared to the effect of the explicit linking
and unlinking dynamics, and that it does not produce
any qualitative changes in the resulting stationary solu-
tions or their stability.

Note that each equation describing the dynamics at a
given order involves higher order terms. We thus need to
close the system through a moment closure approxima-
tion. We use a pair-level closure [8, 41] of the form

MIXYDA([YZ]) (XY ][YZ]
h([XYZ]) ¥y

XvZ] =

WMXYDAUYZ)(YW]) (XYY Z][YW]
h(PYE D) ypE

Y] =

where A([XY]) = 1+4+dxy, h([XYZ]) = 1+6xz and
h(XYZ]) =1+6xz+0xw +0zw +0xz0zw +Sxwizw,
with § the Kronecker delta.

These pair-level closure expressions can be derived by
writing the statistical estimates of triplet and quadruplet
densities that would result from a random combination
of the existing densities of states and pairs (i.e. of zeroth-
and first-order motifs, respectively). Thus these approx-
imations neglect longer-than-pair correlations in the sys-
tem. This approximation is known to be problematic
close to fragmentation transitions [18, 19], however this
is not an issue in the present model (see also [20] for a
detailed discussion of the failure of this type of approxi-
mation).

To make analytical progress, we assume that the cre-
ation and deletion rates of every type of link cancel
each other independently in the stationary solution, i.e.
a[X][X']|=d[X X']. This is the simplest way for the sys-
tem to present a stationary solution, since otherwise the
excess of link creation or deletion would have to be ex-
actly compensated by changes in node states that, at
the same time, keep the density of all moments constant.
We confirm numerically the validity of this assumption
in Figs. 3a and 3b, where we show that our final results
match well the direct agent-based simulations of the full
network dynamics.
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FIG. 3: (Color online). Bifurcation diagrams (a, b) and phase
diagrams (c, d) of adaptive network systems with M = 2 (left)
and M = 3 (right) available states per node. The bifurcation
diagrams (top) show the density of nodes in a given state for
the stable (solid) and unstable (dashed) stationary solutions.
In both diagrams, the system undergoes a transition from a
disordered solution to an ordered one as the noise level wg is
decreased. For M = 2 (a) this transition occurs through a su-
percritical pitchfork bifurcation and for M = 3 (b), through
a transcritical one, corresponding to a continuous or a dis-
continuous transition, respectively. Analytical results using a
pair-level closure approximation (lines) are in good agreement
with numerical network simulations (circles) using N = 10*
nodes. The phase diagrams (bottom) display the ordered, dis-
ordered, and bistable regions as a function of noise wop, and of
link creation rate a, for M =2 (c) and M = 3 (d). We note
that the bistable region is only present in the M > 3 case.
Parameters: a = 0.5 (only in top panels), wes = 0.2, d = 0.1.

In analogy to the mean field case, we assume that all
states have identical densities except for a single focal
state. We denote by [z] the density of nodes in this focal
state and by [j] the density of each of the other M — 1
states. We can then replace the pair-level approximations
into Eq.(6) and use these assumptions and notation to
obtain

dlz] . wa ol 1 1

o (G- + % 010 () @
By using the assumption a[X][X’] = d[X X'], introduced
above, and imposing the conservation law Zf\il[z] =1,
we find the stationary solutions

[z] =[j] =1/M (10)
and
2] = 1+ y1—w/a1 V12_w0/017 (11)

4] 1+ V1—wo/cr \/1_“’0/01. (12)

o(M — 1)



Here, ¢; = wya?/(8d?) and Eq. (12) represents M — 1
identical equations for the node densities of all states
other than x.

The results of the analysis (Fig. 3) are similar to
those obtained with the mean field approximation: at
low noise the disordered state becomes unstable and sta-
ble branches appear that correspond to the symmetry-
broken solution. However, there two differences. First,
only the ordered solution that has one majority opinion
and M — 1 minority opinions is stable; the reversed case
(Set IT in Fig. 2) with one minority opinion and M — 1
majority opinions is unstable. Second, the bifurcation
points now depend on the density of linked pairs, and
are therefore functions of the link creation and deletion
rates. The saddle-node bifurcation (for M > 2) where
the ordered states vanish now occurs at c;, whereas the
transcritical bifurcation where the disordered state loses

its stability is at
M —2\°
1—( M ) ] Cy. (13)

We therefore have co < ¢; for all systems with more than
two available states. Thus, the transition is generally of
first order and has a bistable region in the wq interval
given by co < wg < c¢1. In the limit of a large number
of possible states, co — 0 and the region of bistability
extends to the origin. A continuous transition is only
observed in the special case of two opinions, where M = 2
implies ¢; = ¢ and the two transitions coincide, to form
a pitchfork bifurcation.

The analytical predictions are in good agreement with
results from large agent-based simulation runs (cf. Fig. 3
panels a,b). Only near the critical points a small dif-
ference is observed, which may be due to the moment
closure approximation in our analytical calculations or
to finite size effects in our agent-based simulations.

V. COMPARISON TO THE SWARMING
TRANSITION

In this Section, we relate the ordering transition de-
scribed above to the collective motion transition observed
in swarms by interpreting our adaptive network model
as a simplified version of a Vicsek model [26]. This is
the most commonly used minimal model in the study
of swarming systems. It describe self-propelled particles
moving at a constant speed that tend to align their head-
ing directions when interacting. We will consider a sim-
plified version of the Vicsek algorithm (which we refer to
as the discrete Vicsek model) where agents can only move
in discrete heading directions and the agent positions are
not tracked. For this purpose, each node is interpreted as
a self-propelled agent, its state as its heading direction,
and linked nodes as interacting agents. An advantage
of this approach is that it does not require specifying
the details of the interactions. While collective motion
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FIG. 4: (Color online). Bifurcation diagrams of the alignment
order parameter ® defined in Eq. (15) as a function of noise
wp for the adaptive network model with pair-level closure de-
scribed in Section IV, when interpreted as the discrete Vicsek
model introduced in Section V (see text). The curves were
computed using Egs. (10-12) for M = 2, 4, and 6 potential
heading directions, corresponding to D = 1, 2, and 3 dimen-
sions, respectively. For M = 2, the transition is continuous.
For M > 2, the critical value of the control parameter where
the ® = 0 branch loses stability (c2) becomes smaller than
point where the upper branch vanishes (c1). This results in
a discontinuous transition and a region of bistability, which
gives rise to the hysteresis cycles indicated by the arrows. The
inset displays c¢1 and c2 as a function of M the bistable region
is broader for larger M values.

can result from a broad variety of interactions (such as
aligning [29], attraction-repulsion [42, 43], and escape-
pursuit [44]), the adaptive-network perspective can treat
all of these equally by focusing on the exchanges of infor-
mation that lead to consensus on the collective heading
direction, without considering the details of the inter-
actions. In particular, if we assume that interactions
can only occur within a given distance, the limit case
studied in this paper (where the linking and unlinking
rates between agents in the same state is set to zero)
can be mapped to a situation where agents that advance
in a common direction do not change their relative po-
sitions and therefore do not create or destroy interac-
tions between them. We also focus on the simplest limit
case where the linking and unlinking rates (corresponding
here to encounter and disbanding rates at which agents
start and stop interacting with each other) are constant
and equal for all agents in different states (i.e. with dif-
ferent headings). Note that the adaptive network model
that we consider in this paper defines an equal probabil-
ity of spontaneously switching to any new heading state,
given by the single rate wy introduced in Section II. In
the context of swarms, this implies an equal probability
of turning perpendicular to or opposite to the current
heading direction. Although this is not likely the case
in real swarms, there is no known general rule on how
to define these probabilities, which must depend on the
specificities of the system considered. In order to man-



age simpler expressions and as a first effort in our model
analysis, we therefore consider here the case with a single
wg value for the probability of switching to any heading
direction, leaving the analysis of using different rates for
different turning angles for future work.

In order to compare our adaptive network system to
collective motion, we start by associating each node state
[h] with an agent’s heading ¢ in a space where they can
only move in discretized directions that are parallel or
perpendicular to each other. Each v is thus a unit vector
pointing in a direction that is either the same, opposite,
or orthogonal to all others. The number of potential
headings M therefore depends on the dimensionality of
the space, with M = 2 in one dimension, M = 4 in two
dimensions, M = 6 in three dimensions and, in general,
M = 2D in D dimensions.

The usual polarization order parameter used to de-
scribe the degree of alignment and of collective motion
in the standard Vicsek model and other swarming sys-
tems [26] is given by

where IV is the total number of agents and v; is a unit
vector indicating the heading direction of agent i [26].
With this definition, & = 1 if all agents are perfectly
aligned and swarming in the same direction, whereas ® =
0 if they are randomly oriented.

In the discretized space with only orthogonal heading
directions that we consider here, ® can be expressed as

M/2

O =,|> ([2h] — [2h —1])%. (15)

h=1

Here the sum is over the D = M/2 dimensions of the
space that contains the corresponding swarm. The term
[2h] — [2h — 1] is the mean speed of the swarm along one
of the axes (if each agent is defined to have unit speed),
where [2h] is the total fraction of agents heading in the
positive axis direction and [2h — 1] is the total fraction of
agents heading in the opposite (negative axis) direction.
This relationship allows us to plot the polarization order
parameter ¢ as a function of wq, which serves as a proxy
for the amount of noise in the agent motion (Fig. 4).

In the context of swarms, the bifurcations computed
above correspond to ordering phase transition to collec-
tive motion. For agents moving in one-dimensional space
(M = 2), the transition of the discrete Vicsek model is
continuous (second order), whereas for agents moving in
more dimensions (M > 4), the transition is discontinu-
ous (first order). A region of bistability occurs for M > 3
and is broader for higher values of M (Fig. 4 inset).

Although the adaptive network approach includes sev-
eral approximations, the results above provide insights
into the more complex problem of understanding general
features of the transition to collective motion in swarms.
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FIG. 5: (color online). Per-capita density of linked pairs as a
function of noise wy for the adaptive network model with pair-
level closure described in Section IV (see text). All curves
were obtained analytically from Eqgs. (10-12), and the as-
sumption a[X][X'] = d[XX'], for M = 2 (a) and 3 (b) using
the same parameters as in the corresponding bifurcation di-
agrams in Fig. 3. Blue dashed lines: Density of linked pairs
with both nodes in the same state of majority (labeled [11])
or minority opinion ([22] and [33], the lowest branch at left
side in both plots). Red solid lines: Density of linked pairs
with one node in the majority and one in the minority opin-
ion ([12] and [13]), or both in the minority opinions ([23], the
lower red one at left side in (b)). Black dotted lines: Total
density of linked pairs. The bifurcation features displayed in
Fig. 3 are mirrored here in these link density plots.

The question of whether the actual swarming transition
to collective motion is continuous or discontinuous, for
example, has been the subject of intense debate [29].
While in the initial numerical explorations the transition
appeared to be continuous (second order), it was later
shown through theoretical arguments and large-scale nu-
merical simulations that it is, in fact, discontinuous (first
order) and has a bistable transition region where ordered
and disordered swarming states coexist [29, 45, 46].

The results presented in Fig. 4 would suggest that,
generically, this transition should be continuous in one
dimension and discontinuous in two or three dimensions,
with a more prominent bistable region in the 3d case.

To our knowledge, there has been no systematic anal-
ysis of the properties of the ordering transition as a func-
tion of the embedding space dimensionality for different
types of swarming models. In one dimension, different
approaches have concluded that the transition is either
absent or first order [47-50]. In two dimensions, the tran-
sition has been much better studied and shown to be first
order, as in three dimensions, but the size of their bistable
regions has not been compared [26, 31].

We can further examine the connection between the
adaptive network model and swarming systems by con-
sidering the per-capita densities of linked pairs displayed
in Fig. 5. These match the interaction frequencies that
are expected to occur in swarms. For example, the total
number of links decreases monotonically with noise level,
which corresponds to the observation that higher noise
values will produce less clustering and therefore fewer in-
teractions between agents in swarming systems [26, 51].
We also see that the density of heterophilic links [12]
(and [13] in the M =3 case) increases with noise. This



can be explained by an increasing rate of encounters at
higher noise levels.

Furthermore, we find that for all cases with M > 2
(such as the M = 3 case displayed in the figure) the or-
dered branch’s density of heterophilic links [12] and [13]
continues to increase as a function of noise in the bistable
region, where it becomes higher than that of the disor-
dered branch. Despite this high number of heterophilic
links, the ordered branch persists because the density of
homophilic links [11] is also high. This can be related
to bistable regions in swarms, where it is known that
a higher density of interactions between agents in the
majority heading state, which corresponds to the forma-
tion of high-density bands (oriented perpendicular to the
heading direction) in two or more dimensions stabilizes
the ordered state [45, 46], leading to a bistable region and
thus to a discontinuous transition. This analogy could
provide an alternative way to understand the details of
the bifurcation as a function of the dimension of the em-
bedding space.

VI. CONCLUSIONS

In this paper, we analyzed the swarming systems class
of adaptive network models, where links can only be cre-
ated or deleted between nodes in different states. We
showed analytically that, in the mean field and adaptive
network (with pair-level closure) approximations exam-
ined here, this class displays a symmetry-breaking transi-
tion with properties that depend on the number of states
M accessible to each node. If M = 2, the transition
occurs through a supercritical pitchfork bifurcation; if
M > 3, through a subcritical one. Consequently, only
this latter case displays a bistable region near the bi-

furcation point. Note, however, that previous work [21]
had shown that bistable solutions can also be obtained
in the M = 2 case if we allow link creation and deletion
processes to occur between nodes in the same state, a
situation that was not studied here.

The results above, taken together, provide insights on a
potential direct connection between link dynamics, their
dependence on internal states, and the resulting proper-
ties of this type of symmetry-breaking transitions.

The parallels between the adaptive-network approach
presented here and agent-based dynamics are not re-
stricted to swarming systems. They can be extended to
any group of agents moving in an abstract phase space
with similar dynamical rules. These rules must consider
agents with an internal state (as the heading direction
in the swarming case) that determines their trajectory in
this phase space, in which their relative positions deter-
mine whether they interact. It is thus conceivable that
the model proposed may be extended to study social pro-
cesses involving heterophily, such as the diffusion of in-
novations and technologies [52] or job seeking through
weak interpersonal ties [53].
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