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Abstract

We investigate protein evolution using an off–lattice polymer model evolved to imitate

the behavior of small enzymes. Model proteins evolve through mutations to nucleotide

sequences (including insertions and deletions) and are selected to fold and maintain a

specific binding site compatible with a model ligand. We show that this requirement

is, in itself, sufficient to maintain an ordered folding domain, and we compare it to the

requirement of folding an ordered (but otherwise un–restricted) domain. We measure rates

of amino acid change as a function local environment properties such as solvent exposure,

packing density, and distance from the active site, as well as overall rates of sequence and

structure change, both along and among model lineages in star phylogenies. The model

recapitulates essentially all of the behavior found in protein phylogenetic analyses, and

predicts that amino acid substitution rates vary linearly with distance from the binding

site.
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I. Introduction

Most proteins in nature are required to fold into a specific structure, or structure en-

semble in order to perform their biochemical functions. These requirements impose strong

constraints on the evolution of proteins and protein coding sequences. Mutations that

interfere with folding or function are generally removed from a population by purifying

selection, while neutral, or beneficial mutations can become fixed and accumulate over

time. As a result of this interplay, functional requirements are reflected in the patterns

of change within homologous protein sequences. Amino acid mutations that occur on the

surface of a protein’s folded structure, or are distant from its active site, tend to have a

smaller effect on the fitness of a protein, and are fixed at a higher rate [1]. At the same

time, local rates of change in protein sequence are correlated with local rates of change

in protein structure [2–4].

Computer models of protein evolution, which approximate the functional requirements

on protein sequences by, for example, folding polymer on a lattice, have been very suc-

cessful in identifying the causes of evolutionary rate variation in protein sequences [4–11].

However, in most models directed at this problem, the folded structure of a protein is used

as a proxy for functional constraints, and consequently changes in folded structure and

the effects of specific functional requirements, such as binding to a target ligand, are ne-

glected. In recent work, we began to explore the first of these problems using an off–lattice

model in which polymers are evolved to maintain an ordered but otherwise un–restricted

folding domain [12, 13]. We found that the model could recapitulate basic properties of

protein evolution, such as maintenance of amino acid sequence complexity and solubility

of folded structures, linear rates of amino acid change as a function of solvent exposure,

and linear divergence of folded structures with the number of accepted mutations. Here,

we build on this work, using a model in which polymers are evolved to mimic the behavior
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of small enzymes in order to explore the effect of functional constraints on rates of change

in protein sequence and structure.

In the revised model, polymers evolve as a result of mutations to model genes (in-

cluding insertions and deletions) and are selected to re–configure a specific binding site

structure compatible with a model ligand (Fig. 1). Again, we approximate population

dynamics by a sequential–fixation process (i.e. the whole population is represented by

a single sequence, an approximation that is valid when the time to fixation or loss of a

mutation is shorter than the time between fixation events [14], and applies to organisms

in the plant and animal kingdoms). We find that the requirement of binding a ligand is,

in itself, sufficient to maintain an ordered folding domain [15], and we compare it to the

requirement of folding an ordered but otherwise unrestricted domain treated in our earlier

work. The model predicts that amino acid transition rates vary linearly with distance

from the ligand binding site, and distinguishes between exposure, stress, and flexibil-

ity models of evolutionary rates [16, 17]. Evolutionary rates fluctuate significantly, both

within and among model lineages, in contrast to the molecular clock (Poisson) hypothesis,

but consistent with sophisticated analyses of phylogenetic data [18–20] and the predic-

tions of earlier models [7–9]. Structural change is Lévy–like under both conditions, with

long periods of structural stasis punctuated by shorter periods of structural change [13].

However, on average, the amount of change experienced under either condition is linear in

the number of accepted mutations, in agreement with recent analyses of protein structure

families [21, 22].

In the next section below, we describe the general features of our model and the

procedures used to generate our data. Following this section, we describe our results and

compare them to the predictions noted above.
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II. Model

We approximate protein evolution by a discrete Markov (sequential–fixation) process,

in which a single gene representing a population is subject to mutation, and mutated

forms of the gene are accepted or rejected as the current state of the population according

to one of the following conditions : In condition (i), gene products (model proteins)

are required to re–configure an ordered but otherwise un–restricted nucleus, sufficient to

support a small binding site against thermal fluctuations ; In condition (ii), gene products

are required to re–configure a pre–defined binding site structure forming a small surface

cavity compatible with a model ligand (see below).

In each iteration of the Markov process, each nucleotide position in a gene is subject to

the possibility of replacement, insertion or deletion, except at positions that code for the

binding sites of polymers evolved under condition (ii). Insertions and deletions (indels)

are imposed in single codon units. The attempt frequencies for replacement and indel

mutations are adjusted to reflect protein data : Nucleotide transitions are favored over

transversions by a factor of 2, and multiple replacements within a gene are rare. Insertion

and deletion mutations are equally probable, and together occur at about one tenth the

rate of non–synonymous replacements. Multiple indel events and non–sense mutations

are excluded from the Markov process entirely.

The fitness of a model gene is determined by folding N = 127 replicas of its en-

coded polymer on a parallel computer and analyzing the resulting ensemble of structures.

Folding is initiated from a random coil state below the folding transition temperature

of a typical viable sequence evolved under condition (i). The time allowed for folding

is determined by the length of a polymer according to an estimate provided by Lin and

Zewail [23]. The temperature is reduced substantially, the replicas are equilibrated for a

short period, and a final ensemble of structures, Γ, is recovered. The polymer model and
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the folding procedure are described in more detail in Appendix I.

In condition (i), a structural alignment is performed for each pair of structures xµ and

xν 6=µ contained in Γ. Structures are aligned by rotation, translation, and reflection through

the closest 2N/3 pairs of corresponding monomer positions, where N is the number of

monomers in a polymer. The alignments are used to select a smaller ensemble, ∆Γ⋆,

to define the dominant energy basin recovered by the folding procedure, and a reference

fold, x⋆, closest to the center of the ensemble ∆Γ⋆ (Fig. 1). The fitness of a sequence is

defined by the degree of structural order in the ensemble ∆Γ⋆ ; Let ‖x⋆
j − x

µ
j ‖ denote

the structurally aligned distance between monomer positions x
µ
j and x⋆

j . To measure

structural order, we compute the mean–square distance,

λ2

j =
〈

‖x⋆
j − x

µ
j ‖

2
〉

µ
(1)

averaged over structures xµ ∈ ∆Γ⋆. A monomer is considered ordered when λj ≤ λ†,

analogous to the Lindemann melting criterion [24–26], where λ† ∼ 0.15 l, and l = 3.8

Angstroms is the length of a polymer link. A sequence folding an ensemble with at

least 15 ordered monomers is accepted, otherwise it is rejected. The parameter λ†, the

alignment method, and the procedure for selecting the ensemble ∆Γ⋆ are described in

more detail in Appendix II.

In condition (ii), simulations are initialized by a sequence evolved under condition (i)

that spontaneously forms an ordered, hydrophilic surface cavity compatible with a model

ligand (here, a monomer or dimer). A model ligand is optimally ’docked’ to properly

formed binding sites in the initial ensemble in order to define the ”active state” of a folded

replica. In subsequent steps of the Markov process, a folded replica is considered ”active”

when the distances between monomers in the binding site (including the target ligand)
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are each within 1 Angstrom of the average distances between corresponding monomers in

properly formed binding sites in the initial ensemble. The fitness of a sequence is then

defined by the number of folded replicas that satisfy this condition. If the number of

active replicas is greater than 3N /4, the mutation is accepted, otherwise it is rejected.

These procedures are described in more detail in Appendix III.

III. Results

To explore the behavior of the model under condition (ii), we generated 3 star phylo-

genies [27], each phylogeny consisting of 5 lineages evolved from one of 3 initial sequences

(see Supplemental Material). Each initial sequence is selected to re–configure an ordered

binding site defined by 3–4 weakly attractive, or repulsive amino acid types, similar to

those found in the active sites of small enzymes [28]. To compare fitness conditions, we

also generated 3 phylogenies under condition (i) with the same initial sequences. Poly-

mers evolved under condition (ii) maintain an ordered nucleus, similar to that required

explicitly under condition (i), enclosed in a ”halo” of disordered hydrophilic loops. The

typical length of a polymer in our sample is about 35 monomers, and the typical length

of a disordered loop is between 1–3 monomers, as in Fig. 1.

Due to the inclusion of indels in the model, it is necessary to align the sequences along

each lineage. Amino acid transition probabilities and rates are determined by counting the

number of transitions of a given type along columns of an alignment (alignments are exact

here except when indels occur within coding regions). Transition (exchange) probabilities

are in relatively good agreement with protein phylogenetic data (Fig. 2), consdering that

many infrequent transitions contributing to protein phylogenies are excluded here by the

genetic code. Transition rates are linearly correlated with exposed surface area (Fig. 3),
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in agreement with well known results for proteins [29–31]. To compute exposed surface

area, monomers are viewed as interpenetrating spheres, each coated with a large number

of equally spaced points [32]. The fraction of exposed surface area, δAj/A, is measured

as the fraction of points coating a monomer that are not enclosed in another sphere in

the reference structure of a given sequence [12]. Transition rates, ω(δA), are measured

as the number of transitions from monomers with exposure δA/A divided by the amount

of time (i.e., iterations of the Markov process) that monomers with exposure δA/A are

exposed to mutation. Fig. 3 describes the results obtained for lineages evolved under

condition (i) ; The results for condition (ii) are similar.

In recent work, Echave et al. have suggested that local packing density, or stress can

provide a more accurate description of amino acid transition rates [1]. In Fig. 4, we

compute transition rates, ω(Q), as a function of the weighted contact measure of packing

density,

Qi =
∑

j 6=i

|xi − xj|
−1 (2)

for polymers evolved under condition (i). The linear form of the data for ω(Q) in Fig.

4 supports the stress model of transition rates proposed by Huang et al. [17] ; A plot of

ω(1/Q) for the same set of lineages yields a curvilinear plot, in contrast to the linear rela-

tionship expected for rate dependence on structural flexibility (not shown). Again, similar

results are obtained under condition (ii). Including the data for both conditions, tran-

sition rates exhibit slightly stronger correlations with Q than with δA/A, in agreement

with empirical results of Yeh et al. [16] (see Supplemental Material).

Finally, in Fig. 5 we compute transition rates ω(R) as a function of distanceR from the

center of the binding complex. The linear increase of ω(R) with R is consistent with the

anzatz used by Dean et al. [33] to identify causes of rate variation among sites in protein
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structures (this prediction was verified expirically by Jack et. al during publication [34]).

It is well known that evolutionary rates fluctuate within protein lineages, in contrast

to the molecular clock (Poisson) hypothesis [18–20]. This problem, known as ”over–

dispersion”, or the ”over–dispersed clock”, has inspired relaxed methods of phylogeny

re–construction in which mutation rates are allowed to vary among the branches of phylo-

genetic trees [35]. Bastolla et. al and Wilke have argued that over–dispersion in proteins

can be explained in large part by the requirement of folding a protein into its functional

structure [7–9]. Since our model includes a number of features neglected in these early

models (such as explicit folding, fold change, and explicit functional requirements), it is

of interest to re–examine this problem.

Fig.s 6–8 describe the structure of a typical lineage evolved under condition (ii), where

nl(τ) denotes the number of mutations accepted along a lineage l at time τ (measured

in iterations of the Markov process), P (T ≥ τ) is the counter–cumulative distribution

of waiting times T between accepted mutations (including indels), and λ is the nuclear

Lindemann parameter, defined as

λ2 =
1

N‖

〈

‖x⋆ − xµ‖2
〉

µ
(3)

where N‖ is the number of monomers compared in structure alignments (here, N‖ = 2N/3

as in Eq. (1)). As is evident in Fig. 6, acceptance rates vary significantly along the lineage.

Waiting times fit closely to an asymptotic power law (i.e. Pareto–like) distribution,

P (T ≥ τ) ≃ (1 + τ/τm)
−α (4)

in contrast to the Poisson (exponential) distribution predicted for a molecular clock (Fig.

7). At the same time, the ”nuclear” Lindemann parameter, λ(τ), remains within the
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range of values λ
∼
< 0.2 l obtained by Zhou and Karplus [24] in all–atom simulations of

folded proteins (Fig. 8). Similar results are obtained under condition (i).

Bastolla et. al have argued that the number of viable amino acid mutations available

to a protein fluctuates as it drifts through sequence space, leading to bursts of mutations

and periods of relative stasis along protein lineages, sufficient to explain over–dispersion in

protein data. To examine these effects, we measure the structure of nl(τ) using methods

from time series analysis.

In Fig. 9, we describe the structure of nl(τ) for each lineage using a simple phase

diagram developed by Goh and Barabasi [36] The parameter β in this diagram describes

the distribution of waiting times ;

β = (̺ − 1) / (̺ + 1) (5)

where ̺ = σ/µ is the coefficient of variation, µ = 〈T 〉 is the mean, and σ2 = 〈T 2〉 −〈T 〉2

is the variance of the distribution of waiting times along a lineage. By construction, β is

confined to the interval β ∈ [−1, 1] ; β = −1 corresponds to a δ–function distribution,

β = 0 to an exponential distribution, and β = 1 to the limit of a ”fat–tailed” distribution

as in Eq. (4) ; The parameter β′ denotes the correlation function,

β′ = 〈(Ti − µ)(Ti+1 − µ)〉 / σ2 (6)

which describes the tendency for intervals of similar length to cluster along a lineage,

where Ti denotes the waiting time between mutations i and i+ 1. The shaded region of

the diagram roughly indicates the phase space available to a compound Poisson process in

which waiting times are selected at random from exponential distributions exp(−λ1τ)/λ1

and exp(−λ2τ)/λ2 with different rates, λ2 6= λ1 (i.e., as might be expected on account



11

of the stratification of acceptance rates according to burial, or packing density). Most of

the data lies outside this region, indicating a more complex process.

To describe longer range correlations among waiting time intervals, we measure fluc-

tuations in the ”height” function [37],

Yj =

j
∑

i=1

Ti − 〈T 〉 (7)

by the height auto–correlation function,

〈∆Y q〉 = 〈|Yj − Yj+k|
q〉j (8)

for q ≤ 2. The height auto–correlation function 〈∆Y q〉 measures fluctuations in the

amount of time accumulated along intervals of length k accepted mutations against the

mean value, k 〈T 〉. For an uncorrelated process in which, for example, waiting times are

selected at random from a Pareto–like distribution, fluctuations scale as 〈∆Y q〉 ∝ k qH

with H = 1/2 where H is the Hölder roughness exponent [37]. The smooth scaling of

fluctuations with k indicates the nesting of intervals with more rapid activity, as in a

fractal, or self–affine pattern ; More rapid scaling (i.e., a Hölder exponent H > 1/2)

indicates persistent correlations between increment lengths, and, consequently, in the

fraction of neutral mutations available to an evolving sequence (”multi–fractal” scaling,

H = H(q), is thought to indicate ”multi–affine” structure). For q = 1, we find that

fluctuations exhibit uniform scaling over the range k
∼
< 64 yielding exponents H(1) ≃

0.6 − 0.9. For q = 2, the data becomes rugged, and it is no longer accurate to describe

the waiting time series in terms of an exponent ; To avoid this problem, we average

the correlation functions obtained for different lineages. Fig. 10 describes the average

over lineages evolved under condition (ii) for q = 1 and q = 2 ; In this case, we obtain
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exponents H(1) ≃ 0.8 and H(2) ≃ 0.7 by fitting to the initial range of the data, k
∼
< 64.

These results, in particular, the rollover in the data for k
∼
> 64, are consistent with those

of Bastolla et. al, who used a similar approach to measure fluctuations in the number

of neutral mutations available to an evolving sequence [8]. Results for lineages evolved

under condition (i) are similar to those in Fig. 10.

Finally, to compare variations in acceptance rate among model lineages to phylogenetic

data, we compute the index of dispersion, or ratio of the variance to the mean number of

mutations

I(τ) =
〈

(nl(τ))2
〉

l
−

〈

nl(τ)
〉2

l
/
〈

nl(τ)
〉

l
(9)

in star phylogenies [18]. In Fig. 11, we describe the results of this calculation for a

pair of phylogenies evolved from the same initial sequence under (A) condition (i) and

(B) condition (ii). In each panel of Fig. 11, we measure I(τ) for whole sequences,

and for amino acid positions that are homologous (aligned) to positions in the ancestral

sequence – dashed lines roughly indicate the point at which the number of accepted

mutations per position, per lineage is
〈

nl/N
〉

l
∼ 1. Typically, only a few deletions

occur along any lineage within the range considered in the figure, and consequently the

number of homologous positions remains roughly constant. However, both phylogenies

contain lineages in which insertions are acquired in rapid succession ; The restriction to

homologous positions is intended to exclude replacement mutations at these (inserted)

positions, and more accurately resembles the situation encountered in protein alignments.

Interestingly, I(τ) remains essentially unaltered by this restriction in phylogenies evolved

under condition (ii). In general, we obtain index values in the range I(τ) ∼ 1 − 7 on

time scales for which
〈

nl(τ)
〉

l

∼
< 20, in agreement with sophisticated estimates for protein

phylogenies [18–20] ; For synonymous mutations, we obtain I(τ) ∼ 1− 2.
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To conclude our study, we measure the average rate of structural change along model

lineages, and we analyze the patterns of structural increments, or flights between reference

structures, using methods similar to those in Eq. (8). We first present our results for

lineages evolved under condition (i) and then summarize our results for condition (ii).

In order to measure structural distance, it is first necessary to establish a homology

between monomers in structures compared along a given lineage ; Let s(τ) denote the

(gapped) sequence at time τ in an alignment, and let x(τ) denote its corresponding ref-

erence structure (for simplicity, we omit the superscript on reference structures in the

discussion below). A pair of monomers in x(τ) and x(τ ′) are considered homologous

when their positions in s(τ) and s(τ ′) are aligned. To compute distance, structures are

first aligned through homologous positions using the methods described above. The dis-

tance ∆x(τ, τ ′) between structures x(τ) and x(τ ′) is defined as the root mean–square

distance between the closest N‖ = 20 aligned monomers (similar to the number of or-

dered monomers maintained in the folded ensembles of evolved sequences), analogous to

the procedure used by Illergard et. al. to measure structural drift in protein families [21].

Similar results are obtained using the Hamming distance between contact matrices formed

by compared monomers in each structure [21].

In Fig. 12, we plot the distance from the ancestral fold, ∆x(0, τ), for a specific lineage

evolved under condition (i). The step–like pattern of the data is typical of lineages evolved

under both conditions (see below). The distribution of structural flights between adjacent

accepted mutations, ∆x(n, n + 1), along a lineage is Lévy–like on average, resembling a

normal distribution with an extended tail (not shown). In Fig. 13, we plot the average

distance between structures separated by k accepted mutations, 〈∆x(n, n + k)〉n, both for

the lineage in Fig. 12 and for the average of 〈∆x(n, n + k)〉n over lineages evolved under
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condition (i). Both sets of data fit accurately to a power–law,

〈∆x〉 ≃ p + q kα (10)

with α ≃ 1. Linear scaling is obtained on a slight reduction in the number of monomers

compared in structure alignments. For N‖ = 18, the lineage average converges with the

results obtained by Illergard et al. for protein families after adjustment by a constant

factor to compensate for the larger number of positions compared in protein alignments

(the corrected data lies almost on top of the lineage average in Fig. 13, and is omitted

for clarity). For fewer compared monomers, N‖ ≤ 17, structural change remains linear,

but it occurs at a slower rate (i.e., a smaller value of q in Eq. 10).

To quantify patterns of structural change in ∆x(0, τ), we compute the correlation

function Eq. (8), with structural increments, ∆x(n, n+1), replacing temporal increments

in Eq. (7). If structural change is Lévy–like, smaller increments will tend to cluster along

a lineage, leading to exponents H > 1/2. For comparison, we repeat this calculation for

increments, ∆x(0, n + 1) − ∆x(0, n), measured against the ancestral structure. In this

case, distance increments are signed, and consequently changes in the height function

will tend to compensate, or anti–correlate within intervals of structural stasis, leading to

exponents H < 1/2. For lineages evolved under condition (i), we find strong positive and

negative correlations, with H ∼ 0.8 and H ∼ 0.2 respectively along individual lineages,

consistent with Lévy–like dynamics.

The results for condition (ii) are very similar to those obtained for condition (i) except

that intervals of structural stasis are usually longer, and consequently, structures tend to

evolve more slowly. The average of 〈∆x(n, n + k)〉n over lineages evolved under condition

(ii) is still described accurately by Eq. (10) (with linear scaling under the conditions
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described above), however, the overall change in distance along a lineage is less than half

the value obtained for condition (i), and for a number of lineages, the ordered nucleus

of the ancestral fold is completely conserved. Together, the results for conditions (i)

and (ii) are consistent with those of Shakhnovich et al. and Pascual–Garcia et al. ;

Functional requirements on proteins within protein structure families vary [38], leading

to an apparent increase in the measured rate of structural change compared with proteins

grouped under a specific functional class [22].

As a final remark, we note that temporal and structural increments along a lineage

are, in general, uncorrelated ; Large changes in structure can occur suddenly, as the result

of a single mutation, or smoothly, in concert with a burst of mutations. Conversely, a

small change in structure resulting from an insertion or deletion can lead to a significant

increase in acceptance rate that persists for most of a lineage. There seems to be no simple

pattern to how these events occur, except that the majority of change takes place on the

surface of a folded structure, and away from the binding site. Thus, what apparently links

the behavior of the model with proteins is the tendency for amino acids to organize into

protein–like complexions [39] under the pressure to fold an ordered nucleus.

The authors would like to thank one anonymous referee for suggestions which led to

the calculations in Fig.s 4–6. This work was supported in part by the National Institutes

of Health (GM094575 to NVG)
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Appendix I

The polymer model is a chain of point monomers that interact as low resolution amino

acids via spherically symmetric potentials. Interactions along the chain are described by

potentials of the form,

Uκ(r) =
κ

2
(r − l)2 (11)

where r is the distance between monomers, l is the equilibrium length of a link, and κ is

a constant (see below).

Interactions between non–adjacent monomers along the chain are constructed from

the unit Morse potential,

µ(r) = exp(−2α(r − l)) − 2 exp(−α(r − l)) (12)

The attractive minimum of the Morse potential occurs at r = l. Let

µr≤l(r) = ϑ(l − r)µ(r) (13)

and

µr≥l(r) = ϑ(r − l)µ(r) (14)

denote the components of the Morse potential in either side of the minimum, where ϑ is

the unit step function. The potentials for attractive and repulsive amino acid interactions

are constructed as,

U ǫ′≤0(r) = ǫ µr≤l(r) + (ǫ + ǫ′)ϑ(l − r) − ǫ′ µr≥l(r) (15)
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and

U ǫ′≥0(r) = ǫ µr≤l(r) + ǫ ϑ(l − r) + ǫ′ exp(−α(r − l)) (16)

respectively (Fig. 14).

Each potential consists of an excluded volume part, ǫ µr≤l(r) + ǫ ϑ(l− r), modulated

by the parameter ǫ, and a sequence dependent part, modulated by the parameter ǫ′ ; The

parameter ǫ′ takes on different values,

ǫ′ = ǫEµν/Eo (17)

depending on the amino acid types involved in an interaction, where Eµν is the energy of a

contact between amino acids µ and ν defined by the empirical parameters in reference [40],

and Eo = 〈|Eµν≥µ|〉 is the average strength of an interaction (the empirical parameters are

obtained by re–scaling the Miyazawa–Jernigan parameters [41] using threonine as a ref-

erence solvent [40]). The potentials for unit strength attractive and repulsive interactions

are plotted in Fig. 14.

To describe polymer kinetics, we integrate the Langevin equation using the method

of van Gunsteren and Berendsen [42], with monomer mass m = 1.66 · 10−22 g, friction

coefficient γ = 10 ps−1, and integration time step, ∆t = 0.01 ps. The parameters used

to define the potentials are l = 3.8 Angstroms, κ = 11 kBT0, α = 2.1 Angstroms−1, and

ǫ = 2 kBT0, where kB is Boltzmann’s constant and T0 = 302.15 Kelvino.

Folding is initiated from a random coil state below the folding transition temperature

of a typical evolved sequence, which we estimate as Tf ∼ 1.25 T0 from specific heat data.

The time allowed for folding is determined by the length of the polymer according to the



18

estimate of Lin and Zewail [23],

tf = N

(

3

e

)N

∆tf (18)

where ∆tf = 10 ps roughly describes the timescale for positional exchanges among

monomers on the surfaces of polymer nuclei. Following this step, the replicas are equi-

librated for a short time tq = tf/3 at temperatures T1 = 218.2 Kelvino and T2 = 134.3

Kelvino.

Appendix II

To apply condition (i), each structure xµ ∈ Γ is considered as a possible reference

structure, and each of the remaining structures, xν 6=µ, are aligned to xµ by rotation,

translation, and reflection. Because the surfaces of folded polymers are disordered, we

compute structural distance by using an iterative procedure which ultimately aligns the

closest 2N/3 pairs of monomers : Let A denote the sequence positions of monomers com-

pared in an alignment, initially including all positions. In each iteration of the alignment

procedure, structures are aligned to minimize the squared distance

|xµ − xν |2
A
=

∑

j∈A

(

x
µ
j − xν

j

)2
(19)

The index of the most distant monomer pairing in A is then removed, and the process is

repeated until 2N/3 optimally aligned pairs of monomers remain.

Let ‖xµ − xν‖ denote the distance obtained in the last iteration of this procedure

– i.e., the distance measured by the closest 2N/3 pairs of monomers. To measure the

accuracy of a multiple alignment with a given structure, xµ, we compute the Lindemann
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parameter,

λ(xµ) =

[

3

2N

4

3N

∑

ν

‖xµ − xν‖2

]1/2

, (20)

or average distance between compared monomers, where the sum is restricted to the

closest 3N /4 structures in Γ, which we denote by ∆Γµ. The reference structure, x⋆, and

the corresponding ensemble, ∆Γ⋆, are defined by the multiple alignment that leads to the

minimal value of λ(xµ).

Let ‖x⋆
j −xν

j ‖ denote the distance between a pair of monomers in an iterative alignment

(but not restricted to the set of compared monomers). To measure the degree of order

for a particular sequence position, we compute the monomeric Lindemann parameter,

λj =

[

4

3N

∑

ν

‖x⋆
j − xν

j‖
2

]1/2

. (21)

where the sum is restricted to structures in ∆Γ⋆. A sequence position (monomer) is

considered ordered when λj ≤ λ†. Normally, the value of λ† is considered constant,

however, here the radius of a folded polymer can change along a lineage, which affects

the inherent accuracy of an alignment. To account for this effect, we define the melting

point threshold by a function λ†(N) that scales with the radius of gyration of a collapsed

polymer [43],

αλ†(N) = −4.54 + 2.36

(

2N

3

)1/3

. (22)

Here, the factor of 2/3 accounts for the number of monomers compared in structure

alignments, and the parameter α is selected so that λ†(30) = 0.16 l. The other constants

in this expression are identical to those suggested by Maiorov and Crippen to define the

threshold for meaningful comparisons in protein alignments. [44].
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Appendix III

To apply condition (ii), it is necessary to dock the target ligand onto the binding site

structures re-configured by replicas in the folding procedure. In order to accomplish this,

the folded structure of a replica is enclosed in a spherical shell consisting of ∼ 104 evenly

distributed points [32]. We then measure, and record the energy of the target ligand (for

the moment, a single monomer) at each point on this shell. In this procedure, interactions

with monomers in the binding site group are considered attractive, and are described by

unit Morse potential, µ(r), while interactions with monomers not included in the binding

site group are described by the repulsive core of the Morse potential, µr≤l(r). The radius of

the shell is reduced, and the energies are re–computed at each point, iteratively, until the

shell lies inside the folded replica. The structure of the binding site complex (i.e. binding

cavity plus ligand) is determined from this sweep as the configuration with minimal energy,

and a docked complex is considered active when it meets the conditions described in the

text. Compound ligands are treated in a similar way, with each monomer in the ligand

docked to its respective binding partners individually. To compute Lindemann parameters

for folded ensembles, the structures are aligned by the procedure used for condition (i).
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Figure Captions

Fig. 1. (Color online) (A) Folded structure, x⋆, and (B) sample of the folded ensemble

∆Γ⋆ recovered by a sequence evolved under ligand binding conditions (see Section II).

Amino acids (monomers) are colored blue, light blue, blue–green, green, yellow, orange,

and red, in order of increasing affinity to solvent. The binding site monomers and the

target ligand (here, a single monomer) are colored black. Ordered binding sites evolve

spontaneously under condition (i), and are selected to resemble the active sites of small

enzymes for subsequent evolution under condition (ii) (see Section II).

Fig. 2. (Color online) Amino acid transition (exchange) probabilities, p(µ, ν) =

Aµν/
∑

ν Aµν , for sequences evolved under condition (i), where Aµν is the number of

transitions recorded between amino acids µ and ν. The initial state of a transition is

indicated along the lower axis. Model values are indicated by filled red circles. Empirical

values obtained from the data of Dayhoff et al. [45] are indicated by open blue circles.

The value of p(µ, ν) is indicated by the radius of the corresponding circle.

Fig. 3. (Color online) Amino acid transition rate, ω(δA), versus exposed surface area

δA for sequences evolved under condition (i). ω(δA) is plotted in units of 10−4 accepted

mutations per time step. The dashed line is a fit to the data in the region δA/A ≤ 0.8.
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Fig. 4. (Color online) Amino acid transition rate, ω(Q), versus local packing density

Q for sequences evolved under condition (i). ω(Q) is plotted in units of 10−4 accepted

mutations per time step ; Q is measured in units of Angstroms−2. The dashed line is a

fit to the region 0.4 ≤ Q ≤ 1.2.

Fig. 5. (Color online) Amino acid transition rate, ω(R), versus distance from the

binding site, R, for sequences evolved under condition (ii). ω(R) is plotted in units of

10−4 accepted mutations per time step ; R is measured in Angstroms. The dashed line is

a fit to the region R ≤ 12.5.

Fig. 6. (Color online) Number of mutations, nl(τ), accepted along typical lineage, l,

evolved under condition (ii). Thick grey segments denote events in the tail of the waiting

time distribution P (T ≥ τ).

Fig. 7. (Color online) Distribution of waiting times, P (T ≥ τ), for the lineage

described in Fig. 6 (circles). The dashed line is a fit to the Pareto distribution in Eq.

(4). The solid line is a fit to a Poisson (exponential) distribution. The tail of P (T ≥ τ)

is indicated by the thick grey dashed line.

Fig. 8. (Color online) Plot of the Lindemann parameter, λ(τ), for the lineage de-

scribed in Fig. 6. Thick grey segments denote events in the tail of the waiting time

distribution P (T ≥ τ).
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Fig. 9. (Color online) Phase diagram defined by Eq.s (5) and (6). Lineages evolved

under condition (i) are represented by circles. Lineages evolved under condition (ii) are

represented by squares. The shaded region roughly indicates the phase space available to

a 2–state Poisson process.

Fig. 10. (Color online) Height auto–correlation function, 〈∆Y 1〉, for a typical lineage

(squares), and averages of 〈∆Y 1〉 and 〈∆Y 2〉 over all lineages (circles) evolved under

condition (ii). Dashed lines are linear fits to the data in the range k ≤ 64 (the logarithms

are base 10). Exponents, H(q), obtained from the fits are provided in the text.

Fig. 11. (Color online) Index of dispersion, I(τ), for a typical pair of phylogenies

evolved under (A) condition (i), and (B) condition (ii). The dotted line roughly indicates

the point at which the average number of accepted mutations per position, per lineage

is
〈

nl/N
〉

l
∼ 1. The lower curves (red) describe the restriction to homologous positions

discussed in the text.

Fig. 12. (Color online) Distance from the ancestral fold, ∆x(0, τ), for a typical

lineage evolved under condition (i).
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Fig. 13. (Color online) Average distance, 〈∆x(n, n + k)〉n, between structures sep-

arated by k accepted mutations for the lineage in Fig. 12 (squares), and average of

〈∆x(n, n + k)〉n over all lineages (circles) evolved under condition (i). Dashed lines are

fits to the data according to Eq. (10) yielding exponents, α ≃ 0.9 and α ≃ 0.8 respectively.

Linear scaling of the lineage average is obtained by a slight reduction in the number of

monomers compared in structural alignments, as discussed in the text.

Fig. 14. (Color online) Potential functions, U ǫ′(r), for cross-chain interactions at

unit core strength, ǫ = 1, unit attraction, ǫ′ = −1 (dot–dashed line) and unit repulsion,

ǫ′ = 1 (dashed line).
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